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Abstract: In this article, we study the Fekete-Szegd functional associated with a new class of analytic
functions related to the class of bounded turning by using the principle of quasi-subordination. We derived
the coefficient estimates including the classical Fekete-Szegd inequality for functions belonging to this
class. We also improved some existing results.
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1 Introduction
Let A be the class of functions f of the form:
f@) =z+ ) az", 1)
n=2

which are analytic in the open unit diskU = {z € C : |z| < 1}, normalized by f(0) = 0 and f'(0) = 1. We also
denote the class P of functions ¢ analytic in U, such that

©(0) =1 and R(p(z)) >0, (ze€U).
For two functions f and g, we say that f is subordinate to g written as f(z) < g(z), (z € U), if there exists a

Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)). Further, if the
function g is univalent in U, then we have the following equivalence relation:
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f(2) < g(z) ifand only if f(0) = g(0) and g(U) > f(U). 2

For two analytic functions f and g, the function f is quasi-subordinate to the function g (written as:
f(2) <4 8(2)), if there exists an analytic function (z) with [((z)| < 1, such that

f@) = Y(2)(gw(z)), (z¢€U).

The concept of quasi-subordination was given by Robertson [1]. It can be observed that if (z) = 1(z € U),
then quasi-subordination coincides with usual subordination. For the Schwarz function w(z) given by
w(z) = z, the quasi-subordination becomes the majorization. In this case:

f@) <48 = f(2) =P(2)g(z) = f(z) «g(2), (zeU). 3

MacGregor [2] introduced the concept of majorization. Fort # 1 and |[t| < 1 and for somea (0 < a < 1), Owa
et al. [3] introduced a Sakaguchi-type class S*(a, t) of functions f of form (1), which satisfies the condition:

‘ﬁ(w) >a, (zel). (%)
f(z) - f(tz)
The class of non-Bazilevic functions was introduced by Obradovic [4] as:
» 1+p
m(f’(z)(%) ) >0, (zeU0<p<1. (5)

For ze U, 1+te€C, |t| <1, and p > 0, by using the aforementioned concept of quasi-subordination,
Sharma and Raina [5] defined as:

1-1t)z

gqp((p, t) if such that [f (z)(m

p
) - 1<, [p) - 1]]. (6)

Definition 1. [6] For1#t € C,|t| <1,p>0,0<a <1, fe J(p, t, a) if and only if

f@
z

a-af@ . af’(Z)( (- 0z

f(2) - f(tz)
For different choices of parameters involved in definition (1), we have the following classes of analytic

functions:
(i) Fory(z) =1, the class J(¢, t, a) becomes class 3°(¢, t, ).

p
) - 1<4 [p) - 1]. (7

(ii) For a = 1, the class J)(¢, t, @) is equivalent to class (;[f((p, t).

(iii) For ¢(z) = 1ﬁ(z € U), the class J(¢, t, @) reduces to class studied by Nunokwa et al. [7] (see [8-13]).

1-z
Motivated by the aforementioned work, we define the following class.

Definition 2. Forz ¢ U,1#t € C;|f{ <15 p20; 0 <a <1, and f € (¢, s, t, @) if and only if

(s-t)z

A -af'(2) + af (Z)(m

P
) - 1<4 [) - 1]. (8)

Special cases

(i) Fors=1anda =1inJ(p,s, t, a), we have the class gq”(fp, t) studied by Sharma and Raina [5].
(i) Fora = 0and p = 0 in J(¢p, s, t, @), we have the class Ry(¢p), f'(2) - 1 <4 [p(z) - 1].

The study of functional made up of combinations of the coefficients of the original function is a typical
problem in geometric function theory. Initially in 1933, Fekete and Sezgé [14] (see also [15-22]) obtained a
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sharp bound of the functional |a; — ua;j| for univalent functions f € A of form (1) with real y (0 < u < 1).
Since then, the problem of finding the sharp bounds for this functional of any compact family of function
f € A has with any complex yu is generally known as the classical Fekete-Szeg6 problem. Many authors
have studied the Fekete-Szego problem for several subclasses of analytic functions in detail [23-40].

The primary goal of this article is to determine the coefficient estimates including Fekete-Szego inequality
the functions belonging the class J4(¢, s, t, @). Improving our results, we use the following lemmas:

Lemma 1. [37] Let the Schwarz function w(z) be given by:

w@)=wiz + wizZ + wz3 +-- (z e U), )
then
lwi] <1and |w, — xwd] <1+ (Jk| - Diwi]> < max{1, ||} (x € C). (10)
Remark 1.
(i) Let the function f € A be of form (1), then it can be observed that
M =Z+ Z5nanzn (Z c U), (11)
s—t =
n=2
where
gh _ ¢n
bp = (n eN). (12)

Therefore, for p > 0, we find that

( (s-t)xz
f(sz) - f(tz)

(i) We also suppose that the function ¢(z) € P is of the form:

p
) - 1=1-pbaz + (p@&zzazz - p53a3)22 +oee (13)

pzZ)=1+caz+cz?+- (q>0, zeU), (14)

and the (z), analytic in U, is of the form:
Y(z) = by + biz + byz? +--(z € U). (15)

(iii) Throughout this article, we assume that p and ¢ are such that
pép#n (zeU)and pb,<n, (teR, n=23,..). (16)

2 Main results

Theorem 1. Let the function f € A be in the class J)(@, s, t, @). Then,

(]

laz| < m, 17)
and for some y € C
las — paj) < Bfmmax{l, al - %j }, (18)
where
I = UG - apbs) ap(4 — (1 + p)6r)6, (19)

(2 - apby)’ 2(2 - apéby)’?

and 6,(n € N) is given by (12).



4 =— Syed Ghoos Ali Shah et al. DE GRUYTER

Proof. Suppose that the function f € J(¢, s, t, @) is given by (1). Then, by using the concept of quasi-
subordination with Schwarz functions w(z) given by (9) and for the analytic function y(z) defined in (15), it
follows that

(s-t)z
f(sz) - f(tz)

Moreover, in view of (14), it is easy to see that

p
1 - af'(z) + af’(Z)( ) - 1=9@pw()) - 1]. (20)

Y@)[pz) — 1= (bo + biz + byz? +--- Yewiz + (cW, + W)z +-+-)

(21)
= bocwiz + [bo(aw; + cWd) + bigwilz2 + ---.
Since f € A by using (1) together with (13) and after some computation, we obtain
B P
(1 - a)f'(2) + af'(z)(—f ((S) ?f('t )) -1
sz) — f(tz
(22)
l+p 2 2
= (2a; - apb,a)z + | 3a3 + ap 5 6, — 216.a; — apbsas |z° + -
Now, by putting the values from (21), (22) in (20) and equating the coefficients of z and z?, we have
(2 — apd;) = boawy (23)
and
613(3 - ap63) - ap[Z - @62]52022 = bo(C1W2 + C2W12) + b1C1W1. (24)
Since |bo| < 1 and |g| < 1, we find from (23) that
] € 2
1= 2 apsyl’ =
Now, (24) and (25) yield
2.2.,.,2
a3(3 - apbs) = ap[Z _axp 62]5z bociwi + bo(aw, + owy) + bicwy,
2 (2 - apb,)?
which implies that
as = 7C1 b1W1 + bo wy + (2 + ap(4 _ (1 Al p)52)2b0C152 )le . (26)
(3 — apés) a 22 - apéy)
Also, for some u € C, we find from (25) and (26) that
2 _ G Q. - 23,2
as — pa; = 7[b1W1 + (W2 + =wi)bo — alwj bo], (27)
(3 - apds) G

where L is given by (19). Since the function y defined in (19) is analytic and bounded in U, by using a result
recorded in Nehari [38], we have

|bol <1 and by = (1 — b)x?, (28)
for some x(|x| < 1). Thus, upon substituting the values of b, from (28) into (27), we obtain
as - pa; = L[){wl + (wz + wa)bo — (aLwf + xw)bg |. (29)
(3 - apés) a

For by = 0 in (29), it follows that
G

as — pajl < ———.
las — ua;| 3~ apdy
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For the case by # 0, we consider
g(bo) = xwy + (Wz + lez)bo - (CILW12 + le)bé,
(¢]

which is a polynomial in by and is, therefore, analytic with |bg| < 1, and the maximum of g(b,) is attained at
bo = (0 < 0 < 2m). We find that

max |g(bo)| = [g()| (b = e®)
0<6<2n

and
las — pag) < 9w, |aL-& w2 |. (30)
13 — apds| a
Finally, by using Lemma 1, we have assertion (18). O

It is worth mentioning that for specializing the parameters, we obtain the number of important corol-
laries as:

Corollary 1. [5] For a = 1, s = 1, we have

G
@] <« ——

12 - p&y’

and for some u € C,

q
las — paj] < ——max1{1,
273 - pbsl

where

[ - HG- apds)  ap(4 — (1 + p)62)8,
(2 - apby)’® 2(2 - apby)’?

and 6,(n € N) is given by (12).

Corollary 2. Fora =1,s =1, and t = 0, the class J{;(go, s, t, a) reduces to S};(go), and we have

}.

Corollary 3. For a = 0, the class Jg(q), s, t, a) reduces to class R, (¢), then

9 - 3—}1C1‘}.
6] 4

|4 - p&s|°

|a2| <aq,

and for some p € C,

c
las — uaj| < Elmax{l,

&, 1 -2u)q
G

G
laz| < 51,

and for some y € C,

G
las — paj| < glmax{l,

Corollary 4. For a = % and s = 1, we have

lay| <
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and for some u € C,

2q
las — pa3) < ——— maxi1,
|6 — pds|

where

I = K3 - apbs) ap(4 - (1 + P)52)52.

(2 - apd,)? 2(2 - apd,)?
Corollary 5. For Y(z) = 1,
G
Q| £ —,
| 12 - apéy|
and for some u € C,
@ - uad?] <« —max{1, oL - 2|},
las - pas| 3 - apdy| 1 a

where

I = UGB - apds) ap(4 - (1 + p)6)b,
(2 - apb,)? 2(2 - apé,)?

Remark 2. For t = 0, a # 1, and p = 1, we obtain the following result:

(8]
2 - al

las| <

>

and for some u € C,

o, (a -3 - o(),u)c1

13- al a @-ay

}.

G
laz — paj| < —lmax{l,

Remark 3. For t = 0, a # 1, and p = 0, we obtain the following result:

Theorem 2. Let1 # b € C, |b| < 1, and 0 < a < 1. If the function f € J9(¢p, s, t, a) is of the form given by (1)
and satisfies the following majorization condition:

G
|a2| <,
2
and for some u € C,

Q 3uq

(¢] 4

G
las — uaj| < glmax{l,

_of o =02\ _ _
A -af ) + of (Z)( F52) f(tz)) 1< [o(z) - 1], (1)
then
G
= el
Also for some y € C
< — 9 _ &
las — pay| < 3~ apdy max{l, al o },

where L is defined in (19) and 6, is defined in (12). The result is sharp.
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Proof. By using the concept of majorization and Theorem 1, we have w(z) = z in (9). This implies that
wi=landw,=0 (n=2,3,..).
Thus, if we make use of (25) and (27), we obtain

|a2| < #
|2 — apd,|

and

as - uaj = — 9 |pw+ (W, + 2wlz)bo - alwih? |. (32)
(3 - apéds3) a

Substituting the values of b; from (28) into (22), we have

2 a Q 2
az — ua; = ——\|x + =bg - (gL + x)b§ |. 33
3 — UG5 (3—ap63)[ o2 (a )0] (33)
If by = 0, then
2 G
a; - pay| = ———.
las — pas| 3~ apdy (34)

Also for the case by # 0, we consider

H(bo) = x + Zby - (alL + x)bZ,
G

which is a polynomial in by and is, therefore, analytic in |bg| < 1, and the maximum of |H (bo)| is attained at
bo = (0 < 0 < 27r). We thus find that

max |H(bo)| = [H(D)],
0<6<2m

and therefore, we have

C
ClL -2 .
a

las — paz| < (35)

_a
13 - apds|
Now, for inequality (35) together with (34), we have the result asserted by Theorem 2.

We now find the bounds of the Fekete-Szegd functional |a; — pa;3| when y and t are the real numbers.
We first obtain the following result for the class Jg(fp, s, t,a). O

Corollary 6. Let the function f € J(¢, s, t, a) be of form (1). Then, for real values y and b,

a Q. a(p(4a — a(1 + p)6,)6, — 2u(3 - apés)) (< v)
13 - apds|\ ¢ 2(2 - apb,)?
2 _a 3
las — pas| < |3_ap53|(vsus1/+ ¥)
a a(2uB - apds)) - (pl4a - al + p)62)62)- o +v<u<viy)
13 - apds] 22 ~ apby)’ a
where
_ap((4 - (1+p)8)8)  QR-apbr)’(1 o
v= - -2 (36)
23 - apbs) G-aps)\a ¢
and
2 — apb,)?
y= Q= apb) 37)

a( - apbs)’
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Proof. For real values of y and b and by working in a similar way in Theorem 1, we obtain the result asserted
by Corollary 6 by taking the following three cases.

C C C
al-2<-1, aql--=2<1, andgl - =2 > -1. O
(&} G (&}

Theorem 3. Let the function f(z) € J9(¢, s, t, a), then for real values of u and b,

G

W (v<us<v+y) (38)

las — uaz| + (u - vlaz| <

and

G

———— (YHV<U<V+), 39
3 - apds| (39)

las — pas| + (v + 2y — wlaz| <
where v and y are given by (36) and (37), respectively, and 6, is given by (12).

Proof. Suppose that the function f € 35(4), s, t, @) be in the form is given by (1). If v < p < v + y, then by
using (25) and (30), we have
(u )|W1 [,

a3 - apb a3 - apb
a5 - pad| + (u - Vi@l < 6|[| wil - 1( GG =a05) g+ G800
3

— apb,)? 2 - apd,)?
—(| wil + 761(3 P03, |)
3 - apé;| Q-aps?"

G 2
<— - (-1 .
5 apg (Ml ~ COMED

Hence, by applying Lemma 1, we obtain
G

a; — uaz —-V)|af < ——.
las — uaz| + (U - v)la| 3~ apdy]

Ify + v < u < v + 2y, then we again make use of (25) and (30), in conjunction with Lemma 1, thus we obtain

3 - apds)
as — pag| + (v + 2y - aZSLW—Q(j3
las — pas| + ( y - Wla] B3~ apdy) [wa 2 = apb,)?

a3 - apbs)
(2 - apé,)?

M-v- Y)|W1|
v +2y-ww |,

so that, by using Lemma 1, we obtain

(]

las — paz) + (v + 2y - plag| £ —————.
13 - apds|

Hence, we have established the result asserted by Theorem 3. O

3 Conclusion

Using the concept of quasi-subordination, we have systematically studied coefficient estimates and Fekete-
Szegd functional for a new class of analytic functions related to non-Bazilevic functions and bounded
turning. We also pointed out many new and already existing corollaries by assigning by specializing the
parameters.
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