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Abstract: Nonlocal operators with different kernels were used here to obtain more general harmonic oscil-
lator models. Power law, exponential decay, and the generalized Mittag-Leffler kernels with Delta-Dirac
property have been utilized in this process. The aim of this study was to introduce into the damped harmonic
oscillator model nonlocalities associated with these mentioned kernels and see the effect of each one of them
when computing the Bode diagram obtained from the Laplace and the Sumudu transform. For each case, we
applied both the Laplace and the Sumudu transform to obtain a solution in a complex space. For each case, we
obtained the Bode diagram and the phase diagram for different values of fractional orders. We presented a
detailed analysis of uniqueness and an exact solution and used numerical approximation to obtain a numer-
ical solution.
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1 Introduction

Generally, in applied physics, oscillatory movement can be interpreted as a rhythmic periodic response; there
are several types of these movements in nature. In particular, oscillation with damping or damped oscillation
is one that fades away with time. Several types have been studied in the last few decades by prominent
researchers, and some classifications have been done [1,2]. For example, the harmonic oscillator has been
recognized as a subclass of oscillatory movement with application in several real-world problems. We shall
note that this class has been studied in particular in a classical mechanic where it is known to be a system that,
when displaced from its steady state, recovered with a restoring force that is proportional to the displacement
made. More importantly, when a frictional force proportionate to the velocity is involved in the model, the
system is viewed as a simple harmonic oscillator [3,4]. There are two subclasses, including undamped, which is
the case where the system oscillates with a lower frequency with a decrease in amplitude with time, and the
case where the system decay to a steady state without oscillations; this case is referred to as overdamped.
There are several physical problems displaying these behaviors, for example, a swinging pendulum; several
investigations have been done to better understand this system and the resistor, inductor, and capacitor circuit
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system where the resistor, inductor, and capacitor are put in series [5-7]. These behaviors are described using
the concept of differentiation. Within the framework of mathematics and applied mathematics, several con-
cepts of differentiation have been suggested including classical differentiation based on the rate of change,
fractional differentiation based on the convolution of the rate of change, exponential decay kernel with Delta-
Dirac properties, differentiation based on convolution between the generalized Mittag-Leffler function and the
classical derivative, and finally the differentiation based on power law kernel [8-12]. The last three were
introduced to capture nonlocal behaviors. In simple cases, analytical methods can be used to derive their exact
solutions, and one of the most used methods is the one based on integral transformation like Laplace, Sumudu
transform, and others. The first integral transformation is comparable; however, it was documented that the
Sumudu transformation has more important properties than the Laplace transformation. An important note is
that a solution obtained by the Laplace transform in complex space can be used to obtain the Bode diagram,
which has been recognized as a powerful tool for identifying whether the system is a high-pass filter or a low-
pass filter [13-16]. It was suggested in an innovative work that such analysis could be done using the Sumudu
transformation. In this article, we shall undertake different analyses. One of the most well-known issues in
mechanics is the damped harmonic oscillator. It illustrates how a mechanical oscillator, such as a spring
pendulum, moves when friction and a restoring force are present. While this issue has received attention from
several authors, efforts have also been made in the context of nonlocal operators [17,18]. Noting that because of
the characteristics of the kernels, these operators frequently contain nonlocal processes in mathematical
equations. The power law-based differential operator case, the exponential decay function case, and the
generalized Mittag-Leffler function case will all be taken into consideration. They were used because the
model will incorporate processes like power laws, memory fading, and transitions from exponential decay
to power laws.

2 Damped harmonic oscillation with power law process

We start this work by considering a model of damped harmonic oscillation where the time differential
operator is replaced by the well-known Caputo fractional derivative. The aim of this is to include in the
mathematical model the effect of the power law that will probably have a great impact on the Bode diagram.
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We first aim to obtain the transfer function associated with the above equation using the Sumudu and the
Laplace transform.
We recall that
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Replacing the above into our equation yields
S%(s) — s%’(0%) = x(0%)s%1 + 20wo(APX(S) - sP~1x(0%)) + wiX(s) = 0. 8

The above equation is rearranged as follows:
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In the same line of idea, we have
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Replacing the above into our original equation yields
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We now have two solutions in frequency space and aim to determine the Bode diagram. We should note,
however, that the Laplace transform and the Sumudu transform of a function f(t) that satisfies all the
requirements of the Laplace and the Sumudu transform are given (Figure 1).

The Laplace transform of a function fis given as follows:

o

L) = [FOyexp(-stt.
0

The Sumudu transform is given as follows:

1 t
S = ng(t) exp —;]dt.

Figure 1 shows that the Bode and the phase diagram depend on the fractional order, and this is correct
because each fractional order describes a specific memory. In Figure 2, we present the Bode and phase
diagrams obtained from the Sumudu transform.

It is worth mentioning that the transfer function obtained from Sumudu provides a different Bode and
phase diagram. At this state, we will be unable to provide a clear conclusion as to what transform present a
better Bode and phase diagram. A clear conclusion will be drawn only through the experimental process.

While it is possible after serious manipulations to obtain the inverse Laplace transform of the X(s) and the
inverse Sumudu transform of X(u), we will, however, avoid this road by choosing an accurate numerical
scheme to provide a numerical solution to our equation. We will first show that the equation has a unique
solution.

We defined the following mapping:

1
Ix(t) = -F{g 9X(t) + 20wesDEX()}. (14)
0

We defined the following norm:

llollo = sup|p(t)]. (15)
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We aim to verify that
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Figure 1: Diagrams for different alpha and beta.



DE GRUYTER Damped harmonic oscillator model with nonlocal operators
@ 4 ' a=1.05 ar'ld 3=0.05 '
=,
3,1 -
I 2
)
ER '
=
g) A A A
= 0
10710 10 10° 10° 100
w
— a=1.05 and 3=0.05
= 0.06 ' . .
=
3 0.04 )
I
= 002r b
2
<
d; 0 - 4
7]
g -0 02 1 A L
o O
1010 10 10° 10° 10'°
w
— a=1.85 and 3=0.95
D 100 . - .
E oF o
X
— -100 .
[
o
2 200 -
c
()]
g -3(” 1 i 1
10710 107 10° 10° 100
w
= o=1.85 and 3=0.95
S 05 T L] T
E O - 4
- g
:.,' 0.5
<
5 1t P
2]
g 1 5 A A - -
m bl -
1071 10 10° 10° 100
w

Figure 2: The Bode and phase diagrams obtained from the Sumudu transform.

5



6 —— Nadiyah Hussain Alharthi et al. DE GRUYTER

DI < @+ [IXIRK,
I0x(6) = Iyl < Klx - ylfz,

1 1
IPX(OF = —FHGDX(0) + 260DEX O} < —{2EDPX(OP + 4 %g DX (O
0 0

2 2

X' (0)(t - 7)Pdr| .

t t

F(l Py

1

1
2
we| | T2 - a) .

x”(T)(t - )"t

+ 400

We shall use the Hélder inequality to proceed as follows:
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Since x’(t) is differentiable, there exists ¢ € [0, t] such that by the mean value theorem
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The linearity property of the Caputo derivative leads us to
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We have, of course, removed the contribution of initial conditions. We will need the following condition:
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Under these conditions, the equation admits a unique solution.
We can now provide a numerical solution to our equation.
We have that
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The above iteration will be used for simulation purposes.

3 Damped harmonic oscillation with Caputo-Fabrizio derivative

In this section, we provide a detailed analysis of the same model, where the time classical derivative is
replaced by the Caputo-Fabrizio derivative.

TDIX(t) + 20w tDPx(t) + wix(t) = 0, (39)

where

t
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Replacing into the original equation and then applying the Laplace transform yield
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We apply the same technique with the Sumudu transform and obtain
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We present below the Bode and the phase diagram obtained from the Laplace transform (Figures 3 and 4).
We present the conditions under which this model has a unique solution.
To achieve this, we transform the model into an integral equation as
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Under these conditions, we can conclude that the model has a unique solution. We now present a

numerical solution to the model.
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where

i a a
51],? = exp —m(tnﬂ - tj+1)] - exp _m(tn+1 - tj)], (68)

- exp

B B
-m _m(tnﬂ - tj)l~ (69)

The above iterative formula will be used for simulation purposes.

84F = exp (tns1 — tjs1)

4 Damped harmonic oscillation with ABC derivative

Finally, we consider a damped harmonic oscillation model where the classical derivative is replaced by ABC
fractional derivative.

ABCDax(t) + 20w BSDPx (1) + wix(t) = 0, (70)
where
t
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As done previously, we present the Laplace transform of the equation:
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We apply the Sumudu transform to obtain
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The Bode diagrams of the Laplace and Sumudu transforms are presented in Figures 5 and 6 for different
values of fractional orders.

The existence and uniqueness condition can be achieved by using the same routine presented in the case
of the Caputo-Fabrizio derivative. We will proceed with the numerical solution of the model.

1
X(tns1) = —?{ABSDZM(x)(t) + 20we™%sDE ()0}, (82)
0
_ 1] 1 tun () [« (tyor - Tz + 1 tn+1dx(T)E B (6 - Dldr @3)
wf|2-p4 d? Tl 2-a 1-p1 dr Alp-pomt ’
1] 1 2 -26+x54f a
. i
T We|2-a 2~ Atjz : _[ a[_—z mpn C T)“]dr
j=1 ;
' (84)
Gjs1
20wy & Xjr1 =% B
+ Epl- (tye1 — T)BldTY,
1—,B].=Z1 At »[[B 1-pgtm ™0
_ _iz 1 i Xjr1 — ZXJ + Xj—l]_[ln{a*. 2(6()0 i Xjr1 — XjT[Zn"B '
wi|2-aig At? T1-p5 A T (85)

5 Conclusion

Caputo, Caputo-Fabrizio, and the Atangana-Baleanu fractional differential operators have been used in this
work to modify the damped harmonic oscillator equation with the aim to introduce some nonlocal behaviors
into the model. In particular, power law helps introduce the power law process, while exponential decay helps
introduce fading memory, and the generalized Mittag-Leffler function helps introduce the change from fading
to the power law. Two integral transformation has been used to obtain an exact solution in complex space for
each case. For each case, we presented their corresponding Bode diagram with Laplace and Sumudu. The
growth and the Lipschitz conditions have been used to derive conditions under which the equations have
unique solutions, and, finally, numerical solutions were derived.
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