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1 Introduction

The main question the article deals with is what may be a sufficiently general method of defining explicitly
self-affine Jordan arcs in the plane and in space.

AJordan arc y in R" is called self-affine (resp. self-similar, self-conformal) if it is the attractor of a finite
system S = {Sj, ...,Sp} of contracting maps of the respective type in R". This means [1] that the arc y is the
unique nonempty compact set satisfying the equation y = S;(y) U ...U Sp(y).

The obvious and natural way to obtain a Jordan self-similar arc y with endpoints zy, zy, is to build it up
from pieces Sx(y), which follow each other successively and are connected by common endpoints, say,
Sk-1(zm) = Sk(zo). In this case, the maps Sy should send the points zq, z,, to the points z;_i, zx, and the
relations Si(y) N Si(y) = @ if |i - j| > 1 and Si(y) N Si11(y) = {zi} should be fulfilled. Such systems of con-
tractions are called Jordan zippers, which were studied in detail by Aseev et al. [2]. This approach is fairly
good; however, there exist examples of self-similar Jordan arcs y = JI2;Si(y) for which the overlaps y; n y;,,
are non-trivial subarcs of y. The problem of defining parameters for fractal arcs having non-trivial overlaps
is rather complicated.

We also consider a more universal setting that is applicable to each of the three previous cases.

A Jordan arc y is called locally self-affine if, for any open subarc y’ c y, there is a non-degenerate
contractive affine mapping S such that S(y) c y’. Given a locally self-affine arc y, the semigroup
G(y) =1{S : S(y) c y} of contractive affine maps of y into y is infinite, and in general case, it cannot be
reduced to a finite number of generators. It is most preferable for us to be able to define such generators
explicitly by some finite procedure.

The problem of finite explicit representation of self-similar and self-affine curves is closely related to the
rigidity properties of these sets, which we discuss later in this section.

Self-similar curves appeared initially in the works of Peano [3] and von Koch [4] and were studied in
detail by Levy [5]. Earliest examples of self-conformal sets were the limit sets of quasi-Fuchsian groups;
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they appeared first in 1897 in the book [6] written by Fricke and Klein. The first studies of self-affine curves
were originated by de Rham [7].

These three types of sets manifest various unusual phenomena, which may be (and often are) called
rigidity properties. For example, a self-similar arc y different from a line segment cannot be shifted along itself
to a small distance by a similarity close to identity [8]. Certain types of self-similar sets such as Sierpinski
gasket or a fractal necklace are topologically rigid, and the only possible continuous injections of such a set K
to itself are the maps sending K to some of its pieces S;, . ;, (K). As it was proved by Astala [9], if the boundary
of a plane domain contains a self-similar curve, then the domain is conformally rigid in the sense of Thurston
[10]. There is one more property: it is well known that, for any subarc y of a limit set A(G) of a quasi-Fuchsian
group G and any bundle B of parallel lines [ intersecting y, the set{l € B : #(I U y) = 1} isnowhere dense in B;
this happens because loxodromic fixed points are dense in A(G). A similar property takes place for self-similar
Jordan arcs in R" [11]. If a self-similar Jordan arc y ¢ R" contains a subarc y’ admitting a bundle of parallel
hyperplanes, each of which intersects y’ in a unique point, then the whole y is a straight line. If a self-similar
arc is not a straight line, then it is a Whitney set of some differentiable function [12].

The geometric rigidity properties of self-similar sets were first pointed out in 1982 by Mattila [13]. He
proved that if a self-similar set K in R" satisfies the open set condition, then there is the following alternative:
either the set K lies on an m-dimensional affine subspace or the intersection of K with every m-dimensional
Cl-submanifold M of R" has zero Hausdorff measure H{(E n M), where t is the Hausdorff dimension of E.

This geometric rigidity property was extended to conformal iterated function system (IFS) in 2001 by
Mauldin et al. [14]. They proved that if S = {S;, ...,S;;} is a conformal IFS in R"(n > 2), and its attractor K is a
continuum, then either dimy(K) > 1or K is a proper compact segment of a geometric circle or a straight line.
Further intensive work in this area was done in a cycle of works by Kdenmaki [15,16].

As it follows from [13], a self-similar arc in R" belongs to class C! only if it is a line segment. Conversely,
it was proved by Tetenov [8] that if a self-similar Jordan arc y in R" is not a line segment, then it can be
represented by some multizipper Z. Moreover [17], if such self-similar arc y lies in the plane, then it satisfies
weak separation condition. The latter statement does not hold for the arcs in R", n > 3 [18].

The situation is quite different for self-affine arcs. There are various non-trivial self-affine arcs in the
plane that belong to the class C. First, it was shown for the graphs of affine fractal functions in 1989 in
[19,20]. Later, the theory of smooth fractal interpolation was developed by many authors [21,22].

Kravchenko (2005) studied smooth self-affine curves in the plane, considering the action of affine
transformations on cones in R? and found the conditions under which the attractor of a self-affine zipper
in the plane is a C'-smooth curve [23]. In 2009, Bandt and Kravchenko [24] proved that the only C3-differ-
entiable self-affine arc in R? is a segment of a parabola or a straight line.

Another approach to the study of self-affine curves was worked out in 2006 by Protasov [25] in his
research of wavelets. He considered these curves as a special case of summable fractal functions

f:[0,1] - R™ Any such function is defined as a solution in the space L?([0, 1]) of a system of m equations

ft) =Bumt + k); t e [%, E], where k = 0,..., m — 1 and By is an affine operator with linear part B,. He

m
found the conditions for smoothness of y = f[0, 1] in terms of eigenvalues of operators By and proved that
the smoothness class of a self-affine fractal curve in R" is either strictly smaller than n or it is infinite. In the
latter case, y is a polynomial curve of order n, which, in fact, is an affine image of a segment of the moment
curve y(t) = (t, t% ...,t"), t € R.

In the last decade, Polikanova also proved that the moment curves in R" are the only non-degenerate
C"-curves, every two oriented arcs of which are affine congruent. Her approach was purely geome-
trical [26,27].

Finally, in 2017, Feng and Kdenmdki [28] proved a very powerful result in this series: an analytic curve
inR", n > 2, which cannot be embedded in a hyperplane, contains a non-trivial self-affine set if and only if
it is an affine image of a segment of a moment curve in R".

We put our questions in a slightly different fashion. Which conditions imply that a self-affine arc should
be a parabolic segment? How a self-affine Jordan arc can be constructed, if it is not a parabolic segment?
The answers are given by the following two theorems, which we prove in this article.
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Theorem 1. Let y ¢ R? be a locally self-affine Jordan arc, which does not satisfy weak separation condition.
Then, y is a segment of a parabola or a straight line.

Theorem 2. Let S = {S,, ...,Sn} be a system of affine contraction maps in R2, whose attractor is a Jordan arc
¥y, which is not a segment of a parabola or a straight line. There is a finite affine multizipper Z = {Sy} such that
y is the attractor of Z. All the maps from the multizipper Z are elements of the system S.

The last two theorems extend the rigidity and structural theorems for self-similar Jordan arcs proved in
[8] to the self-affine case.

In Section 2, we give all necessary definitions and remind some notions and results from the study by
Tetenov and Chelkanova [29].

In Section 3, we consider the ranges of transversal directions to locally self-affine arcs, proving
Proposition 18.

In Subsection 3.1, we prove that for any locally self-affine Jordan arc y, the elements of sufficiently small
neighborhood of identity are the affine shifts of y (Proposition 20) and then prove Theorem 1.

In Section 4, we prove Theorem 2.

2 Preliminaries

Zippers and multizippers. The simplest way to construct a self-similar curve is to take a polygonal line
and then make iterations, replacing each of its segments by a smaller copy of the same polygonal line; this
construction is called zipper [2].

Definition 3. A system S = {5y, ...,S,,} of contraction mappings of R4 to itself is called a zipper with vertices
{zo, ...,zm} and signature € = (g, ...,&m), & € {0, 1} if, fori = 1... m, Si(zo) = zi_1+¢ and Si(zm) = zi_,.

More general approach to the construction of self-similar curves and continua is provided by a graph-
directed version of zippers [8], which we called multizippers.

Definition 4. Let {X,, u € V} be a system of spaces, all isomorphic to R%. For each X,, let a finite array of
points be given as {x(()”), ...,xn(ff}. Suppose for each u € V and 0 < k < m,, we have some v(u, k) € V and
e(u, k) € {0, 1} and a map SE{”) : X, — X, such that

S = x or x and SM(xY) = x™ or x}, depending on the signature &(u, r).

The graph-directed IFS defined by the maps S,E“) is called a multizipper Z.

The attractor of a multizipper Z is a system of connected and arcwise connected compact sets K, ¢ X,
satisfying the following system of equations:

mu
K= USPKoui), ueV.
k=1

We call the sets K, the components of the attractor of Z.

In recent years, several authors have considered the multizippers, e.g. [30,31].

The components K, of the attractor of a multizipper Z are Jordan arcs if the following conditions are
satisfied [8]:

Theorem 5. Let Zoz{S,E“)} be a multizipper with node points x,ﬁ”) and with a signature € =
{v(u, k), e(u, K)),u e V,k=1, ....my}. If for any ueV and any 1i,je{l,2,...,m;}, the set
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K, N Ka,jy = D ifli - j| > 1and is a singleton if|i - j| = 1, then any linear parametrization{f, : I, — K,} is a
homeomorphism and each K, is a Jordan arc with endpoints x{*, x{*.

Let y be a Jordan arc in R4, Usually, we denote its endpoints by a and b, and if x, y € y, we denote the
subarc of y with endpoints x, y by y(x, y). We define the orientation on y by the relation x < y, which is
equivalent to y(a, x) c y(a, y).

Locally self-affine arcs and weak separation property (WSP). We say y is locally self-affine if, for any
open subarc y' C y, there is a non-degenerate contractive affine mapping S such that f(y) c y'.

We denote by G(y) the semigroup of all non-degenerate affine contraction maps of y into itself. Two
maps f;, fj € G(y) are called y-incomparable if neither f(y) c f;(y) nor fi(y) > fi(y).

We call the family F(y) = {f{'f; : fi, f; € G(y), fi, f;(y) are y-incomparable} the associated family for y.
The idea of the associated family was introduced by Bandt and Graf in [32] as a tool for testing the
positiveness of Hausdorff measure of self-similar sets. Our current definition is suited for locally self-affine
arcs, so it differs from the one of [32]. Note that y-incomparability does not permit #(y) to contain Id. We say
G(y) possesses WSP [33] if Id is not a limit point of #(y).

Affine maps close to identity and their trajectories. Usually, in some argument, we restrict ourself to
affine maps close to identity. We define a neighborhood U of the identity map Id in the group of non-
degenerate affine maps GA(R?) by

U ={f(x)=Ax +b,A € GL(2,R), |A - E| <1/2,b € R, |b]| < 1}.

Let A(R?) be the space of all affine maps of the plane equal to g(y) = Ly + B, where L € L(2,R) and B € R2.
We use the following lemma from our article [29].

Lemma 6. There is a homeomorphism ¥ of the set U to a neighborhood V of zero map in A(R?) such that for
any f € U, the map g = Y(f) satisfies the following condition: for any x € R?, the solution y(t) of the Cauchy
problem {y = g(y), y(0) = x} is equal to f(x) at t = 1.

The values of L and B for the map g(y) = Ly + B are easily found. L = Z;"il(—l)””@ is a matrix
logarithm of A and B = Zﬁo(—l)"wb.

n+1
The image g(y) = Ly + f defines an affine system y = Ly + 8, whose evolution operator

t

ft(x) = eflx + e‘LJ-e‘SLds -B 6))

0

assumes the value f(x) att = 1 for any x, so we may write f{(x) = y(t). Thus, the map f is included to one-
parameter multiplicative group of affine maps {f!(x), t € R}.

This lemma allows us to include each orbit {f*(a), k = 0, ...,N} to a trajectory Ly(x) = {f{(x); t € R},
which is of class C®.

Affine shifts and affine displacements of y. A map f(x) = Ax + b € U is called an affine shift of the
arcyify +ynf(y) # f(y) and #(y n f(y)) > 1. We will see in Lemma 7 that f has no fixed points on y. A
map f(x) = Ax + b € U is called an affine displacement of the arc y if f(y) ny = @.

Lemma 7. If g = f{lfi € F(y) and g(y) n (y) + 9, and g preserves the orientation on y, then g has no fixed
points on y.

Proof. Indeed, let a, b be the endpoints of y = fl-‘lfj. Let x € y be a fixed point of g. Then, say, fi(a) <
fi(a) < ix) = ;(x) < fi(b) < fj(b). So g(y(a, x)) c y(a, x) and g7 (y(x, b))  y(x, b). Therefore, limg"(a) = x
and limg™(b) = x, so x is a saddle point for g. Therefore, y(a, x) and y(x, b) should be non-collinear line
segments, which is impossible. |
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The first step for the Theorem 1 was the proof in our recent article of the following statement [29,
Theorem 1(i)].

Theorem 8. Let y = y(aq, @) be a locally self-affine Jordan arc with endpoints ay, a, in R? such that there is a
sequence of affine shifts fi of y converging to 1d. Then y is a parabolic or a straight line segment.

We also need the following corollary from this theorem:

Corollary 9. Let y be a locally self-affine Jordan arc inR?. Lety' C y be its subarc with endpoints xo, x,. If there
is a sequence of affine maps g, such thaty' c g,(y) c y, theny is a segment of a straight line or a parabola.

Proof. By compactness, we can choose a subsequence, denoted the same way, such that the arcs g,(y)
converge to some arc y” with endpoints xj, x{ and y’ ¢ y” c y. If there is a sequence of n such that g'g, .,
are affine shifts of y, then y is a segment of parabola by Theorem 8. Otherwise (by passing to a subse-
quence), we can assume that for any n, g,.,(y) € g,(y) (or otherwise) and the fixed points y, of g, 1gn+l
belong to a sufficiently small subarc § ¢ y so that Si(y) N § = @ for k = 1 or m. Then, the maps S;'g;'g,,:S
form a sequence of affine shifts of y, converging to identity, which proves the corollary. O

3 T-ranges for Jordan arcs in the plane

Let y be aJordan arc in the plane. For convenience, we use complex plane notation for our argument, so we
consider y c C.

Definition 10. We say that a € R /rZ defines a transversal direction to the arc y, if for any line /, which
intersects real axis in the angle a, #(y n ) < 1.

The set T(y) of all transversal directions a to the arc y is called the range of transversal directions to y or
T-range of y.

We say that y has empty T-range for all subarcs if, for any non-degenerate subarc y’ c y, its T-range is
empty.

In other words, a Jordan arc y c C has empty T-range for all subarcs if, for any subarc y’ ¢ y and any
a € R/nZ,thereis z € y' and p > 0 such that z + pei® ¢ y'. Therefore, the complement CT(y) =R /nZ\ T(y)
is the set of all directions of non-degenerate chords with endpoints in y.

Lemma 11. If y is a locally self-affine Jordan arc in the plane, then either T(y) + & ory has an empty T-range
for all its subarcs.

First, we prove that if y contains no straight line segment, then CT(y) is an open set.

Lemma 12. Let y be a Jordan arc that lies completely in the upper half-plane Imz > O except for its end points
zy < z, which lie on the real axis. Then, for any positiver < z; - zo, there are z{, z{ € y such that z{ — z§ = r.

Proof. Without loss of generality, we assume for (d1) and (d2) that zg < z.

Take r < z; — zo. The points zg + r and z; + r do not belong to y; therefore, there is § > 0 such that the
neighborhoods Vs(zy + r) and Vs(z; + r) are disjoint from y. If 0 < € < §, then zy + r + ic lies in the domain D
bounded by the arc y and a segment [zoz], while the point z; + r + ic lies in the complement to the closed
domain D.
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Therefore, the image of y under the translation by r + ic intersects the arc y. Reducing € to 0, we obtain
that (y + r) n y + &. This intersection does not contain points with real coordinates, and therefore, it lies in
Y\{zo, z1}. Take z{ € y N (y + r). The point z{ = z{ - r is also in y, which proves the lemma. O

Corollary 13. Let y be a Jordan arc in C with endpoints zy, z; such that y N [z, z1] = {z0, z1}.
Then,
(1) for any positive r < |z — zo|, there are z}, z| € y such that |z| - z{| = r and Arg(z] - z{) = Arg(z, - zo);
(2) there are h,e >0 such that for any r<h and any |6| <€, there are z\,z] €y for which
z{ -z = re®(z - zo).

Proof. Consider the intersection of y and the line ! passing through the points zz;. There is at least one pair
of points z{, z| € | such that [zo, z] € [z}, z{] and the subarc y’ ¢ y with endpoints z}, z; has no other
common points with I. Applying Lemma 12 to the arc y’ and the half-plane bounded by ! and containing
y', we come to (d1).

Vi (&

Zo uo ul Zl

Suppose for convenience that zp,z; € R and z, < z;. Take some segment [ug, U] C (2o, z1) and put
h = u; — uy. By the compactness of [ug, u], there is A > 0 such that a rectangle P = [ug, 4] x [0, A] does
not intersect y. For any ray [, starting at the point z, (resp. L_ starting at z;), which intersects both vertical
sides of the rectangle P, the set I n P is contained in some interval (§,(I), &(1)) for which &) € y,
&, &) Ny, = @, and [1€,(1) - &Il = h. Then, by (d1), for any r < h, there are z, z; € y such that the
interval [(z}, z{)] is parallel to l and |z{ — z}| = r. Take £ > 0 such that the ray L, which forms an angle € with
(20, 1), and the ray l_>z;, which forms an angle —€ with (z;, zo), intersect both vertical sides of the rectangle
P. Then, h and ¢ fit the statement (d2) of the lemma. (|

Corollary 14. Let y ¢ R? be a Jordan arc R? that does not contain a line segment. Then, T(y) is a closed subarc
inR/n”Z.

Proof. Suppose a € CT(y). Then, there is a line [l that intersects y in at least two points. The complement y\
is a disjoint union of subarcs with endpoints on [ but no other intersection points with l. Therefore, by the
statement (d2) of Corollary 13, there is a neighborhood (a - €, a + €) ¢ CT(y). This shows that CT(y) is open
inR/nZ.

Let a, B € T(y). Take a point x € y and let l,, Iz be the lines passing through x in directions a and B.
These lines divide the plane into four angles. The set y\ {x} consists of two components, which are contained
in two opposite angles of these four angles. As x travels along y, these four angles remain the same;
therefore, all values between a mod 7 and 8 mod 7 that correspond to the remaining two opposite angles
belong to T(y). Since CT(y) is open, T(y) is a closed subarc in R /nZ. O
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Lemma 15. Let y c R? be a Jordan arc that has empty T-range for all subarcs.

(1) For any linel c R?,1ny is nowhere dense inland iny.

(2) Foranylinel c R? and for any n € N, the set of those lines ' parallel to 1 for which #(I' N y) < n is nowhere
dense.

Proof. The first statement is obvious, because the set y n [ is closed and does not contain any straight line
interval. We prove the second statement by induction in n.

Let ! be a line and let a be a vector orthogonal to ! such that for any t € (0, 1),y n (I + ta) # &. We show
that the set E; of those t € (0, 1) for which #(y n (I + ta)) = 1is nowhere dense in (0, 1). Suppose that the set
E; is dense in some interval (¢, &) c (0, 1). This interval defines an open strip S, bounded by the lines
l + tia, l + ta. Consider the intersection y N S = y’. Note that if for some ¢t € (¢, ,), the set y n (I + ta) is
disconnected, then it is disconnected for any ¢’ in one of the intervals (t - &, t], [t, t + €) for some € > 0.
Therefore, y’ is a Jordan arc, and for any ¢ € (¢, t,), the intersection y’ n (I + ta) is either a point or a line
segment contained in I + ta. The second case is impossible, because each line segment of that kind is a
subarc in y whose T-range is non-empty. If for each ¢, #(y' n (I + ta)) = 1, then T(y') is non-empty.

Therefore, for any Jordan arc y, which has empty T-range for all subarcs, and for any line ! and its
orthogonal vector a, the set {t : #(y N (I + ta) = 1)} is nowhere dense in R.

Now suppose that for any subarc y’ c y, the set{t : 0 < #(y' n (I + ta)) < n} is nowhere dense in (0, 1),
whereas the set {t : 0 < #(y n (I + ta)) = n} is dense in some interval (t;, t,) ¢ (0, 1). Let S be the open strip
bounded by the lines ! + ta, | + ta. Since y intersects both these lines, one of the components of y n S is a
subarc ), with endpoints on different sides of S. Choose an endpoint x of this component so that both
components ), and y, of y\{x} have nonempty intersection with S. The arc y, is a subarc of one of these
components, say, ;. Suppose (t{, t;)  (t, t;) is such that for any t € (¢, t;), y, N (I + ta) # &. Being con-
tained in the intersection of the sets{t : 0 < #(y; N (I + ta)) < nfand{t : 0 < #(y, N (I + ta)) < n}, which are
both nowhere dense in (t, t;), the set {t € (t{, t;) : #(y n (I + ta)) = n} is nowhere dense in (¢, t;) too. O

It follows directly from Lemma 15 that if a Jordan arc y has empty T-range for all subarcs, then for any
linel ¢ R? and any n € N, there is a line I'||l, such that #(I' ny) > n.
We denote by C(z, p, @) an open half-circle {{ =z + re®®, 0 < r < p, 0 € (a — /2, & + 1/ 2)}.

Lemma 16. Let y(t) = (y, (), %, (0)), t € [0, 1] be a Jordan arc with endpoints y(0) = (0, 0), y(1) = (0, h) whose
interior y((0, 1)) lies in the open strip S = {(x, y) : 0 < y < h} and has empty T-range for all subarcs. Let S, be a
connected component of S\ y whose boundary contains [0, +00).

There is a point a € y and p > 0 such that C(a, p, 0) C S,.

Proof. Suppose maxy,(t) > 0, and 7 € (0, 1) satisfies y,(7) = maxy,(t). Let a = y(7). If p = min(a,, 1 - a,),
then C(a, p, 0) c S,.

Suppose for any x € (0, 1), y,(t) < 0. As it follows from Lemma 15, there is a vertical linel : x = y, y < 0,
which intersects y more than three times. Let S, be an unbounded component of S\ . The set 6§+\l is an
union of more than two subarcs of the arc y. Therefore, at least one of these subarcs, say y’, has both its
endpoints in I. Let a € y' be the point at which y)’( reaches its maximum. Then, there is such p, that
C(a,p,0) c S,. O

Lemma 17. Let y(t), t € [0, 1] be a Jordan arc that has empty T-range for all subarcs. Suppose y(0) =
20, Y(1) = z1, and z; = zo + Rel® and y((0, 1)) lies completely in an open half-plane, bounded by the line 1
containing zy, z;. Let D be a domain bounded by y and |z, z].

There are points z4, z{ € y and r > 0 such that C(zy, r, @) ¢ D and C(z{,r,a) N D = &
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’l,r,a)

Z1

/ ‘r
0 &

Zg

Proof. Without loss of generality, we may assume that zo = 0, z; = 1, @« = 0, and the domain D lies in the
upper half-space. Let h, = maxy,(t) and o = min{7 : y,(7) = hy}. Denote by y, the subarc in y with endpoints
(0, 0) and (hy, hy) = y(15). By Lemma 16, there exists a point a € y, such that C(a, p, 0) c S,. There is a ball
B(p’, a) such that B(p', a) n y\y, = &. The set D is a component of S,\y whose boundary contains y;, hence
C(a, p’, 0) c S;(y)). Let now 7, = max({r : ¥%,(T) = hy} and h{ = y, (). Denote by y, a subarc in y with endpoints
(1, 0) and (h{, hy) and let S; be an unbounded component of S, \y,. By Lemma 16, there is a point b € y,, for
which there is a sector C(b, p, 0) ¢ S,. Since S, N D = &, the same is true for C(b, p, 0). O

Summarizing all previous argument, we come to the following proposition.

Proposition 18. Let y be a Jordan arc that has empty T-range for all its subarcs. For any a € [0, ), there is a
subarcy' c y with endpoints zi, z, such that arg(z; — z;) = a andy' U [z1z,] is a closed Jordan curve bounding
a domain D.

There is r > 0 and points z}, z{ € y' such that C(z}, r, @) ¢ D and C(z{,r,a) n D = @.

3.1 Arbitrary small displacements of self-affine arcs cannot be neighbor maps

Proposition 19. Let y be a locally self-affine arc inR?. Suppose there is a sequence { f,} of affine displacements
of y that converges to Id. Then, T(y) + &.

Proof. Suppose contrary. Then, y has empty T-range for all subarcs.

Therefore, we can choose a subsequence f, = A,x + b, (denoted the same way), a point z, € y, and a
circle Vp = B(zg, R), such that||A, — Id| < 1/2 and fixed points of the maps or the points of invariant lines of f,
are not contained in By. By Lemma 6, we put into the correspondence to each of the maps f,,(x) = A,x + b, an
affine map g,(y) = By + B, such that f,(x) is equal to the value at ¢ = 1 of the evolution operator ¢,,(x) of
non-homogeneous linear system y = B,y + f,. Put £, = sup{llg,COll, x € Vo}. Let §.(y) = g8,(¥)/ tn.

This way we obtain a sequence of linear dynamical systems in V5, whose integral curves coincide with
integral curves of respective systems X = g (x). At the same time, sup{[,(x)|l, x € Vo} = 1. Due to the con-
vexity of functions ||g,(x)[l, the maximum value of each of these functions is attained on the boundary of the
disc V.

Due to Arzela-Ascoli theorem, the sequence g, contains a subsequence, which converges uniformly in
Vo to some affine function g, such that supllg,(z)| on By is equal to 1. Without loss of generality, we may
assume that the initial sequence {g,} was chosen in such way that §, = g, on I5. Since, for any of the
functions, its zero value or minimal value is attained outside the disc V,, the value of h = g,(z) cannot be
equal to zero. Let a be the direction of the vector h. There is a disc ; with the center z; and a number N such
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that n > N and z € V; imply llgy(z) — g5(z0)ll < |hll/4. Let y;, be a subarc in y n V; such that for any
n>N, f,(yy) c .

Let ¢, (x, t) be the evolution operator for the linear non-homogeneous system x = g,(x). Then, for any n
and z € R?, f,(2) = @,(2, t).

Since @ (z, t)) — z = ;"gn(tpn(z, 7))dr, the inequality
18,(2) = 8ol < 18,(2) — oD + 1185(2) — 8o(2zo)ll < Il /2

implies that ||f,(z) — z — t;h| < tilhl/2.

Therefore, for any z € y,;, the angle between vectors h and f,(z) — z is no greater than 7 /6.

Since the arc y, has empty T-range for all its subarcs, there is a line [ parallel to h, which intersects y, at
least at two points. As it follows from Corollary 13, there are z;, z, € I N y; such that y,(z1, ) N I = {z1, z}. Let
D be the domain bounded by y;(z1, z,) U [21, 2;]. By Lemma 17, there are the points z,, z_ € y,(z;, zz) and p > 0
such that C(z,,r,a) ¢ D,C(z_,r,a) nD = Fand C(z_,r,a) Ny = &.

If we choose n such that |f,(z0) — zo| < p/2, then f,(z,) € C(z,, 1, a) ¢ D and f,(z.) € C(z_, r, @) c CD.
Therefore, f,(y;) Ny, # &, which contradicts the condition f,(y) Ny = @.

This contradiction shows that there is a line [ such that any line I’ parallel to ! intersects y in at most one
point, so T-range T(y) is non-empty. O

Proposition 20. Let y be a locally self-affine Jordan arc in R?, which is not a line segment. For any sequence
8, € §(y), converging to Id and for any subarc y' C y, there is N such that foranyn > N, g,(y') ny' + @.

Proof. Suppose contrary. Then T(y) + &. Take a subarc y’ ¢ y and let € be a minimal width of a of a strip S
bounded by two parallel lines such that S > y’. The arc y’ is not a straight line, so € > 0. Since the sequence
g, converges to Id, there is N such that for anyn > N and any x € y, |g,(x) — x| < €/2. Taken > N and let
8, = f,-’lf,-, where f; and f; are affine transformations mapping y to its subarcs fi(y) and f;(y). Note that y and
g,(y) are the subarcs of an arc f;!(y). This arc is affine equivalent to y, and therefore, T(f;'(y)) + @ and
T(f7'(y)) c T(y). Take a € T(f;'(y)). Consider the minimal strips S; and S, bounded by pairs of parallel
lines that intersect horizontal axis in the angle a and contain y and g,(y), respectively. Sincey n g,(y) = &,
S$1 N S; = @. Take a point z € y such that d(z, S;) > €/2. Since g(z) € S,, |g(z) — z| > €/2. The obtained
contradiction proves the lemma. O

Proof of Theorem 1. Let y be a self-similar arc that does not satisfy WSP. Then, there is a sequence
g, € F(y) converging to Id. For sufficiently large n, g, € U, and by Proposition 20, g, are affine shifts of
y. Therefore, by Theorem 8, the arc y is a segment of a straight line or a parabola. O

4 Proof of Theorem 2: The partition to elementary subarcs

Let S = {Sy, ...,Sn} be a system of contractive affine maps in R? with Jordan attractor y.

We use standard notation in this case. The set of indices {1, ...,m} is denoted by I. The subarcs S;(y) are
denoted by y. G is a semigroup, generated by {S;, ...,Sn}, and the families ¥ and ¥’ are defined
accordingly.

Let ap and a, be the endpoints of y. For any two points x, y € y, we write that x < y, ify(ao, x) ¢ y(ao, ¥).

We may suppose that the system S is irreducible, i.e., for any k € I, e\ si3¥; # v- Hence, we can order
the maps Sy, ..., Sy so that y, N y; # @ if and only if|i - j| = 1, while ao € y; and a; € y,,.

The idea of the proof of Theorem 2 is to construct a finite set £ c y, whose points ag = pg <
P1<...< Pn-1 < py = a; define a partition of y to subarcs §;, i = 1,..., N, satisfying the following conditions:

al. For any 6; and any k = 1,..., m, there is §; such that Si(6;) < §;.
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a2. For any k;, k; = 1,..., m, and for any &;, 6;,, Si,(6;) and Sy,(8;,) are either equal or disjoint.

For each g € 7, the sety N g(y) is a non-degenerate subarc, which we denote by y,. The endpoints of y,
are the points g(a;) and a;, i, j € {0, 1}.

Let P be the set consisting of ay and a; and of points g(a;), wherei = 0,1, g € ¥ and g(a;) € Ye NV. Let
P; be the set of those p € # ny, which are the endpoints of subarcs y, that do not contain a;.
Thus, P = {ag, a1} U Py U P1.

Note two properties of the set #, which directly follow from its definition:

bl. Let g € G. Then, P n g(y) c g(P).
b2. Let g;, 8, € G be two y-incomparable affine maps such that g,(y) n g(y) is a non-degenerate subarc of

y. Then, the endpoint of the subarc g;(y), contained in g,(y), lies in g,(#), and vice versa.

In the case when the maps g belong to S, the conditions b1 and b2 become the following ones:
cl. Foranyie{l,..,m}, P ny c Si(P);
c2. Forany1<j<m -1, §({ao, a1}) Ny, € 8,1(P) and Sj.1({ao, a1}) Ny; € g(P)

Lemma 21. Suppose the system S = {S, ...,Sp} is irreducible. Then,

dl. the set of limit points of P is contained in {ao, a;}.

d2. there are such neighborhoods U; of the points a;, where i = 0,1, that P,_; n U; = @, and if for some
kef{l,m}andi,j € {0, 1}, S(a;) = a;, then Sy is a bijection of U; n P; to Si(Up) N P;.

Proof. First, we show that the set # has no limit points in y. Suppose there is a ¢ € y n #. Then, for one of
the endpoints of y, say, ao, there is a sequence g, € G such that g,(ap) — c. It follows from Corollary 9 that y
is a segment of a parabola, which contradicts the assumptions of the lemma, so d1 is true. The same
argument shows that a; cannot be a limit point of $; and ay cannot be a limit point of ;. Therefore, there
are such neighborhoods U; of the points g; such that #;_; n U; = &. Moreover, we choose Uy, U; in such a way
thaty n Up c yyand y N U; C ¥,

To check d2, we first consider the case when Sy(a;) = ao. If p € Pon Up and p = g(a;), then S;' o g € G
and S7X(p) € P, n S{(Uyp). Conversely, if p € P, n Uy and p = g(a;), then S; o g € G and Si(p) Py N Sy(UY).
Therefore, S; defines a bijection ? n Uy N Sy(Uy) to P n U; n S7%(Up). Enumerating all possibilities:

1. Sy(ao) = ao, Sm(@) = ay;
2. Si(ap) = ao, Sm(ar) = ao;
3. Si(ao) = @y, Sw(@) = a3
4. Si(aop) = @, Sw(ar) = ao,

we find the desired pairs of neighborhoods for each of the cases. O
Lemma 22. The set P contains a finite subset P', which also satisfies c1 and c2.

Proof. For each of the points Si(a;) € y, where k € I and i = 0, 1, we denote by w(k, i) the connected
component of the set y,\?, which has Si(a;) as its endpoint, whereas for S(a;) = a;, we put w(k, i) = U,.
Let W = NkerSgi(w(k, 1)) N U; and let P’ = {ay, ai;} U P\ (W, U WL).

The set P’ is finite, so we denote its elements by ay = pg < p1<...< Py = a;, and we denote the subarcs
y(Dx-1, Px) by 6x.

For any jel, S;(P) c Si(Wou W) u S;(P'). At the same time, the definition of #’ implies that
Si(Wo u Wh) U Si(P’) = Sj({ao, m}). Therefore, P’ N Y € Sj(P"). Thus, the set P’ satisfies the condition c1.
The condition ¢2 directly follows from the definition of #'. O

Lemma 23. Each of the subarcs 6;,1=1,..., M and y,, i € I is an union of subarcs S;j(6;) for some j € I and
some k € {1, ...,M} whose interiors are disjoint.
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Proof. The system S is irreducible, and therefore, each subarc Y 1< j < m intersects two adjacent subarcs
Yi-1s ¥js1o 50 that y\(y;_; U y;,) # &. For any subarc 7, = y;\(y;_; U j,,), its endpoints by c2 are contained in

Sj(P"); let them be the points Sj(py;), Sj(px;)- The arc ¥; has unique representation Uﬁ;}lsj((sl'). For each of the
subarcs ¥ N Vi there are exactly two partitions: first, to the subarcs S;(6;) and second, to the subarcs

Sj+1(6;); choose one of them. Taking the union over all subarcs and renumerating all the points, we obtain
the desired partition for the whole y. By the property c1, the partition we obtained is at the same time a
partition for each of the subarcs 6. O

Proof of the Theorem 2. Now we can construct a Jordan multizipper, for which the components of the
attractor will be the subarcs §;. Each of the subarcs §;, j = 1,... M, is a finite union of consequent subarcs

Si(6x), which form a partition of §;. Therefore, we can create a graph G whose vertices are y; = 6, and an
edge e; is directed from u; to y; if there is such Sy, that Si(Uj) c 6;. O
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