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Abstract: In this article, we consider compositions of positive integers with 2s and 3s. We see that these
compositions lead us to results that involve Padovan numbers, and we give some tiling models of these composi-
tions. Moreover, we examine some tiling models of the compositions related to the Padovan polynomials and
prove some identities using the tiling model’s method. Next, we obtain various identities of the compositions of
positive integers with 2s and 3s related to the Padovan numbers. The number of palindromic compositions of this
type is determined, and some numerical arithmetic functions are defined. Finally, we provide a table that
compares all of the results obtained from compositions of positive integers with 2s and 3s.
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1 Introduction

Studies on compositions have a long and rich history. The first publication on composition was published by
Machahon (1854-1924) in 1893 entitled “Memoir on the Theory of Compositions of a Number” [1]. A composi-
tion of a positive integers n is any G = (G4, G, ...,Gy,) of positive integers such that Y i~,G; = n. Here, the G;s are
called the part of the compositions and m denotes the numbers part of compositions. For example, the
compositions of 4 are 4,3 +1,1+3,2+2,2+1+1,1+2+1,1+1+2and1+1+1+1, and their number is
8. The total number of compositions of any positive integer n is well known to be 2" [1]. There are restricted
and unrestricted types of compositions in the literature. Unrestricted integer compositions are vast. The parts
of restricted compositions are in a fixed subset G of positive integers and have also received a fair amount of
attention [2,3]. Heubach and Mansour found generating functions for the number of compositions, avoiding a
single pattern or a pair of patterns of length three on the alphabet {1, 2} and determining which of them are
Wilf-equivalent on compositions. They also derived the number of permutations of a multiset that avoid these
same patterns and determined the Wilf equivalence of these patterns on permutations of multisets in [4].
Heubach and Mansour gave more detailed information on the subject in their book titled “Combinatorics of
Compositions and Words” in [5], in [6], they also studied the generating functions for several counting
problems for compositions, palindromic compositions, Carlitz compositions, and Carlitz palindromic composi-
tions with parts in A, respectively. In [7], Savage and Wilf showed that among the compositions of n into
positive parts, the number g(n) that avoid a given pattern 7 of three letters is independent of 7, found the
generating function of {g(n)}, and it shows that the sequence {g(n)} is not P-recursive. Alladi and Hoggatt
examined palindromic numbers and various identities of the compositions of positive integers with 1s and 2s
in [8]. Banderier and Hitczenko studied pairs and m-tuples of compositions of a positive integer n with parts
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restricted to a subset P of positive integers and obtained some exact enumeration results for the number of
tuples of such compositions having the same number of parts as in [9]. Chinn and Heubach counted the
number of compositions and the number of palindromes of n that do not contain any occurrence of a
particular positive integer k, and also found the total number of occurrences of each positive integer among
all the compositions of n without occurrences of k in [10]. Eger proved a simple relationship between extended
binomial coefficients, which are natural extensions of the well-known binomial coefficients, and weighted,
restricted integer compositions. Moreover, Eger gave a very useful interpretation of extended binomial coeffi-
cients as representing distributions of sums of independent discrete random variables in [11]. The earliest
papers on restricted compositions are those on compositions with ones and twos, which are given by Alladi
and Hoggatt [12,13]. The authors in [12,13] discussed the compositions of integers with 1s and 2s, and they
proved that these compositions lead us the Fibonacci numbers. In [14], Sills provided some commentary about
the history of partitions, compositions, and Fibonacci numbers. In [15], Gessel and Li studied formulas expres-
sing Fibonacci numbers as sums over compositions, provided a systematic account of such formulas using free
monoids, and showed that the number of compositions of n with parts 1 and 2 is the Fibonacci number F,.;. In
[16], Kimberling studied the enumeration of paths, compositions of integers, and Fibonacci numbers. In [17],
Knopfmacher and Robbins worked on binary and Fibonacci compositions.

Although there have been many studies on the combinatorial interpretations of the Fibonacci numbers in
the mathematical literature, there have not yet been enough studies on the combinatorial studies for the
Padovan numbers. In the present work, we investigate the combinatorial interpretations of the Padovan
sequence by considering the compositions of positive integers with 2s and 3s. We introduce some tiling models
related to the Padovan numbers, and we prove some results involving various identities for the compositions
of positive integers with 2s and 3s. We also give tiling models and certain binomial sums of the Padovan
polynomials. Finally, we explore the palindromic representations of the compositions with 2s and 3s, and
obtain various results. Let us begin the introduction with the definition of Padovan numbers.

The Padovan sequence {B,},>¢ is defined by the third-order recurrence:

B3 =B+ By @

with the initial conditions Py = 1, P; = 0, and P, = 1. The Padovan sequence appears as sequence A000931 on
the On-Line Encyclopedia of Integer Sequences [18]. Consistency we consider as P, = P4 = 0. The first few
values of this sequence are 1, 0,1, 1,1, 2,2, 3,4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151.

Many authors have studied the sequence of Padovan numbers for decades. However, Padovan [19] first
defined it formally, and then Stewart [20] gave them the name Padovan numbers. For details, we refer to works;
Cerda-Morales investigated new identities for the Padovan numbers in [21]. Deveci and Karaduman defined the
Padovan p-numbers, and then they obtained their miscellaneous properties such as the generating matrix, the
Binet formula, the generating function, the exponential representation, the combinatorial representations, the
sums and permanental representation, and also studied the Padovan p-numbers modulo m in [22]. isbilir and
Glrses investigated the Padovan (or Cordonnier) and Perrin generalized quaternions, and obtained the new
identities for these special quaternions related to matrix forms. They also introduced Binet-like formulae,
generating functions, several summation, and binomial properties concerning these quaternions in [23]. Soykan
investigated the generalized Padovan sequences and deal with, in detail, four special cases, namely, Padovan,
Perrin, Padovan-Perrin, and modified Padovan sequences, and presented Binet’s formulas, generating functions,
Simson formulas, and the summation formulas for these sequences in [24]. Yilmaz and Taskara developed the
matrix sequences that represent Padovan and Perrin numbers, and by taking into account matrix properties of
these new matrix sequences, some behaviors of Padovan and Perrin numbers investigated. Moreover, they
presented some important relationships between Padovan and Perrin matrix sequences in [25].

The Fibonacci polynomials are defined in [12] by

Fira(X) = XEuq(x) + Fy(x),
Fy =0, F; = 1. In [26], the Padovan polynomial sequence {P,(x)},»0 is defined by a third-order recurrence

Bii3(X) = XBra1(X) + By(X), ()]
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with the initial conditions Py(x) =1, P;(x) = 0, and P,(x) = x. For consistency, we consider as Py(x) =
P4(x) = 0. To simplify notation, take B,(x) = #,. The first few values of this sequence are 1, 0, x, 1, x?, 2x,
x3+1,3x%, x* + 3x.

The recurrence (2) involves the characteristic equation:

t-xt-1=0.
By ay, B,, and y, if we denote the roots of the characteristic equation above, we can derive the following
equalities:

ay + Bx + Vx = O’ axﬁx + axyx + BXVX =X aXBxVx =1L

The Binet-like formula for the Padovan polynomials sequence is

P = axay + b + &y, ®)

where

By, + X Oy, + X ap, + X

@ @1 T BB O BB
There are two different studies on the compositions of positive integers with 2s and 3s in the literature, and on
the Padovan numbers. First, Tedford also interpreted the Padovan numbers combinatorially by having them
count the number of tilings of an n-strip using dominoes and triominoes, and developed a collection of
identities satisfied by the sequence of Padovan numbers using this interpretation in [27]. Secondly, Vieira
et al. obtained a generalization of the Padovan combinatorial model and introduced the Padovan sequence
combinatorial approach in [28]. Now, let us give the relation between Padovan numbers and compositions of
positive integers with 2s and 3s. Similarly, let us show the relation between Fibonacci numbers and composi-
tions of positive integers with 1s and 2s.

A composition of any positive integer n is a representation of n as a sum of positive integers. For instance,
the 16 compositions of 5 are

5,4+1,1+4,3+2,2+3,3+1+1,1+3+1,1+1+3,2+2+1,2+1+2,2+1+1+1,1+2+2,1+2+1
+1,1+1+2+1,1+1+1+21+1+1+1+1.

A partition of any positive integer n is a representation of n as a sum of positive integers where the order
of the summands is considered irrelevant [14]. For instance, the seven partitions of 5 are

54+1,3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1

In 1974, first, Alladi and Hoggatt [8] have considered all the (ordered) representations of a positive integer
n as a sum of ones and twos. Denote by G, for positive integer n, the number of compositions of n using only 1
and 2. For example, 2 has two distinct such compositions, 3 has three, and 4 has five; see Table 1.

Table 1: Some compositions of integers related to the Fibonacci numbers

n  Compositions with 1s and 2s Cn
1 1 1
2 1+1,2 2
3 1+1+1,1+2,2+1 3
4 1T+T+1+1L,1+1+42,1+2+1,2+1+1,2+2 5
5 T+H1+1+1+ 1L, 1+1+1+2,1+1+2+ 15, 1+2+1+1,2+1+1+1,1+42+2,2+142,2+2+1 8
6 THT+T+1+1+ 1L 1+T+1+T1+2,T+1+1+2+ 15,1+ 142+ 1+ 1,142+ 1+ 1+ 1,241+ 141+ 11+1+2+2,142+142, 13

1+2+2+1,2+1+2+1,2+2+1+1,2+1+1+2,2+2+2

Compositions with ones and twos are related to the second-order recurrence relations, and it is showed [8]
that the number of distinct compositions C, of any positive integer n with ones and twos is the Fibonacci
number F,.,, for any n € Z* (for details, see [29,30]).

In the present work, we attempt to throw some new light by discussing compositions that lead to the
recurrence relations of the Padovan numbers. We restrict our attention to compositions using only twos and
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threes. For example, 3 has one distinct composition and 4 has two. Table 2 shows which components corre-
spond to the Padovan number values.

Table 2: The compositions of with 2s and 3s

n Compositions with 2s and 3s CPB,
1 — 0
2 2 1
3 3 1
4 2+2 1
5 2+3,3+2 2
6 2+2+2,3+3 2
7 2+2+3,2+3+2,3+2+2 3
8 2+2+2+2,2+3+3,3+2+3,3+3+2 4
9 2+2+2+3,2+2+3+2,2+3+2+2,3+2+2+2,3+3+3 5
10 2+2+2+2+2,2+2+3+3,2+3+2+3,2+3+3+2,3+3+2+2,3+2+2+3,3+2+3+2 7

The present article is organized as follows: We briefly review the importance of and studies on the composition
of positive integers in Section 1. Section 2 is devoted to some results from compositions of positive integers with 2s
and 3s. In Section 3, we give tiling models for these compositions. Section 4 is devoted to a model or certain binomial
sums of the Padovan polynomials. In Section 5, we consider the palindromic representations of the compositions
with 2s and 3s, and define an arithmetical function related to these palindromic representations.

2 The results of the compositions with 2s and 3s, and the
Padovan numbers

Theorem 2.1. The number of distinct compositions CB, of a positive integer n with 2s and 3s is B,, wheren = 1.

Proof. Let CB,(2) and CB,(3) denote the number of compositions of n that end in 2 and 3, respectively. So,

For CPy(2)=0 and CPy(3)=0,CP; = CPy(2) + CPy(3) = 0,
For CPy(2)=1 and CPy3)=0,CP; = CPy(2) + CPy(3) =1,
For CP3(2)=0 and CP3(3) =1,CP;= CP5(2) + CP5(3) = 1.
Assume that n > 3.
Case 1. Pick a composition of n, ending in 2. Deleting this 2 yield a composition of n - 2. Thus,

CP.(2) = Ch-2. 4)
Case 2. Suppose a composition of n, ending in 3. Deleting this 3, we obtain a composition of n — 3. Therefore,

CP,(3) = CBy-3. (5)
Using (4) and (5), CB, = CB,(2) + CB(3) = CB,—; + CB,_3. This recurrence relation, with the initial conditions,
proves the desired result. O

In Theorem 2.2, by f(n), we indicate the total number of 2s in the compositions of n, and by g(n), we indicate
the total number of 3s in the compositions of n. For example, f(8) = 7 and g(8) = 6 (Table 2).

Theorem 2.2. Let n > 4. Then
@ f)=f(n-2)+f(n-3)+ Py,
(@ gn) =gn-2)+gn-3)+ B3

Proof. i. As in the preceding proof, we have

CB, = CB(2) + CB,(3).
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Since CB,(3) = CB,-3, there are CP,-3 compositions of n that end in 3. But CB,-3 denotes the number of composi-
tions of n - 3. By definition, there is total of f(n — 3)2s in the compositions of n — 3. Since CB,(2) = CB,_,, there
are CB,_, compositions of n that end in 2. Excluding this 2, they contain f(n — 2) 2s. Since each of the CB,_;,
compositions contains a 2 as the final addend, they contain a total of f(n - 2) + CB—, = f(n - 2) + B, 2s.
Thus, f(n) = f(n - 2) + f(n - 3) + B_,, where n > 4.

ii. Similarly, g(n) = g(n - 2) + g(n — 3) + B,_3, where n > 4. For example,

fO)+f(A)+Ps=2+2+2=6=f(7), g0B)+gd)+P=2+0+1=3=g(7. O

Theorem 2.3. For alln =2 1,

fn) = gn +1).

Proof. We will prove this using the principle of mathematical induction. Its follows from f(1) = 0 = g(2) and
f(2) =1 = g(3) the result is valid for n = 1, 2. Assume that the relation is valid for all positive integers less than
n. Thus, we obtain f(n - 2) = g(n - 1) and f(n - 3) = g(n — 2). By Theorem 2.2, we then have

fW=fn-2)+f(n-3)+hy=gn-1)+gn-2)+h,=ghn+1).

Hence, the desired is true for n. So, by the principle of mathematical induction, it is valid for all positive integers. [

3 A Padovan tiling model of compositions with 2s and 3s

Benjamin and Quinn [31] considered many technical properties for the combinatorial interpretation of special
numbers. Tedford [27] have interpreted the Padovan numbers by having them count the number of any n-strip
using dominoes (1 x 2 tiles) and triominoes (1 x 3 tiles). He proved that the number of the collection of all such
tilings for n-strip p, is the nth Padovan numbers.

In the present work, we give a similar tilings model for the weight of such tilings. Theorem 2.1 shows an
interesting combinatorial interpretation. To clarify this, suppose we would like to tile a1 x n board with 1 x 2
tiles and 1 x 3 tiles. By T;,, we denote the number of tiling of a1 x n board with a tiling of length n. In Figure 1,
the possible tilings of 1 x n board, for 1 < n < 10, are given. From the figure, it is shown that the number of
n-tilings T, gives for n € Z* the nth Padovan number.

Number of tilings

n=1I &
[ ] 1
n=2 5
n=3 .
n=4
i [ | 2
n=>3
LT [T 1 | I | 2
n=6
i | L [ | | | [ | 3
n=7

LI [ [ ] [] [ 1 LT [ 1 [ [ ] 4

n=§
L[ [ ] | L[ 1 [ | [ [ [ ] ;
I O I I [

n=9
R O N () (K TS | L] e ille
7

L[ [ [ ]| [ | [ | | I T T T |

n=10

Figure 1: Tilings of a 1 x n board.
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So, T, = T-5 + Ty-3, where I; = 0, T; = 1 and T; = 1. So, we can prove the following theorem.

Theorem 3.1. [27,28] The number of tilings of al x n board with 1 x 2 tiles and 1 x 3 tiles is B,, wheren > 1. In
other words, T,, = B,.

Before proceeding to the proof of the Theorem 3.1, we present Theorem 3.2.

Theorem 3.2. Let n = 0. Then

[

Blz

™M

9.2

Proof. We will prove the result using the strong induction. Since

w(=

0 0 0
0]=1=P0, 1]=0=P1, and 2]+

[(1)] =1 = P,, the statement is true when n = 0, 1, 2. Now assume it is true for all positive integers (<k), where

k = 0. By Pascal’s identity, we have

k+3

g j
Py,
k+3 %+3][k 2]+3]
3
k+3 k+3
2 ]_1 2 ]_1
k-2 2) falk-2+3
3 f‘[sl
% k;l
o) 2]
k-2 k-21+1
A
k1 L ) k k+1
A (RN
k-2 +1) Flk-2) X4 -1
"[3] 3
= Py + Py.

So the formula holds when k is even. Consequently, it is valid when n = k + 1. Thus, by the strong induction,
the formula is valid for all positive integers n. O

The proof of the Theorem 3.2 is shown according to the Padovan tiling model as follows.
We know that1 x n board has B, tilings. We focus on the number of tiles in a tiling to count them. Suppose
there are exactly j tiles in an arbitrary tiling. Consequently, the n — 2j tiles can be placed in the j tiling

positions in different ways. So, there are l 7
n-2j

H

number of tilings equals Zj_H
-3

tilings, each with exactly j tiles. Since [g] <j< [%] the total

j

et Equating the two counts yields the desired result. Again, we will study a

specific case. Letn = 9; see Figure 1. There is one tiling with j = 3 tiles and three with j = 4. So the total number
of 9-tilings equals
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4 A model for Padovan polynomials

Now we consider the weight of a tile. Let us define a1 x 2 tile to be x: [x]. The product of the weights of all tiles
in a tiling gives as the weight of the tiling. For example, the weight of the tiling is x3, that of the
tiling C7 T 7 17 T~Tx]is1+x? and that of the tiling is x5. We define the weight of the
empty tiling to be zero.

Sum of the Weights
0

n=1
x
n=2
|
n=3
¥
n=4
[T 2] [ Tx] 2
n=5
[xIxTx] [ 2 [ 1 ] o+l
[=1x] ¢ | [ 2 Ix] [ 2 [x]x] 3
n=7
[xIxTxlx] [T 2 T 2] [ IxT 1] [T 1 Jx] x*+3x
n=8

[x[xTx] 7 | [x]x] 1 Ix] [x]1 Jx x|

4°+1
L2 TxlxTx] [z T 1 [ 1]

n=9

[clxlxlxlx] [xTxl 2 T 7 | [ 2 T 1 [x[x]

X +6x2
(xT 7 TxT 7 12 Txl 7 Tx] [l 1 T 1 JTx] [ 2 Ix]x] 1]

Figure 2: Tilings of a1 x n board.

Figure 2 shows the tilings and the sum of their weights of a1 x n board. Combinatorially, we can prove the
following theorem.

Theorem 4.1. The sum of the weights of tilings of a1 x n board with 1 x 2 and 1 x 3 tiles is the nth Padovan
polynomial #,, for alln € 7*.

Proof. By T;(x) we denote the sum of the weights of tiling of a 1 x n board. Clear that Ti(x) = 0 = Py;
Tr(x) = x = P,. Let us show that T,(x) holds the Padovan polynomial recurrence relation. Now prove this,
consider any tiling of the board. Assume that it ends in 1 x 2 tiles; subtiling [x]. The sum of the weight of such
tiling is equal to xT;,—2(x). On the other hand, assume that the tilings end in 1 x 3 tiles; subtiling 7. The
sum of the weight of such tilings equals 1. T,,-3(x). Hence, the sum of the weights of all tiling of the board equals
to xT,—o(x) + T,-3(x) for n = 4. Thus, T,(x) = xT,-»(x) + T,-3(x), and that T,,(x) holds the Padovan recurrence
relation; so we obtain that T,,(x) = #,. O

Let us now give the following theorem that can be proved according to the tiling model of Padovan
polynomials.

Theorem 4.2. Let n = 0. Then

J

) XSj—n_
n-2j

Pn=2[

P

Proof. We will prove the result using the strong induction. Since

0 0 0 1
0]=1=P0, 1]=0=P1,[2]+[0]X=X=5D2,
the statement is true whenn = 0, 1, 2. Now assume it is true for all positive integers (<k), where k > 0. By Pascal’s

identity, we have
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TR
- 3j-k-3
Pr+s = ],_[%+3 [k _ 2]. + 3])(]
3
2 J=1 | gikes % J=1 | gk
=j_[%3[k—2j+z o _%3[1( j+3f"
R s
k1 k1
IR
R
k+1 k
=X [i [ ], yx3f‘k‘1 + [i] [ J I
ARETTE

= XPr+1 + Pk

DE GRUYTER

So the formula holds when k is even. Consequently, it is valid when n = k + 1. Hence, by the strong induction,

the formula is valid for all positive integers n.

O

The proof of Theorem 4.2 is shown according to the Padovan polynomials tiling model as follows.
We consider the seven tilings of a 1 x 10 board; see Figure 2. There is one tiling with no 1 x 3 tiles; its
weight is x°. There isn’t tiling with exactly one 1 x 3 tile each. There are six tilings with exactly two 1 x 3 tiles

each; the sum of their weights is 6x2. So, the sum of the weights of the tilings is x5 + 6x% = Py.

In this study, the elements along the rising diagonals in Pascal’s triangle give coefficients of the Padovan
polynomials. The first few Padovan polynomials are displayed in Figure 3 as well as the array of their

coefficients on the Pascal’s triangle.

Figure 3: Pascal’s triangle of the Padovan polynomial.

x% + 10x3 + 1
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Some certain binomial sums for Padovan polynomials are given below:
Theorem 4.3. Let n,m € N. Then,

2,

n=0

PoX™ = Pam.

Proof. By applying Binet-like formula (6) and combining this with (2), we obtain the identity

< (m < (m
Z[ o [P = Z[ o |@a + B+ cpx!
n=0 n=0
m m m
=a, Z m (Xax)nlm—n] + bx Z m (Xﬁx)nlm—n’ + ¢ Z m (ny)nlm—ny
n=o\ 1 n=o\ 1 n=ol L

= ax(xa + D™ + by(xB, + D™ + oxy, + D™

= @™ + BB + oy,

Thus, the proof is completed.
Theorem 4.4. Letn,m € Z*. Then,

<(m
Z[ k ]Pn—kxm_k = Purom.
k=1

Proof. By applying Binet-like formula (6) and combining this with (2) we obtain the identity

2(m 2 (m
Z k ]Pn—kxm_k = Z k (axa;l_k + bxﬁ;l_k + CXV;_k)Xm_k
k=1 k=1
<(m <(m
=af Y| [FOa)™ K| (@)™ + by Z[ 1"(Xl3x)”’"‘](ﬂx)”‘m
n=1 n n=1 n
<(m
xn [ o JECR™ K G
n=1

= a(xax + DM(a)"™™ + b(xB, + DB+ olxyy + DGO

= axa;ﬁzm + bxﬁ;ﬁzm + CxV:+2m'

Thus, the proof is completed.

5 The palindromic representations of the compositions with 2s

and 3s

Now we shift our attention to compositions with special properties. Compositions of n are defined to be
“palindromic” are written in reverse order and it remains unchanged. For example, 3 + 2 + 3 is a palindromic
composition of 8, but 3 + 3 + 2 is not. Let ¥(n) denotes the number of palindromic compositions of n with 2s

and 3s.

Let us investigate some properties of the function ¥(n). Let us prove that the arithmetic function ¥(n)

defines a sequence of sixth-order recurrences.

Theorem 5.1. The arithmetic function yY(n) defines an integers sequence by the recurrence relation

Y(n +6) = p(n + 2) + P(n).
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Table 3: The palindromic representations of the compositions with 2s and 3s

n Palindromic compositions Y(n)
1 — 0
2 2 1
3 3 1
4 2+2 1
5 — 0
6 2+2+2,3+3 2
7 2+3+2 1
8 2+2+2+2,3+2+3 2
9 3+3+3 1
10 2+2+2+2+2,2+3+3+2,3+2+2+3 3
1 2+2+3+2+2 1
12 2+2+2+2+2+2,3+2+2+2+32+3+2+3+2,3+3+3+3 4
13 3+2+3+2+3,2+3+3+3+2 2
14 3+3+2+3+3,2+2+3+3+2+2,3+2+2+2+2+3,2+3+2+2+3+2,2+2+2+2+2+2+2 5
15 2+2+2+3+2+2+2,3+3+3+3+3 2
Moreover,

Y@2n) =B and Y@2n+1) = By

Proof. By ¥(n, 2) and ¥(n, 3), we denote the palindromic compositions ending in a 2 and ending in a 3,
respectively. So, we can write

Y(n+6)=9p(n+6,2) + Y(n +6,3). (6)

Since Y(n + 6, 2) counts the palindromic compositions ending in a 2, by deleting the 2s on the both sides we
have a palindromic composition for n + 2. Hence, we obtain

Y(n +6,2) = p(n + 2). ™

By the similar way, we obtain
Y(n +6,3) = p(n). ®)
Now (7), (8), and (6) together from Theorem 5.1. |

From Table 3, the following identity can be easily proved.

Theorem 5.2. The following identity is valid:
Y(n+3) = YP(n + 1) + D" Y(n). ®

Now we define counting polynomials i,(x) on the palindromic compositions. For a certain n, §,(x)
contains term x for each 2 and term 1 for each 3. Hence, sequence values of §,(x) is 0, x, 1, x%, 0, x3 + 1, x?,
xt+x, 1, x5+ 2x2, x4, x8 + 2x3 + 1, 262, X7 + 3x* + x, x5 + 1,... obeying the recurrence relation

Ypes(X) = X2, (0) + (0,
and this is quite obvious, for
(D) = Y(n).

Now we define counting polynomials 0,(x) on the palindromic compositions. For a certain n, g,(x)
contains the term “ax?” if there are “a” compositions with “b” d signs. Hence, sequence values of g,(x) is 0,
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1,1,x,0,x% + x, x%, x3 + x2, x%, x* + 2x3, x4, x5 + 2x* + x3,2x%, x5 + 3x5 + x*, x8 + x4, ... obeying the recurrence
relation

On+6(X) = X2(0n+2(x) + gp(x)) (10)
and this is quite obvious, for
Tnrs(X) = P(n + 6).
don(x)

The notations y,(n)i,(n), and y,(n) used in the following theorems denote — = r the sum of the 2s the
=

ending 2 and 3 in n and the sum of the 3s the ending 2 and 3 in n, respectively.

Theorem 5.3. The following identities are valid:

1

Yy(n + 6) = Yy(n + 2) + Yy(n) + 2(n + 6), an
2.

PN+ 6) = Py(n + 2) + Y,(n) + 2(n + 2), (12)
3.

Py(n + 6) = Ya(n + 2) + Pa(n) + 2Y(n). 13)
Proof.
1. From the definition,
day

By (10), we have

d0nes() _ (00200 + ) _
dx dx

40,1200 | 40,00
dx dx

+ 2X(Ops2(X) + Op(X)).

Taking x = 3, we obtain that
Yy(n +6) = Yy(n + 2) + Y(n) + 2y(n + 6).
2. Py(n + 6) is equal to the sum of the 2s the ending 2 and 3 in n + 6. That is,
P(n +6) = Y,(n+6,2) + Y(n+6,3). (14)
The number of 2s in all compositions ending 3 in n + 6 is equal to the number of 2s in n. That is,
Py(n + 6,3) = 1hy(n).

The sum of the 2s in all compositions ending 2 in n + 6 is equal to the sum of the 2s in n + 2 and twice the
sum of all the compositions. That is,

P (n+6,2) = ph,(n+2) + 2¢p(n + 2).
So from (14), this proves
Y,(n + 6) = Ph,(n + 2) + P,(n) + 2¢(n + 2).
3. ¥,(n + 6) is equal to the sum of the 3s the ending 2 and 3 in n + 6. That is,
Ps(n+ 6) = Yy(n + 6,2) + Phy(n + 6, 3). @15)
The number of 3s in all compositions ending 2 in n + 6 is equal to the number of 3s in n. That is,

Ya(n + 6, 3) = Yy(n).
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The sum of the 3s in all compositions ending 3 in n + 6 is equal to the sum of the 3s in n + 2 and twice the
sum of all the compositions in n. That is,

Y(n +6,3) = Py(n + 2) + 2(n).

So from (15), this proves

Y(n + 6) = Phg(n + 2)1hs(n) + 2(n). O

Theorem 5.4. The following identities are valid:

1.

Y(n +3) = Yy(n + 1) + CD™M(n) + P(n + 3), (16)
2.

Py(n +3) = Y,(n + 1) + (=D"hy(n) + Y(n + 2), (17
3.

Yy +3) = Py(n + 1) + (D" My () + Y(n + D), (18)
Proof.
1.

2p(n+ H=y,(n+ 4 - Y;(n) - P,(n - 2),
2p(n+2) =(n + 2) - Py(n - 2) - Py(n - 4),
2p(n+ 1) =y(n + 1) - Yy(n - 3) - Yy(n - 5).

By using (9), we have
Yy(n +4) = () - Yy(n - 2) = Yy(n +2) = Yy(n - 2) = Yy(n = 4) + (D (Py(n + 1) = Yy(n - 3) = Yy(n - 5)).
For n - 3 and n - 5 in equation (16), we obtain

Yn+4) = ¢(n+2) + CD"H(n+ 1) + P(n + 4).

2p(n)  =Phy(n+4) - Y,(n) - Y,(n - 2),
29(n - 2) = Yy(n + 2) - P - 2) - Py - )
2p(n = 3)=y,(n + 1) = P,(n - 3) = P,(n - 5).

By using (9), we have
Yy(n+4) = Py(n) — (N - 2) = Py(n +2) = (N - 2) — Pp(n = 4) + CD"2Wy(n + 1) — ¢y(n - 3) - P(n - 5)).
Forn - 3 and n - 5 in equation (16), we obtain

Yy(n+4) =9, (n+2) + CD™P(n + 1) + Y(n + 3).

2Y(n) =,(n + 4) = Yy(n) - Yy(n - 4),
20(n - 2) = Yy + 2) - Yy(n - 2) - Yy(n - 6),
2P(n =) =ph;(n + 1) - Pa(n = 3) = YPa(n = 7).

By using (9), we have

Y(n+4) = Ps(0) — Yy(n = 4) = Ps(n +2) = Py(n = 2) = Yy(n = 6) + (D" 2(WYy(n + 1) = Py(n = 3) = Yy(n = 7).
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For n - 3 and n - 5 in equation (16) we obtain

Py + 4) = Y0+ 2) + (“DMPyn + 1) + Y + 2). O

6 Conclusion

In the present work, the combinatorial interpretations of compositions of positive integers with 2s and 3s are
investigated. The connection between these compositions and the Padovan numbers is established. The
numerous identities of these compositions are obtained. Some tiling models are illustrated for the composi-
tions of positive integers with 2s and 3s. The palindromic representations of the compositions with 2s and 3s
are studied, and an arithmetical function related to these palindromic representations is defined. The
numerous identities of these compositions are obtained.

A table that compares the first few values of all the results obtained from compositions of positive integers
with 2s and 3s is provided as in Table 4.

Table 4: All representations of the compositions with 2s and 3s

n B CP, fn) g(n) Gn(X) Y(n) Yy(n) Y,(n) Pa(n)
1 0 0 0 0 0 0 0 0 0
2 1 1 1 0 1 1 0 1 0
3 1 1 0 1 1 1 0 0 1
4 1 1 2 0 X 1 1 2 0
5 2 2 2 2 0 0 0 0 0
6 2 2 3 2 X2+ x 2 3 3 2
7 3 3 6 3 X2 1 2 2 1
8 4 4 7 6 x3 + x2 2 5 5 2
9 5 5 12 7 X2 1 2 0 3
10 7 7 17 12 x4+ 2x3 3 10 9 4

In future studies, combinatorial interpretations for the sequences defined by higher-order recurrence
relations may be considered. Tiling models may be examined for these sequences.
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