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Abstract: In this article, a new system of Hadamard-type hybrid fractional differential inclusions equipped
with Dirichlet boundary conditions was constructed. By virtue of a fixed-point theorem due to B. C. Dhage,
(Existence results for neutral functional differential inclusions in Banach algebras, Nonlinear Anal. 64 (2006),
no. 6, 1290–1306, doi: https://doi.org/10.1016/j.na.2005.06.036), the existence results of solutions for the
considered problem are derived in a new norm space for multivalued maps. A numerical example is
provided to illustrate our main results.
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1 Introduction

The purpose of this article is to investigate the following system of Hadamard-type fractional hybrid
differential inclusions given by:
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where Dα1 and Dα2 denote the Hadamard-type fractional derivatives of orderα1 and � �([ ] { })∈ ×α f f C e, , 1, , \ 02 1 2
2

are the continuous functions, T� �[ ] ( )× →F F e, : 1,1 2
2 are the multi-valued maps, and T �( ) is the family of

all nonempty subsets of �.
Due to fractional-order derivative generalizes the classical integer-order derivative to an arbitrary-order

case. Fractional-order differential equations can more accurately describe various phenomenon than
integer-order differential equations in many complex and widespread fields such as physics, mechanics,
chemistry, and engineering (see the books [1–5] and references cited therein). There has been a rapid
increase in the number of fractional differential equations from both theoretical and applied perspectives
(see [6–25]).

Note that most of the works on fractional differential equations involve either Riemann-Liouville-type
derivative or Caputo-type derivative (see [8–10,12,15,16,19]). However, there is also another concept of
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Hadamard-type fractional derivative, which was first introduced by Hadamard in 1892 [26], which contains
a logarithmic function of arbitrary exponent in the kernel of integral appearing in its definition. Hadmard-
type integrals arise in the formulation of many problems in mechanics such as in fracture analysis. For
details and applications of Hadamard-type fractional derivative and integral, see [27–33].

The study of fractional differential inclusions also gained much attraction and interest as these tools of
mathematical analysis are found to have a wide range of utility in stochastic modeling and optimal control
problems [34]. Some recent achievement to the subject of fractional differential inclusions can be discovered
in [35–39] and references cited therein. In particular, the fractional differential inclusion for various types of
single fractional differential equations with different boundary conditions is studied systematically in [28].

To our best knowledge, almost all fractional hybrid differential inclusions equipped with initial and
boundary-value problem were focused on a single fractional hybrid differential equation in [28]. Is there a
similar result for a system of coupled hybrid fractional differential inclusions of Hadamard-type? The main
objective of this work is to obtain an existence result for system (1) under Lipschitz and Carathéodory
conditions in virtue of a fixed-point theorem by Dhage [40] in a new Banach space. Inspired by the work
mentioned earlier, this research (1) is also different from the recent results [35–39]. This means that our
work is new in the present configuration and contributes. We overcome some difficulties in proving
operator convexity and closed graphs.

2 Preliminaries

In this section, we first recall some useful materials for Hadamard-type fractional derivatives and integrals.

Definition 1. [4,5] The Hadamard-type fractional derivative of order >q 0 for an integrable function
�[ )+∞ →g : 1, is defined as:
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where [ ] [ ]= +n q q1, is the smallest integer greater than or equal to q and ( ) ( )⋅ = ⋅log loge .

Definition 2. [4,5] The Hadamard-type fractional integral of order >q 0 for an integrable function g is
defined as:
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provided that the integral exists.

In what follows, we provide some lemmas that are helpful to the proof of main theorems.

Lemma 1. Let �([ ] )∈ϕ ϕ L e, 1, ,1 2
1 be continuous functions. Then, the integral solution of the Hadamard-type

fractional differential system
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is given by:
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Proof. As argued in Chapter 9 in [28], the solution for (2) can be written as:
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where c c d, ,1 2 1, �∈d2 . Note that ( ) ( ) ( ) ( )= = = =x x e y y e1 1 0 in (2), we have
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Substituting these values into (4), we can obtain (3). □

Definition 3. A pair of function ( )x y, is called the solution of system (1) if there exists a pair of func-
tion � �( ) ([ ] ) ([ ] )∈ ×ϕ ϕ L e L e, 1, , 1, ,1 2

1 1 with ( ( ) ( ))∈ϕ F t x t y t, ,1 1 and ( ( ) ( ))∈ϕ F t x t y t, ,2 2 such that
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almost every on [ ]e1, and ( ) ( ) ( ) ( )= = = =x x e y y e1 1 0.

Next, we introduce some preliminary materials about norm spaces and multi-valued maps. Let
�([ ] )=X C e1, , denote a Banach space of continuous functions from [ ]e1, into � under the norm
∣ ( )∣[ ]‖ ‖ = ∈x x tsupt e1, , which becomes a Banach algebra with respect to the multiplication “⋅” defined by

( )( ) ( ) ( )= ⋅x y t x t y t, for arbitrarily ∈x y X, . The product space = ×X XΞ is also a Banach space under
the norm ( )‖ ‖ = ‖ ‖ + ‖ ‖x y x y, , which further becomes a Banach algebra with respect to the multiplication
“⋅” defined by (( ) ( ))( ) ( )( ) ( )( ) ( ( ) ( ) ( ) ( ))⋅ = ⋅ =x y x y t x y t x y t x t x t y t y t, , , , , for ( ) ( ) ∈ ×x y x y X X, , , . For more
details about the results concerning algebraic structure of the product space = ×X XΞ , please see [41,42].

As aforementioned, ( ( ) )‖ ⋅ ⋅ ‖Ξ, , is a Banach space. Now, we redeclare some basic definitions on multi-
valued maps (see [43]):

T F T F T F T F

T F T F T F T F
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= ∈ = ∈
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Ξ Ξ : is closed , Ξ Ξ : is bounded ,
Ξ Ξ : is compact , Ξ Ξ : is compact and convex .

cl b

cp cp,cv

Definition 4. Amulti-valued map T( )→G : Ξ Ξ is called convex (closed) valued if ( )G x y, is convex (closed)
for all ( ) ∈x y, Ξ.

Definition 5. The mapG is called bounded on bounded sets if � �( ) ( )( )= ∪ ∈G G x y,x y, is bounded in Ξ for any
bounded set � of Ξ (i.e., �{ ( ) ( ) ( )}( ) ‖ ‖ ∈ < ∞∈ u v u v G x ysup , : , ,x y, ).

Definition 6. The mapG is called upper semi-continuous (u.s.c.) on Ξ if for each ( ) ∈x y, Ξ, the set ( )G x y, is
a nonempty closed subset of Ξ, and if for each open set � of Ξ containing ( )G x y, , there exists an open
neighborhood N of ( )x y, such that �( ) ⊂G N .

Definition 7. The map G is called completely continuous if �( )G is relatively compact for every bounded
subset � of Ξ.
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Definition 8. A multi-valued map T�[ ] ( )× →F e R: 1, 2 is called L1-Carathéodory if
(i) ( )→t F t x y, , is measurable for each � �( ) ∈ ×x y, ,
(ii) ( ) ( )→x y F t x y, , , is upper semicontinuous for almost all [ ]∈t e1, ,
(iii) there exists a function �([ ] )∈

+g L e1, ,r
1 such that

( ) {∣ ∣ ( ) ( )}‖ ‖ = ∈ ≤F t x y v v F t x y g t, , sup : , , ,r

for all �∈x y, with ( )‖ ‖ ≤x y r, and for almost every [ ]∈t e1, .

For each ( ) ∈x y, Ξ, define the set of selections of ( )=F F F,xy xy xy1, 2, by:

�

�

{ ([ ] ) ( ) ( ( ) ( )) [ ]}

{ ([ ] ) ( ) ( ( ) ( )) [ ]}

≔ ∈ ∈ ∈

≔ ∈ ∈ ∈

F v L e v t F t x t y t t e
F v L e v t F t x t y t t e

1, , : , , , for a.e. 1, ,
1, , : , , , for a.e. 1, .

xy

xy

1, 1
1

1 1

2, 2
1

2 2

Lemma 2. [40] Let X be a Banach algebra, →A X X: a single-valued operator, and T ( )→B X X: cp,cv a
multi-valued operator satisfying the following conditions:
(a) A is a single-valued Lipschitz with Lipschitz constant k,
(b) B is compact and upper semicontinuous,
(c) <Mk2 1, where ( )= ‖ ‖M B X .

Then, either:
(i) the operator inclusion ∈x AxBx has a solution,

or
(ii) the set { ∣ }= ∈ ∈ >Φ u X μu AuBu μ, 1 is unbounded.

Lemma 3. [43] If T ( )→G X Y: cl is upper semi-continuous, then ( ) {( ) ( )}= ∈ × ∈G G x y X Y y G x, ,r is a closed
subset of ×X Y ; i.e., for every sequence { } ⊂∈x Xn n N and { } ⊂∈y Yn n N , if when → ∞ → →∗ ∗

n x x y y, ,n n and
( )∈y G xn n , then ( )∈

∗ ∗y G x . Conversely, if G is completely continuous and has a closed graph, then it is upper
semi-continuous.

Lemma 4. [44] Let X be a Banach space, T�[ ] ( )× →F e X: 1, cp,cv an L1-Carathéodory multi-valued map,
and G a linear continuous mapping from ([ ] )L e X1, ,1 to ([ ] )C e X1, , . Then, the operator

T([ ] ) ( ([ ] ))∘ →G F C e X C e X: 1, , 1, ,cp,cv

( )( ) ( ( ))↦ ∘ =x G F x G F x

is a closed graph operator in ([ ] ) ([ ] )×C e X C e X1, , 1, , .

3 Main results

Let �([ ] )L e1, ,1 be the Banach space of measurable functions �[ ] →x e: 1, , which is Lebesgue integrable

and normed by ∣ ( )∣∫‖ ‖ =x x t tdL
e

1
1 . Now, we are in a position to show the existence of solutions for system (1).

Theorem 1. Suppose that
(H1) Functions � � �[ ] { }× × →f e: 1, \ 0i are continuous and there exist constants >L 0i such that

∣ ( ) ( )∣ [∣ ( ) ( )∣ ∣ ( ) ( )∣]− ≤ − + − =f t x y f t x y L x t x t y t y t i, , , , , 1, 2,i i i

for almost every �[ ]∈ ∀ ∈t e x y x y1, , , , , ;
(H2) operators T� � �[ ] ( )× × →F e: 1,i are L1-Carathéodory and have nonempty compact and convex

values;
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(H3) there exists a positive real number r such that
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( )g tr2 have similar approach as Definition 8.

Then, system (1) has at least one solution on [ ] [ ]×e e1, 1, .

Proof. Applying Lemma 1, we transform syetem (1) into an equivalent fixed-point problem. Define the
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Next, we consider two operators ( )=A A A,1 2 and ( )=B B B,1 2 , where →A : Ξ Ξi are given by:
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Note that ( ) ( ) ( )= =T x y A x y B x y i, , , , 1, 2i i i , then ( ) ( ( ) ( ) ( ) ( ))=T x y A x y B x y A x y B x y, , , , , ,1 1 2 2 . We next
show that the operators A and B satisfy all the conditions of Lemma 2. For clarity, we display the proof in
several steps.

Step 1. We first show that Lemma 2(a) holds, i.e., the single-valued operator A is a Lipschitz on Ξ. Let
( ) ( ) ∈x y x y, , , Ξ, by (H1), we have
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So, the single-valued operator A is a Lipschitz on Ξ with Lipschitz constant = +k L L1 2.
Step 2. We show that Lemma 2(b) holds, i.e., the multi-valued operator B is compact and upper

semicontinuous on Ξ.
(i) We show that the operator B has convex values. Let ( ) ( )∈ ∈u u B x y u u B x y, , , , ,11 12 1 21 22 2 . Then, there
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2

2 2

(13)

where ( ) ( ) ( ) ( )= + − ∈v t λv t λ v t F1 xy1 11 12 1, , ( ) ( ) ( ) ( )= + − ∈v t λv t λ v t F1 xy2 21 22 2, for all [ ]∈t e1, .
Therefore, we have

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ( ) ( ) ( ) ( ) ( ) ( )) ( ( ) ( )) ( ) ( ( ) ( )) ( )

+ − ∈ + − ∈

+ − + − = + − ∈

λu t λ u t B x y λu t λ u t B x y
B λu t λ u t λu t λ u t λB u t u t λ B u t u t B x y

1 , , 1 , ,
1 , 1 , 1 , , .

11 12 1 21 22 2

11 12 21 22 11 21 12 22

Then, we obtain the operator ( )B x y, which is convex for each ( ) ∈x y, Ξ. Then, operator B defines a multi-
valued operator T ( )→B : Ξ Ξcv .

(ii) We display that the operator B maps bounded sets into bounded sets in Ξ. Let =Ω
{( )∣ ( ) ( ) }‖ ‖ < ∈x y x y r x y, , , , Ξ . Then, for each ( )∈ =h B x y i, , 1, 2i i , there are ( )∈ =v F i 1, 2i i xy, such that

( )
( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )
[ ]∫ ∫= − ∈

− − −

h t
α

t
s

v s
s

s t
α

e
s

v s
s

s t e1
Γ

log d log
Γ

log d , 1, .i
i

t
α

i
α

i

e
α

i

1

1 1

1

1i i i

(14)

From (H2), we have

∣ ( )( )∣
( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )

( )
⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )

( )

∫ ∫

∫ ∫

= −

≤ +

≤

+

‖ ‖

− − −

− − −

B x y t
α

t
s

v s
s

s t
α

e
s

v s
s

s

α
t
s

g s
s

s t
α

e
s

g s
s

s

α
g

, 1
Γ

log d log
Γ

log d

1
Γ

log d log
Γ

log d

2
Γ 1

t
α α

e
α

t
α

r
α

e
α

r

r L

1
1

1

1
1

1

1
1

1
1

1
1

1
1

1

1
1

1
1

1
1

1 1 1

1 1 1

1

(15)

and
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∣ ( )( )∣
( )

≤

+

‖ ‖B x y t
α

g, 2
Γ 1

.r L2
2

2 1 (16)

This implies that

( ) ( ) ( )
( ) ( )

‖ ‖ = ‖ ‖ + ‖ ‖ ≤

+

‖ ‖ +

+

‖ ‖B x y B x y B x y
α

g
α

g, , , 2
Γ 1

2
Γ 1

.r L r L1 2
1

1
2

21 1 (17)

Thus, ( )B Ξ is uniformly bounded. Then, B defines a multi-valued operator T ( )→B : Ξ Ξb .
(iii)We show that the operator B maps bounded sets into equicontinuous sets. Let ( )( )∈ =q B x y i, 1, 2i i

for some ( ) ∈x y, Ω, where Ω is given as earlier. So, there exists ∈u Fi i xy, , such that

( )
( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )
∫ ∫= − =

− − −

q t
α

t
s

u s
s

s t
α

e
s

u s
s

s i1
Γ

log d log
Γ

log d , 1, 2.i
i

t
α

i
α

i

e
α

i

1

1 1

1

1i i i

(18)

For any [ ]∈τ τ e, 1,1 2 and <τ τ1 2, we have

∣ ( ) ( )∣
( )

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣( ) ( ) ∣
( )

⎛
⎝

⎞
⎠

( )
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )
⎛
⎝

⎞
⎠

∣( ) ( ) ∣
( )

⎛
⎝

⎞
⎠

∫ ∫

∫

∫

∫

∫

− ≤

‖ ‖

−

+

‖ ‖ −

≤

‖ ‖

−

+

‖ ‖

+

‖ ‖ −

− −

− − −

− −

−

− − −

q τ q τ
g

α
τ
s s

s τ
s s

s

g τ τ
α

e
s s

s

g
α

τ
s

τ
s s

s

g
α

τ
s s

s

g τ τ
α

e
s s

s

Γ
log 1 d log 1 d

log log
Γ

log 1 d

Γ
log log 1 d

Γ
log 1 d

log log
Γ

log 1 d

r L

i

τ
α

τ
α

r L
α α

e
α

r L
τ

α α

r L

τ

τ
α

r L
α α

e
α

1 1 1 2
1

1

1
1

1

2
1

1 1
1

2
1

1
1

1

1

1
1

1
1

2
1

1

1

2
1

1 1
1

2
1

1
1

1

1
1

1
2

1

1 1 1 1

1
1

1 1

1

1

2
1

1 1 1 1

(19)

and

∣ ( ) ( )∣
( )

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )
⎛
⎝

⎞
⎠

∣( ) ( ) ∣
( )

⎛
⎝

⎞
⎠

∫

∫

∫

− ≤

‖ ‖

−

+

‖ ‖

+

‖ ‖ −

− −

−

− − −

q τ q τ
g

α
τ
s

τ
s s

s

g
α

τ
s s

s

g τ τ
α

e
s s

s

Γ
log log 1 d

Γ
log 1 d

log log
Γ

log 1 d .

r L
τ

α α

r L

τ

τ
α

r L
α α

e
α

2 1 2 2
2

2
1

1
1

2
1

2

2

2
1

2 1
1

2
1

2
1

1

1
1

2 2

1

1

2
2

1 2 2 2

(20)

Note that the right-hand side of the two inequalities (19) and (20) go to zero for arbitrarily ( ) ∈x y, Ω as
→τ τ2 1. Therefore, B1 and B2 are equicontinuous sets. Also, note that ( ) ( ) ( )‖ ‖ = ‖ ‖ + ‖ ‖B x y B x y B x y, , ,1 2 , so B

is equicontinuous sets.
From (ii)–(iii) and the Arzelá-Ascoli theorem, we have T( )→B : Ξ Ξ is completely continuous. Thus, B

defines a compact multi-valued operator T ( )→B : Ξ Ξcp .
(iv) We claim that B has a closed graph. Let ( ) ( ) ( ) ( )→ ∈∗ ∗

x y x y h h B x y, , , , ,n n n n n n1 2 and ( ) →h h,n n1 2

( )∗ ∗h h,1 2 . Then, we need to prove that ( ) ( )∈∗ ∗ ∗ ∗
h h B x y, ,1 2 , i.e., ( ) ( )∈ ∈∗ ∗ ∗ ∗ ∗ ∗

h B x y h B x y, , ,1 1 2 2 . Due to
( ) ( )∈ ∈h B x y h B x y, , ,n n n n n n1 1 2 2 , there are ∈ ∈v F v F,n xy n xy1 1, 2 2, such that
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( )
( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )
[ ]∫ ∫= − ∈

− − −

h t
α

t
s

v s
s

s t
α

e
s

v s
s

s t e1
Γ

log d log
Γ

log d , 1,n

t
α

n
α

e
α

n
1

1
1

1
1

1

1
1

1
11 1 1

(21)

and

( )
( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )
[ ]∫ ∫= − ∈

− − −

h t
α

t
s

v s
s

s t
α

e
s

v s
s

s t e1
Γ

log d log
Γ

log d , 1, .n

t
α

n
α

e
α

n
2

2
1

1
2

1

2
1

1
22 2 2

(22)

Thus, it suffices to show that there are ∈ ∈∗ ∗∗ ∗ ∗ ∗

v F v F,x y x y1 1, 2 2, such that for each [ ]∈t e1, ,

( )
⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )
( )∫ ∫= − ∈∗

−

∗

− −

∗

∗ ∗
h

α
t
s

v s
s

s t
α

e
s

v s
s

s B x y1
Γ

log d log
Γ

log d ,
i

t
α

i
α

e
α

1

1

1 1

1
1

1
1

1
1 1 1

(23)

and

( )
⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )
( )∫ ∫= − ∈∗

−

∗

− −

∗

∗ ∗
h

α
t
s

v s
s

s t
α

e
s

v s
s

s B x y1
Γ

log d log
Γ

log d , .
t

α α
e

α
2

2
1

1
2

1

2
1

1
2

2
2 2 2

(24)

Let us take the linear operator ( )=Θ Θ , Θ1 2 , where �([ ] ) ([ ] )→L e R C eΘ : 1, , 1, ,i
1 are given by:

( )( )
( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( )
∫ ∫= − =

− − −

v t
α

t
s

v s
s

s t
α

e
s

v s
s

s iΘ 1
Γ

log d log
Γ

log d , 1, 2.i i
i

t
α

i
α

i

e
α

i

1

1 1

1

1i i i

(25)

On the other hand,

( ) ( )

( )
⎛
⎝

⎞
⎠

( ) ( ) ( )
( )

⎛
⎝

⎞
⎠

( ) ( )
∫ ∫

‖ − ‖

=
−

−
−

→

→ ∞

∗

−

∗

− −

∗

h t h t

α
t
s

v s v s
s

s t
α

e
s

v s v s
s

s

n

1
Γ

log d log
Γ

log d 0,

as ,

n
t

α
n

α
e

α
n

1 1

1
1

1
1 1

1

1
1

1
1 11 1 1

(26)

and

( ) ( )

( )
⎛
⎝

⎞
⎠

( ) ( ) ( )
( )

⎛
⎝

⎞
⎠

( ) ( )
∫ ∫

‖ − ‖

=
−

−
−

→

→ ∞

∗

−

∗

− −

∗

h t h t

α
t
s

v s v s
s

s t
α

e
s

v s v s
s

s

n

1
Γ

log d log
Γ

log d 0,

as .

n
t

α
n

α
e

α
n

2 2

2
1

1
2 2

1

2
1

1
2 22 2 2

(27)

So it follows from Lemma 4 that ∘ FΘi i xy, are the closed graph operators. This means that if ( ) ( )∈h t FΘin i i xy, ,
then we obtain ( ) ( )∈∗ ∗ ∗ ∗

h h B x y, ,1 2 since ( ) ( )→ ∗ ∗
x y x y, ,n n .

Note that T( )→B : Ξ Ξ is completely continuous; it follows from Lemma 3 that the operator B is upper
semicontinuous operator on Ξ.

Step 3. We show that Lemma 2(c) holds. From (H3), we have ( ) ( ) ( )= ‖ ‖ = ‖ ‖ = ‖ ‖ +M B B x y B x yΞ , ,1
( ) ( ( )) ( ( ))‖ ‖ ≤ / ‖ ‖ + / ‖ ‖B x y α g α g, 2 Γ 2 Γr L r L2 1 1 2 21 1, and = +k L L1 2 for ( ) ∈x y, Ω.
Up to now, we have proved that all the conditions of Lemma 2 are satisfied and it means that either

Lemma 2(i) or Lemma 2(ii) holds. Next, we display that Lemma 2(ii) is not satisfied.
Let {( ) ∣ ( ) ( ( ) ( ) ( ) ( ))}= ∈ ∈Φ u v μ u v A u v B u v A u v B u v, Ξ , , , , , ,1 1 2 2 and ( ) ∈u v Φ, be arbitrary. Then, for

( ) ( ( ) ( ) ( ) ( ))> ∈μ μ u v A u v B u v A u v B u v1, , , , , , ,1 1 2 2 , there exists ( ) ( )∈ω ω F F, ,xy xy1 2 1, 2, such that, for any
>μ 1, we have

( ) ( ( ) ( ))
⎛

⎝
⎜⎜ ( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( ) ⎞

⎠
⎟⎟∫ ∫= −

−

− − −

u t μ f t u t v t
α

t
s

ω s
s

s t
α

e
s

ω s
s

s, , 1
Γ

log d log
Γ

log d
t

α α
e

α
1

1
1

1

1
1

1

1
1

1
11 1 1

(28)
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and

( ) ( ( ) ( ))
⎛

⎝
⎜⎜ ( )

⎛
⎝

⎞
⎠

( ) ( )
( )

⎛
⎝

⎞
⎠

( ) ⎞

⎠
⎟⎟∫ ∫= −

−

− − −

v t μ f t u t v t
α

t
s

ω s
s

s t
α

e
s

ω s
s

s, , 1
Γ

log d log
Γ

log d ,
t

α α
e

α
1

2
2

1

1
2

1

2
1

1
22 2 2

(29)

for all [ ]∈t e1, . Therefore, we have

∣ ( )∣ ∣ ( ( ) ( ))∣
⎛

⎝
⎜⎜ ( )

⎛
⎝

⎞
⎠

∣ ( )∣ ( )
( )

⎛
⎝

⎞
⎠

∣ ( )∣ ⎞

⎠
⎟⎟

[∣ ( ( ) ( )) ( )∣ ∣ ( )∣]
⎛

⎝
⎜⎜ ( )

⎛
⎝

⎞
⎠

( )

( )
( )

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟

[ ]
( )

∫ ∫

∫

∫

≤ +

≤ − +

+

≤ + ‖ ‖

−

− − −

−

− −

u t μ f t u t v t
α

t
s

ω s
s

s t
α

e
s

ω s
s

s

f t u t v t f t f t
α

t
s

ω s
s

s

t
α

e
s

L r F
α

g

, , 1
Γ

log d log
Γ

log d

, , , 0, 0 , 0, 0 1
Γ

log d

log
Γ

log

2
Γ

t
α α

e
α

t
α

α
e

α

r L

1
1

1
1

1
1

1

1
1

1
1

1 1 1
1

1

1
1

1

1
1

1

1 10
1

1

1 1 1

1

1 1

1

(30)

and

∣ ( )∣ [ ]
( )

≤ + ‖ ‖v t L r F
α

g2
Γ

.r L2 20
2

2 1 (31)

Thus, we have

⎜ ⎟( ) ⎛
⎝ ( ) ( )

⎞
⎠ ( ) ( )

‖ ‖ ≤ ‖ ‖ + ‖ ‖ + ‖ ‖ + ‖ ‖u v kr
α

g
α

g F
α

g F
α

g, 2
Γ

2
Γ

2
Γ

2
Γ

,r L r L r L r L
1

1
2

2
10

1
1

20

2
21 1 1 1

where Fi0 and ( )=g i 1, 2ir are defined in (H3). Then, note that ( )‖ ‖ =u v R, , we have

( ) ( )

( ) ( )

≤

+

− −

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
r

1
.

F g
α

F g
α

k g
α

k g
α

2
Γ

2
Γ

2
Γ

2
Γ

r L r L

r L r L

10 1 1

1

20 2 1

2

1 1

1

2 1

2

Therefore, Lemma 2(ii) is not satisfied by (H3). Then, there exists ( ) ∈x y, Ξ such that

( ) ( ( ) ( ) ( ) ( ))=x y A x y B x y A x y B x y, , , , , , ,1 1 2 2

i.e., system (1) at least one solution on [ ] [ ]×e e1, 1, . This completes the proof. □

Example 1. Consider the following system of Hadamard-type fractional hybrid differential inclusions

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )
( )

( ( ) ( ))

( )
( )

( ( ) ( ))

( ) ( ) ( ) ( )

+ +

∈ < <

+ +

∈ < <

= = = =

−
D x t

e x y
F t x t y t t e

D y t
x y

F t x t y t t e

x x e y y e

0.1 sin sin 2
, , , 1 ,

0.15 arctan arctan 3
, , , 1 ,

1 0, 1 0,

t
1.5

1 1

1.25
2

(32)

where � �[ ] ( )= = × → =α α F e i1.5, 1.25, : 1, 1, 2i1 2
2 are multi-valued maps given by:

( ( ) ( )) ⎡
⎣⎢

∣ ∣
(∣ ∣ ∣ ∣ )

∣ ∣
(∣ ∣ ∣ ∣ )

⎤
⎦⎥

↦ =

+ + + +

+t F t x t y t x
x y

x
x y

, ,
10 3

, sin
16 sin sin 1

1
161

3

3 3

and

( ( ) ( )) ⎡
⎣⎢

∣ ∣
(∣ ∣ ∣ ∣ )

∣ ∣
(∣ ∣ ∣ ∣ )

⎤
⎦⎥

↦ =

+ +

+

+ +

t F t x t y t x
x y

x
x y

, ,
12 2

1
12

, sin
10 sin sin 3

.2
3

3 3
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By (H1), = =L L0.1, 0.151 2 with =k 0.25. For ∈ ∈f F f F,1 1 2 2, we have

�∣ ∣ ⎧
⎨
⎩

∣ ∣
(∣ ∣ ∣ ∣ )

∣ ∣
(∣ ∣ ∣ ∣ )

⎫
⎬
⎭

( )≤

+ + + +

+ ≤ ∈f x
x y

x
x y

x ymax
10 3

, sin
16 sin sin 1

1
16

1
8

, , ,1
3

3 3
2

and

�∣ ∣ ⎧
⎨
⎩

∣ ∣
(∣ ∣ ∣ ∣ )

∣ ∣
(∣ ∣ ∣ ∣ )

⎫
⎬
⎭

( )≤

+ +

+

+ +

≤ ∈f x
x y

x
x y

x ymax
12 2

1
12

, sin
10 sin sin 3

1
6

, , .2
3

3 3
2

Then,

�

�

( ) {∣ ∣ ( )} ( ) ( )

( ) {∣ ∣ ( )} ( ) ( )

‖ ‖ = ∈ ≤ = ∈

‖ ‖ = ∈ ≤ = ∈

F t x y v v F t x y g t x y

F t x y v v F t x y g t x y

, , sup : , , 1
8

, , ,

, , sup : , , 1
6

, , .

r

r

1 1 1 1 1
2

2 2 2 2 2
2

Clearly, ‖ ‖ = ‖ ‖ = = =
− −g g F F, , ,r L

e
r L

e
1

1
8 2

1
6 10

1
16 10

1
12

1 1 . Hence,
( ) ( )( )+ ≈ <

‖ ‖ ‖ ‖ k 0.279156g
α

g
α

2
Γ

2
Γ

1
2

r L r L1 1

1

2 1

2
and >r

( ) ( ) ( ) ( )( )( )+ − − ≈

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖1 0.115079F g
α

F g
α

k g
α

k g
α

2
Γ

2
Γ

2
Γ

2
Γ

r L r L r L r L10 1 1

1

20 2 1

2

1 1

1

2 1

2
. Consequently, all the conditions of Theorem 1

are satisfied, and system (32) has at least one solution on [ ] [ ]×e e1, 1, .
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