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Abstract: The Hermite-Hadamard inequality is regarded as one of the most favorable inequalities from the
research point of view. Currently, mathematicians are working on extending, improving, and generalizing
this inequality. This article presents conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in
weighted and unweighted forms by using the idea of majorization and convexity together with generalized
conformable fractional integral operators. They not only represent continuous and discrete inequalities in
compact form but also produce generalized inequalities connecting various fractional operators such as
Hadamard, Katugampola, Riemann-Liouville, conformable, and Rieman integrals into one single form.
Also, two new integral identities have been investigated pertaining a differentiable function and three
tuples. By using these identities and assuming ∣ ∣′f and ∣ ∣ ( )′ >f q 1q as convex, we deduce bounds concerning
the discrepancy of the terms of the main inequalities.
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1 Introduction

In mathematics, inequalities are very helpful, especially when working with the quantities about which we
are not sure what exactly they are equal to. Sometimes, rather than writing down the exact solution, one
can solve a mathematical problem by approximating the solution [1–3]. Nowadays, inequalities are recog-
nized and taught as some of the most practical areas of mathematics because they have successfully
extended their validity to the fields of engineering [4], economics [5], mathematical statistics [6,7], and
information theory [8].
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Inequalities are deeply connected to convexity theory. Convexity theory can be used to produce
numerous concepts concerning mathematical inequalities and their uses in different branches of science
[9–13]. Convex functions are one of the fundamental concepts in convexity theory. This concept has led to
the discovery of new inequalities, among which the Hermite-Hadamard [14], Jensen’s [15], the Jensen-
Mercer [16], Ostrwaski [17], and Fejér [18] inequalities are notable. In recent years, the Hermite-Hadamard
inequality, which is considered to be the most attractive inequality in the literature, has drawn a lot of
attention. The definition of this inequality is given as follows:

Let �[ ] →f α α: ,1 2 be a convex function. Then
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If the function being applied is concave, the inequality stated earlier can be obtained in the opposite direction.
Researchers have also used several classes of convex functions, including s-convex function [19], coordinate
convex function [20], strongly convex function [21], and η-convex function [22] to derive this inequality.

The fractional calculus is another field that has drawn the attention of many researchers working in
different fields. The impact of this field seems to have increased significantly over the past years in both
pure and applied branches of science and engineering [23–29]. Currently, researchers are using convexity
and the concepts from this subject to produce new findings [30–33]. There are various known versions of
the fractional integral operators used in fractional calculus, among which the two operators, i.e., Riemann-
Lioville [34] and Hadamard [35] integrals have been widely studied due to their extensive applications
[34–36]. These operators are given as follows:

Definition 1. [34] (Riemann-Liouville fractional integral operators). Let �[ ] →f α α: ,1 2 be a function, < ν0
and ( )⋅Γ represent the gamma function. Then, the following fractional integrals are known as Riemann-
Liouville fractional integral operators.
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Another, fractional integral operator was introduced by Hadamard [35] and is expressed as follows:

Definition 2. [35] (Hadamard fractional integral operators) Let �[ ] →f α α: ,1 2 be a function, < ν0 and
( )⋅Γ represent the gamma function. Then, the following fractional integrals are known as Hadamard frac-
tional integral operators.
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In [30], Öagülmüş and Sarikaya presented the Hermite-Hadamard inequalities by using Riemann-
Liouville fractional integrals along with the convexity of the function. This inequality is expressed in the
form of the following theorem.
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Theorem 1. Let �[ ] →f α α: ,1 2 be a convex function with > ≥α α 02 1 , >ν 0 and [ ]∈f L α α,1 1 2 . Then
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In this article, the authors also obtained an integral identity, and then by employing that identity, they
obtained bounds for the difference of terms associated to (3). Also, the inequality (3) implies inequality (1)
for a specific value of the parameter.

Katugampola, discovered a generalized fractional integral operator that generalizes the Riemann-
Liouville and Hadamard fractional integral operators. It is defined as follows:

Definition 3. [37] (Generalized fractional integral operator). Let �[ ] →f α α: ,1 2 be a function such that
�( )( )∈ ∈ ≤ ≤ ∞f X α α c p, , 1c

p
1 2 , < ν0 , >τ 0 and ( )⋅Γ represent the gamma function . Then, the following

fractional integrals are known as generalized fractional integral operators.
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For →τ 1 in Definition 3, we obtain Riemann-Liouville fractional integral operator, and for →τ 0,
we obtain Hadamard fractional integrals. In [38], Jleli et al. introduced the following Hermite-Hadamard
type inequality using generalized fractional integrals.

Theorem 2. [38] Let �[ ] →f α α: ,1 2 be a convex function with < < < ∞α α0 1 2 , >ν 0, and >τ 0. Then
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where ( ) ( ) ( )= +F z f z f z˜ and ( ) ( )= + −f z f α α z˜ 1 2 for [ ]∈z α α,1 2 .

In [39], Khan and Adil Khan introduced new conformable fractional integral operators that are a
generalized version of some more significant integral operators. These operators are defined as follows:

Definition 4. [39] (Generalized conformable fractional operators). Let f be a conformable integrable
function on [ ]α α,1 2 with ≤ < < ∞α α0 1 2 , >ν 0, ( ]∈θ 0, 1 , �∈τ , and + ≠θ τ 0. Then the following frac-
tional integrals are known as generalized conformable fractional integral operators.
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Remark 1.
(1) Definition 4 reduces to Katugampola fractional integrals for =θ 1 [37];
(2) If we take =τ 0 and →θ 0 in Definition 4, we obtain Hadamard fractional integrals [35];
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(3) By taking =τ 0 and =θ 1, we obtain the famous Riemann-Liouville fractional integrals [34];
(4) Definition 4 reduces to the conformable fractional integrals and the classical Riemann integrals by

choosing =ν 1, =τ 0, and = =ν θ 1, =τ 0, respectively.

In [40], Khan and Adil Khan also utilized these operators to obtain the Hermite-Hadamard inequality
which is expressed as follows:

Theorem 3. [40] Let �[ ] →f α α: ,1 2 be a convex function such that f is conformal integrable on [ ]α α,1 2 with
≤ < < ∞α α0 1 2 , >ν 0, and ( ]∈θ 0, 1 , �∈τ , and + >τ θ 0. Then
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where ( ) ( ) ( )= +F z f z f z˜ and ( ) ( )= + −f z f α α z˜ 1 2 for [ ]∈z α α,1 2 .

We now describe the concept of majorization, which will be used to express our new findings.

Definition 5. [41] (Majorization). Let ( )= …θ θ θ θ, , , ε1 2 and ( )= …ϑ ϑ ϑ ϑ, , , ε1 2 be two tuples arranged in the
order [ ] [ ] [ ]≤ ≤⋯≤

−
θ θ θε ε 1 1 and [ ] [ ] [ ]≤ ≤⋯≤
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By using the majorization concept, Neizgoda [42] presented an extended version of the Jensen-Mercer
inequality which is stated as follows:

Theorem 4. [42] (Majorized discrete Jensen-Mercer inequality). Let f be a function that is defined to be
convex on the interval I of real numbers, and let ( )xiς be an ×n ε matrix such that ∈x Iiς for all = …i n1, 2, , ,

= …ς ε1, 2, , . Let ( )= …α α α α, , , ε1 2 be a tuple with ∈α Iς for = …ς ε1, 2, , and ≥σ 0i for = …i n1, 2, , with
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From the overall discussion about the inequalities, we come to know that the researchers have con-
structed generalized inequalities in discrete or continuous form [43,44] by using integral operators, con-
vexity or both [45–47]. However, it is essential to develop combined inequalities that can act as both
continuous and discrete inequalities simultaneously. This requirement can be fulfilled by using the major-
ization approach discussed earlier. In [48], Faisal et al. utilized Riemann-Liouville fractional integral
operators along with the concept of convexity and majorization to establish “conticrete” fractional Her-
mite-Hadamard-Jensen-Mercer inequalities. The authors have introduced “conticrete” name for these
inequalities due to the fact that they represent both discrete and continuous inequalities in a combined
form. The authors also obtained integral identities by using which bounds for the major results have been
obtained. For some more conticrete inequalities via majorization in terms of Caputo fractional derivative
operators and Riemann integrals, see [49,50].
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This article is divided into four sections. Section 2 is devoted to the derivation of new conticrete
inequalities by using majorization and generalized conformable fractional operators. These results have
been expressed in the from of Theorems 5 and 6. Remark 2 demonstrates that our key findings generalize the
previously known inequalities in the literature for different fractional operators. They also present the
conticerete versions of the Hermite-Hadamard-Jensen-Mercer inequalities for various fractional operators
and classical integrals. In Section 3, we derive weighted forms of our main results by first considering
decreasing tuples and then taking those tuples, which show the same monotonic behavior. These results
have been obtained on the basis of two previously proved lemmas and expressed as Theorems 7 and 8. In
Section 4, two new integral identities are investigated by considering three tuples and a differentiable
function. These identities are then used to establish bounds for the main results. The conclusion of overall
work is presented in the last section.

2 Main results

We present our new results in the context of generalized conformable fractional operators in the fol-
lowing way.

Theorem 5. Let ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , and ( )= …γ γ γ γ, , , ε1 2 be three tuples, where >β γε ε
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By using convexity of f in (14), we have
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By multiplying both sides of (15) by
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and integrating with respect to η, we obtain
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and then integrating with respect to η and using the same procedure as earlier, we have
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By adding (20) and (21), we obtain
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2

Γ 1
4

.
ς

ε

ς
ς

ε
ς ς ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε β

ντ
θ ε

1 1

1

ε ε

Hence, the first part of the inequality (13) is completed.
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To prove the second part of the inequality (13), we utilize the convexity of f as follows:

( ( ) ) ( ) ( ) ( )+ − ≤ + −f ηβ η γ ηf β η f γ1 1ε ε ε ε (22)

and

( ( ) ) ( ) ( ) ( )+ − ≤ + −f ηγ η β ηf γ η f β1 1 .ε ε ε ε (23)

Adding (22) and (23) and then applying Theorem 4 by taking =n 1 and =σ 11 , we have

( ( ) ) ( ( ) ) ( ) ( ) ( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟∑ ∑ ∑+ − + + − ≤ + ≤ − +

= =

−

=

−

f ηβ η γ f ηγ η β f β f γ f α f β f γ1 1 2ε ε ε ε ε ε
ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1

1
(24)

Multiplying both sides of (24) by

( )( ) (( ) )

( )( (( ) ) )

∑ − + − +

− − +

=

−
− + −

+ + −

γ β τ θ η γ ηβ

ν β η γ ηβ

1

Γ 1
ς
ε

ς ς
ν

ε ε
τ θ

ε
τ θ

ε ε
τ θ ν

1
1 1 1

1

and integrating with respect to η, we obtain

( ) ( )

( )
( ) [ ( ) ( )] ( )

⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥∑ ∑ ∑

+ +

−

≤ + ≤ − +
+ +

= =

−

=

−

+

τ θ ν
β γ

K F β f β f γ f α f β f γΓ 1
2

1
2

1
2

.
ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε ε ε

ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1

1

ε
(25)

Again multiplying (24) by

( )( ) (( ) )

( )((( ) ) )

∑ − + − +

− + −

=

−
− + −

+ + −

γ β τ θ η γ ηβ

ν η γ ηβ γ

1

Γ 1
ς
ε

ς ς
ν

ε ε
τ θ

ε ε
τ θ

ε
τ θ ν

1
1 1 1

1

and then integrating with respect to η and using the same procedure as earlier, we have

( ) ( )

( )
( ) [ ( ) ( )] ( )

⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥∑ ∑ ∑

+ +

−

≤ + ≤ − +
+ +

= =

−

=

−

−

τ θ ν
β γ

K F γ f β f γ f α f β f γΓ 1
2

1
2

1
2

.
ν

ε
τ θ

ε
τ θ ν β

ντ
θ ε ε ε

ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1

1

ε
(26)

By adding (25) and (26), we obtain the second and third part of the inequality (13). □

Remark 2.
(1) By taking =ε 2, =β α1 1, and =γ α1 2 in inequality (13), we obtain inequality (9), which is proved in [40].
(2) By substituting =θ 1 in (13), we acquire the following inequality of the Hermite-Hadamard-Jensen-

Mercer type in terms of Katugampola fractional operators:

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( ) ( )

( )
[ ( ) ( )]

[ ( ) ( )]

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥

∑ ∑

∑ ∑ ∑

−

+

≤

+ +

−

+

≤ +

≤ − +

= =

−

+ +

= =

−

=

−

+
−f α

β γ τ ν
β γ

K F β K F γ

f β f γ

f α f β f γ

2
1 Γ 1

4

1
2

1
2

.

ς

ε

ς
ς

ε
ς ς ν

ε
τ

ε
τ ν γ

ντ
ε β

ντ
ε

ε ε

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

1 1 1 1

1 1

1

1

1

ε ε

(27)

(3) By taking =θ 1, =ε 2, =β α1 1, and =γ α1 2 in (13), we obtain inequality (6), which is proved in [38].

(4) For + →τ θ 0 in (13) and using L’ Hospital rule and the relation [ ]∈f γ β,ε ε , ( )∫ f w wd
γ

β
θ

ε

ε =

( )∫
−f w w wd

γ

β θ 1
ε

ε , where ∫ d w
γ

β
θ

ε

ε represents conformable integration, we obtain the following Hermite-

Hadamard-Jensen-Mercer type inequality for Hadamard fractional integral operators:
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⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( )

⎛
⎝

⎞
⎠

[ ( ) ( )]

[ ( ) ( )]

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥

( )

∑ ∑

∑ ∑ ∑

−

+

≤

+

+

≤ +

≤ − +

= =

−

= =

−

=

−

+
+ −+f α

β γ ν K f β K f γ

f β f γ

f α f β f γ

2
Γ 1

2 ln

1
2

1
2

.

ς

ε

ς
ς

ε
ς ς

β
γ

ν γ
ν

ε β
ν

ε

ε ε

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1
0

0
0

0

1 1

1

1

1

ε

ε

ε ε

(28)

(5) By inserting + =τ θ 1, in (13), we obtain the followingHermite-Hadamard-Jensen-Mercer type inequality
for Riemann-Liouville fractional integrals [48]:

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( )

( )
[ ( ) ( )]

( )

∑ ∑−

+

≤

+

∑ −

+

= =

−

=

−

+
−f α

β γ ν
γ β

K f β K f γ
2

Γ 1
2

.
ς

ε

ς
ς

ε
ς ς

ς
ε

ς ς
ν γ

ν
ε β

ν
ε

1 1

1

1
1

0
1

0
1

ε ε

(6) For + =τ θ 1, =ε 2, =β α1 1, =γ α1 2, the inequality (13) produces the inequality (3).
(7) For =ν 1 and =τ 0 in (13), we obtain the Hermite-Hadamard-Jensen-Mercer type inequality in terms of

conformable fractional integrals as follows:

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟ ( )

( )

[ ( ) ( )]

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥

∫∑ ∑

∑ ∑ ∑

−

+

≤

−

≤ +

≤ − +

= =

−

= =

−

=

−

f α
β γ

β γ
F w w

f γ f β

f α f β f γ

2
1

2
d

1
2

1
2

.

ς

ε

ς
ς

ε
ς ς

ε
θ

ε
θ ν

γ

β

θ

ε ε

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

1 1

1

1

1

ε

ε

(29)

(8) For = =θ ν 1, =τ 0, we deduce the following inequality of the Hermite-Hadamard-Jensen-Mercer type
in terms of classical Riemann integrals [49]:

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟ ( )

⎛

⎝
⎜

⎞

⎠
⎟

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥∫∑ ∑ ∑ ∑ ∑ ∑−

+

≤

∑ −

− ≤ − +

= =

−

=

−

= = =

−

=

−

f α
β γ

γ β
f α u u f α f β f γ

2
1 d 1

2
.

ς

ε

ς
ς

ε
ς ς

ς
ε

ς ς γ

β

ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1
1

1 1 1

1

1

1

ε

ε

(30)

Now, we present another result of Hermite-Hadamard-Jensen-Mercer type by using generalized con-
formable fractional operators as follows:

Theorem 6. Let all the conditions in the hypotheses of Theorem 5 hold true, then

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( )( )

( )

⎡

⎣

⎢
⎢
⎢

( ) ( )

⎤

⎦

⎥
⎥
⎥

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ ∑

∑ ∑ ∑

−

+

≤

+ +

+

≤ − +

∑ ∑ ∑ ∑

= =

−

+
−

+

−

+

= =

−

=

−

= =

−

+

= =

−

−

f α
β γ

ν τ θ
Q β γ

K F β K F γ

f α f β f γ

2

Γ 1
2 ,

1
2

,

ς

ε

ς
ς

ε
ς ς

ν

τ θ
ν

ε ε α
β γ

ντ
θ ε

α
β γ

ντ
θ ε

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

2 2

1 1

1

1

1

ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

1 1
1

1 1
1

(31)

where

( )
⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟
∑ ∑ ∑ ∑= − − + + − + −

+

+

= =

−

+

= =

−

+

+Q β γ β α β γ α β γ γ, 1
2

1
2

.τ θ
ν

ε ε ε
τ θ

ς

ε

ς
ς

ε

ς ς

τ θ ν

ς

ε

ς
ς

ε

ς ς

τ θ

ε
τ θ

ν

1 1

1

1 1

1
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Proof. For ∑ − ∑ =
= =

−α β βς
ε

ς ς
ε

ς ε1 1
1 , ∑ − ∑ =

= =

−α γ γς
ε

ς ς
ε

ς ε1 1
1 , and [ ]∈η 0, 1 , it may be written that

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎡
⎣

( )⎤
⎦

⎡

⎣

⎢
⎢

⎛

⎝

⎜
⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎞

⎠

⎟

⎤

⎦

⎥
⎥

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

−

+

= +

= − +

−

+ − +

−

= =

−

= =

−

=

−

= =

−

=

−

f α
β γ

f β γ

f α η β η γ

α η γ η β

2
1
2

1
2 2

2
2

2
2

2
.

ς

ε

ς
ς

ε
ς ς

ε ε

ς

ε

ς
ς

ε

ς
ς

ε

ς

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

1 1

1

1

1

1 1

1

1

1

(32)

By using convexity of f in (32), we have

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎤

⎦

⎥
⎥

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑−

+

≤ − +

−

+ − +

−

= =

−

= =

−

=

−

= =

−

=

−

f α
β γ

f α η β η γ f α η γ η β
2

1
2 2

2
2 2

2
2

.
ς

ε

ς
ς

ε
ς ς

ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1 1

1

1

1

1 1

1

1

1
(33)

Multiplying both sides of (33) by

( )( )

( )⎛

⎝

⎞

⎠

( )

( )

( )

( )

∑ − + ∑ − ∑ + ∑

∑ − ∑ + ∑ −

=

−
−

= =

− −

=

−

+ −

= =

− −

=

−

+

+

−

γ β τ θ α β γ

ν α β γ γ2Γ
,

ς
ε

ς ς
ν

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ

ε
τ θ

ν
1
1 1

1 2 1
1 2

2 1
1 1

1 2 1
1 2

2 1
1

1

and integrating with respect to η, we obtain

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟ ( )

( )( )
⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎞

⎠

⎟
⎟

⎡

⎣

⎢
⎢
⎢

( )
( )( )

⎛

⎝

⎜
⎜

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎞

⎠

⎟
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

( )
( )( )

⎛

⎝

⎜
⎜

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎞

⎠

⎟
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎤

⎦

⎥
⎥

∫

∫

∫

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

−

+

− + − +

−

× − +

−

−

≤ − + − +

−

−

× − +

−

− +

−

+ − + − +

−

−

× − +

−

− +

−

= =

−

=

−

−

= =

−

=

−

+ −

= =

−

=

−

+

+

−

=

−

−

= =

−

=

−

+

+

−

= =

−

=

−

+ −

= =

−

=

−

=

−

−

= =

−

=

−

+

+

−

= =

−

=

−

+ −

= =

−

=

−

f α
β γ

ν
γ β τ θ α η β η γ

α η β η γ γ η

ν
γ β τ θ α η β η γ γ

α η β η γ f α η β η γ η

ν
γ β τ θ α η β η γ γ

α η β η γ f α η γ η β

2
1

2Γ 2
2

2

2
2

2
d

1
2

1
2Γ 2

2
2

2
2

2 2
2

2
d

1
2Γ 2

2
2

2
2

2 2
2

2
.

ς

ε

ς
ς

ε
ς ς

ς

ε

ς ς
ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ς

ε

ς ς
ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

ς

ε

ς ς
ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

1

1
1

0

1

1 1

1

1

1 1

1 1

1

1

1
1

1

1
1

0

1

1 1

1

1

1
1

1 1

1

1

1 1

1 1

1

1

1

1

1
1

0

1

1 1

1

1

1
1

1 1

1

1

1 1

1 1

1

1

1

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟ ( )

( )( )

⎡

⎣
⎢ ( )

( )( )
( )

( )( )
⎤

⎦
⎥

∑ ∑ ∑

∑ ∑

−

+

− +

≤ − + + − +

= =

−

=

−

−

=

−

−

=

−

−

f α
β γ

ν
γ β τ θ I

ν
γ β τ θ I

ν
γ β τ θ I

2
1

2Γ

1
2

1
2Γ

1
2Γ

.

ς

ε

ς
ς

ε
ς ς

ς

ε

ς ς
ν

ς

ε

ς ς
ν

ς

ε

ς ς
ν

1 1

1

1

1
1

4

1

1
1

5
1

1
1

6

(34)

Now, finding I4, I5, and I6, we have
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( )
( )( )

( )( )

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟
∑ ∑ ∑− + =

+ +

− + −

=

−

−

= =

−

+

+

ν
γ β τ θ I

ν τ θ
α β γ γ1

2Γ
1

Γ 1
1
2

.
ς

ε

ς ς
ν

ν
ς

ε

ς
ς

ε

ς ς

τ θ

ε
τ θ

ν

1

1
1

4
1 1

1
(35)

Now by substituting = ∑ − ∑ − ∑
= =

− −

=

−w α β γς
ε

ς
η

ς
ε

ς
η

ς
ε

ς1 2 1
1 2

2 1
1 , we obtain

( )
( )( ) ( )

⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ − + =

∑ ∑=

−

−

−

+

= =

−

−

ν
γ β τ θ I K f γ1

2Γ
.

ς

ε

ς ς
ν

α
β γ

ντ
θ ε

1

1
1

5

2ς
ε

ς ς
ε ς ς

1 1
1 (36)

Also, by using the identity

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ∑ ∑ ∑ ∑− −

−

= − −

−

= =

−

=

−

= =

−

=

−

f α η γ η β f α η β η γ˜
2

2
2 2

2
2ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1

1

1 1

1

1

1

and the aforementioned substitution, we have

( )
( )( ) ( )

⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ − + =

∑ ∑=

−

−

−

+

= =

−

−

ν
γ β τ θ I K f γ1

2Γ
˜ .

ς

ε

ς ς
ν

α
β γ

ντ
θ ε

1

1
1

6

2ς
ε

ς ς
ε ς ς

1 1
1 (37)

By using (35), (36), and (37) in (34), we deduce

⎜ ⎟
( )( )

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢

( )

⎤

⎦

⎥
⎥
⎥⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ ∑ ∑ ∑

+ +

− + − −

+

≤

∑ ∑

= =

−

+

+

= =

−

−

+

= =

−

−

ν τ θ
α β γ γ f α

β γ

K F γ

1
Γ 1

1
2 2

1
2

.

ν
ς

ε

ς
ς

ε

ς ς

τ θ

ε
τ θ

ν

ς

ε

ς
ς

ε
ς ς

α
β γ

ντ
θ ε

1 1

1

1 1

1

2ς
ε

ς ς
ε ς ς

1 1
1

(38)

Similarly, multiplying both sides of (33) by

( )( )

( )⎛

⎝

⎞

⎠

( )

( )

( )

( )

∑ − + ∑ − ∑ + ∑

− ∑ − ∑ + ∑

=

−
−

= =

− −

=

−

+ −

+

= =

− −

=

−

+
−

γ β τ θ α γ β

ν β α γ β2Γ
,

ς
ε

ς ς
ν

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ

ε
τ θ

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ ν

1
1 1

1 2 1
1 2

2 1
1 1

1 2 1
1 2

2 1
1

1

and then integrating with respect to η, we finally obtain

⎜ ⎟
( )( )

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢

( )

⎤

⎦

⎥
⎥
⎥⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ ∑ ∑ ∑

+ +

− − + −

+

≤

∑ ∑

+

= =

−

+

= =

−

−

+

= =

−

+

ν τ θ
β α β γ f α

β γ

K F β

1
Γ 1

1
2 2

1
2

.

ν ε
τ θ

ς

ε

ς
ς

ε

ς ς

τ θ ν

ς

ε

ς
ς

ε
ς ς

α
β γ

ντ
θ ε

1 1

1

1 1

1

2ς
ε

ς ς
ε ς ς

1 1
1

(39)

By adding (38) and (39), we have

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( )( )

( )

⎡

⎣

⎢
⎢
⎢

( ) ( )

⎤

⎦

⎥
⎥
⎥⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ ∑−

+

≤

+ +

+

∑ ∑ ∑ ∑

= =

−

+
−

+

−

+

= =

−

+

= =

−

−

f α
β γ

ν τ θ
Q β γ

K F β K F γ

2

Γ 1
2 ,

.

ς

ε

ς
ς

ε
ς ς

ν

τ θ
ν

ε ε α
β γ

ντ
θ ε

α
β γ

ντ
θ ε

1 1

1

2 2ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

1 1
1

1 1
1

(40)
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Thus, the first part of the inequality (31) is proved. To prove the second part of the inequality (31), we
proceed as follows:

As a consequence of convexity of f , we use Theorem 4 for the values =n 2, =σ η
1 2 , and =

−σ η
2

2
2 , to

obtain

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟∑ ∑ ∑ ∑ ∑ ∑− +

−

≤ − +

−

= =

−

=

−

= =

−

=

−

f α η β η γ f α η f β η f γ
2

2
2 2

2
2ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1

1

1 1

1

1

1
(41)

and

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟∑ ∑ ∑ ∑ ∑ ∑− +

−

≤ − +

−

= =

−

=

−

= =

−

=

−

f α η γ η β f α η f γ η f β
2

2
2 2

2
2

.
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
1 1

1

1

1

1 1

1

1

1
(42)

By adding (41) and (42), we have

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

− +

−

+ − +

−

≤ − +

= =

−

=

−

= =

−

=

−

= =

−

=

−

f α η β η γ f α η γ η β

f α f β f γ

2
2

2 2
2

2

2 .

ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

1

1

1 1

1

1

1

1 1

1

1

1
(43)

By multiplying

( )( )

( )⎛

⎝

⎞

⎠

( )

( )

( )

( )

∑ − + ∑ − ∑ + ∑

∑ − ∑ + ∑ −

=

−
−

= =

− −

=

−

+ −

= =

− −

=

−

+

+

−

γ β τ θ α β γ

ν α β γ γ2Γ
,

ς
ε

ς ς
ν

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ

ε
τ θ

ν
1
1 1

1 2 1
1 2

2 1
1 1

1 2 1
1 2

2 1
1

1

to both sides of (43), we obtain

( )

( )( )

⎡

⎣

⎢
⎢

( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟

⎤

⎦

⎥
⎥

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ ∑ ∑ ∑ ∑≤

+ +

− + − + −

∑ ∑−

+

= =

−

=

−

= =

−

+

+

= =

−

−K F γ

ν τ θ
f α f β f γ α β γ γ1

Γ 1
2 1

2
.

α
β γ

ντ
θ ε

ν
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς ς

τ θ

ε
τ θ

ν

2

1 1

1

1

1

1 1

1

ς
ε

ς ς
ε ς ς

1 1
1

(44)

Also, by multiplying

( )( )

( )⎛

⎝

⎞

⎠

( )

( )

( )

( )

∑ − + ∑ − ∑ + ∑

− ∑ − ∑ + ∑

=

−
−

= =

− −

=

−

+ −

+

= =

− −

=

−

+
−

γ β τ θ α γ β

ν β α γ β2Γ

ς
ε

ς ς
ν

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ

ε
τ θ

ς
ε

ς
η

ς
ε

ς
η

ς
ε

ς
τ θ ν

1
1 1

1 2 1
1 2

2 1
1 1

1 2 1
1 2

2 1
1

1

to both sides of (43), we obtain

( )

( )( )

⎡

⎣

⎢
⎢

( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟

⎤

⎦

⎥
⎥

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∑ ∑ ∑ ∑ ∑≤

+ +

− + − − +

∑ ∑−

+

= =

−

=

−

+

= =

−

+

= =

−

+K F β

ν τ θ
f α f β f γ β α β γ1

Γ 1
2 1

2
.

α
β γ

ντ
θ ε

ν
ς

ε

ς
ς

ε

ς
ς

ε

ς ε
τ θ

ς

ε

ς
ς

ε

ς ς

τ θ ν

2

1 1

1

1

1

1 1

1

ς
ε

ς ς
ε ς ς

1 1
1

(45)

Now, by adding (44) and (45), we obtain the second part of the inequality (31). □
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Remark 3.
(1) By substituting + =τ θ 1, in (31), we obtain the following Hermite-Hadamard-Jensen-Mercer type

inequality for Riemann-Liouville fractional integrals [48]:

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( )

( )

⎡

⎣

⎢
⎢
⎢

( ) ( )

⎤

⎦

⎥
⎥
⎥

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟( )

∑ ∑

∑

∑ ∑ ∑

−

+

≤

+

−

+

≤ − +

∑ ∑ ∑ ∑

= =

−

−

=

−

−

+

−

+

= =

−

=

−

= =

−

+

= =

−

−

f α
β γ

ν

γ β
K f β K f γ

f α f β f γ

2

2 Γ 1

1
2

.

ς

ε

ς
ς

ε
ς ς

ν

ς
ε

ς ς
ν

α
β γ

ν
ε

α
β γ

ν
ε

ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

1

1
1

2

0
1

2

0
1

1 1

1

1

1

ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

1 1
1

1 1
1

(46)

(2) For + =τ θ 1 and =ε 2, the inequality (31) reduces to the following inequality [30]:

⎜ ⎟
⎛

⎝

⎞

⎠

( )

( )

⎡

⎣

⎢
⎢

( ) ( )
⎤

⎦

⎥
⎥

( ) ( ) [ ( ) ( )]

⎜ ⎟ ⎜ ⎟⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

+ −

+

≤

+

−

+ − + + −

≤ + − +

−

+ −

+

+ −

+
+

−

f α α
β γ

ν
γ β

K f α α β K f α α γ

f α f α f β f γ

2

2 Γ 1

1
2

.

ν

ν
α α

β γ
ν

α α
β γ

ν

1 2
1 1

1

1 1 2

0
1 1 2 1

2

0
1 1 2 1

1 2 1 1

1 2
1 1 1 2

1 1
(47)

(3) For + =τ θ 1, =ε 2, and =ν 1 then the inequality (31) reduces to the inequality (2.2) in [51].

3 Weighted forms of the main results

We generate weighted versions of our first primary result in this section. The similar process can be used to
produce weighted versions of the second main outcome. They are acquired by utilizing lemmas that have
already been proved. We first recall these lemmas [49].

Lemma 1. Let ( )= …α α α α, , , ε1 2 , ( )= …r r rr , , , ε1 2 be two tuples and ( )xiε be a real ×n ε matrix such that αε,

∈x Iiε , ≥r 0ς with ≠r 0ε , =ε r
1
ε
for all = …i n1, 2, , , = …ς ε1, 2, , , and f be a convex function defined on I .

Also, let ≥σ 0i for = …i n1, 2, , with ∑ =
=

σ 1i
n

i1 . If for each = …i n1, 2, , , ( )…x x x, ,i i iε1 2, is a decreasing tuple
and satisfying

∑ ∑ ∑ ∑≤ = … − =

= = = =

r x r α for k ε r α r x1, 2, , 1, ,
ς

k

ς iς
ς

k

ς ς
ς

ε

ς ς
ς

ε

ς iς
1 1 1 1

then

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )∑ ∑∑ ∑ ∑∑− ≤ −

= =

−

= = =

−

=

f εr α εσ r x εr f α εσ r f x .
ς

ε

ς ς
ς

ε

i

n

i ς iς
ς

ε

ς ς
ς

ε

i

n

i ς iς
1 1

1

1 1 1

1

1

Lemma 2. Let ( )= …α α α α, , , ε1 2 , ( )= …r r rr , , , ε1 2 be two tuples and ( )xiε be a real ×n ε matrix such that αε,

∈x Iiε , ≥r 0ς with ≠r 0ε , =ε r
1
ε
for all = …i n1, 2, , , = …ς ε1, 2, , , and f be a convex function defined on I .

Also, let ≥σ 0i for = …i n1, 2, , with ∑ =
=

σ 1i
n

i1 .
If for each = …i n1, 2, , , ( )−α xς iς and xiς are monotonically in the same sense and
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∑ ∑=

= =

r α r x ,
ς

ε

ς ς
ς

ε

ς iς
1 1

then

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )∑ ∑∑ ∑ ∑∑− ≤ −

= =

−

= = =

−

=

f εr α εσ r x εr f α εσ r f x .
ς

ε

ς ς
ς

ε

i

n

i ς iς
ς

ε

ς ς
ς

ε

i

n

i ς iς
1 1

1

1 1 1

1

1

Now, we present weighted form of Theorem 5 on the basis of Lemma 1 as follows:

Theorem 7. Let ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , ( )= …γ γ γ γ, , , ε1 2 , and ( )= …r r rr , , , ε1 2 be four tuples,

where >β γε ε and [ ]∈ =α β γ I γ β, , ,ς ς ς ε ε , ≥r 0ς with ≠r 0ε for all = …ς ε1, 2, , , =ε r
1
ε
. Let >ν 0 and �∈τ ,

( ]∈θ 0, 1 such that + >τ θ 0. Let �[ )⊆ ∞ →f I: 0, be a function such that ( )∈f L Iθ and ( ) ( ) ( )= +F z f z f z˜ ,

( ) ( )= + −f z f β γ z˜
ε ε . Also, suppose that f is convex function on I , β, and γ are decreasing tuples and

∑ ∑ ∑ ∑≤ ≤ = … −

= = = =

r β r α r γ r α for k ε, 1, , 1,
ς

k

ς ς
ς

k

ς ς
ς

k

ς ς
ς

k

ς ς
1 1 1 1

∑ ∑ ∑ ∑= =

= = = =

r α r β r α r γ, ,
ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
1 1 1 1

then

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( ) ( )

( )
[ ( ) ( )]

[ ( ) ( )]

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥

∑ ∑

∑ ∑ ∑

−

+

≤

+ +

−

+

≤ +

≤ − +

= =

−

+ +

= =

−

=

−

+
−f εr α εr

β γ τ θ ν
β γ

K F β K F γ

f β f γ

εr f α εr f β εr f γ

2
Γ 1

4
1
2

1
2

.

ς

ε

ς ς
ς

ε

ς
ς ς ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε β

ντ
θ ε

ε ε

ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς

1 1

1

1 1

1

1

1

ε ε

(48)

Proof. From the fact that

∑ ∑ ∑ ∑= =

= = = =

r α r β r α r γand ,
ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
1 1 1 1

we arrive at

∑ ∑ ∑ ∑− = − =

= =

−

= =

−

εr α εr β β εr α εr γ γand .
ς

ε

ς ς
ς

ε

ς ς ε
ς

ε

ς ς
ς

ε

ς ς ε
1 1

1

1 1

1

Now, for [ ]∈η 0, 1 , we have

⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥

⎡
⎣

( ( ) ( ) )⎤
⎦

∑ ∑−

+

=

+

= + − + + −

= =

−

f εr α ε r
β γ

f
β γ

f ηβ η γ ηγ η β
2 2

1
2

1 1 .
ς

ε

ς ς
ς

ε

ς
ς ς ε ε

ε ε ε ε
1 1

1
(49)

By using convexity of f in (49), we have

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

[ ( ( ) ) ( ( ) )]∑ ∑−

+

≤ + − + + −

= =

−

f εr α ε r
β γ

f ηβ η γ f ηγ η β
2

1
2

1 1 .
ς

ε

ς ς
ς

ε

ς
ς ς

ε ε ε ε
1 1

1
(50)

Multiplying both sides of (50) by
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( ) ( ) (( ) )

( )( (( ) ) )

( )∑ − + − +

− − +

=

−
− + −

+ + −

εr γ εr β τ θ η γ ηβ

ν β η γ ηβ

1

Γ 1
ς
ε

ς ς ς ς
ν

ε ε
τ θ

ε
τ θ

ε ε
τ θ ν

1
1 1 1

1

and integrating with respect to η, we obtain

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟ ( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )

(( ) ) ( (( ) ) )

⎡

⎣

⎢
⎢ ( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( ) (( ) ) ( (( ) ) )

( ( ) )
( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( ) (( ) ) (

(( ) ) ) ( ( ) )]

∫

∫

∫

∑ ∑ ∑

∑

∑

−

+

− +

× − + − − +

≤ − + − + − − +

× + − + − + − +

− − + + −

= =

−

=

−

−

+ − + + −

=

−

− + − + + −

=

−

− + − +

+ −

f εr α ε r
β γ

ν
εr γ εr β τ θ

η γ ηβ β η γ ηβ η

ν
εr γ εr β τ θ η γ ηβ β η γ ηβ

f ηβ η γ η
ν

εr γ εr β τ θ η γ ηβ β

η γ ηβ f ηγ η β

2
1

Γ

1 1 d

1
2

1
Γ

1 1

1 d 1
Γ

1

1 1 .

ς

ε

ς ς
ς

ε

ς
ς ς

ς

ε

ς ς ς ς
ν

ε ε
τ θ

ε
τ θ

ε ε
τ θ ν

ς

ε

ς ς ς ς
ν

ε ε
τ θ

ε
τ θ

ε ε
τ θ ν

ε ε
ς

ε

ς ς ς ς
ν

ε ε
τ θ

ε
τ θ

ε ε
τ θ ν

ε ε

1 1

1

1

1
1

0

1

1 1

1

1
1

0

1

1 1

1

1
1

0

1

1

1

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟ ( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )

⎡

⎣

⎢
⎢ ( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )
( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )
⎤

⎦

⎥
⎥

∑ ∑ ∑

∑ ∑

−

+

− +

≤ − + + − +

= =

−

=

−

−

=

−

−

=

−

−

f εr α ε r
β γ

ν
εr γ εr β τ θ I

ν
εr γ εr β τ θ I

ν
εr γ εr β τ θ I

2
1

Γ

1
2

1
Γ

1
Γ

.

ς

ε

ς ς
ς

ε

ς
ς ς

ς

ε

ς ς ς ς
ν

ς

ε

ς ς ς ς
ν

ς

ε

ς ς ς ς
ν

1 1

1

1

1
1

7

1

1
1

8
1

1
1

9

(51)

Now, finding I7, I8, and I9 in the following way:

( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )
( )( )

( )∑ − + =

+ +

−

=

−

− + +

ν
εr γ εr β τ θ I

ν τ θ
β γ1

Γ
1

Γ 1
.

ς

ε

ς ς ς ς
ν

ν ε
τ θ

ε
τ θ ν

1

1
1

7 (52)

Now, by substituting ( )= − +w η γ ηβ1 ε ε, we obtain

( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( ) ( )∑ − + =

=

−

−

+

ν
εr γ εr β τ θ I K f β1

Γ ς

ε

ς ς ς ς
ν

γ
ντ

θ ε
1

1
1

8
ε

(53)

Also, by using the following identity

(( ) ) (( ) )− + = − +f η γ ηβ f η β ηγ˜ 1 1ε ε ε ε

and making the aforementioned substitution, we obtain I9 as follows:

( )

⎛

⎝
⎜

( )
⎞

⎠
⎟

( ) ( )∑ − + =

=

−

−

+

ν
εr γ εr β τ θ I K f β1

Γ
˜ .

ς

ε

ς ς ς ς
ν

γ
ντ

θ ε
1

1
1

9
ε

(54)

By using (52), (53), and (54) in (51), we have

⎜ ⎟
( )( )

( )
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

[ ( )]∑ ∑

+ +

− −

+

≤
+ +

= =

−

+

ν τ θ
β γ f εr α ε r

β γ
K F β1

Γ 1 2
1
2

.ν ε
τ θ

ε
τ θ ν

ς

ε

ς ς
ς

ε

ς
ς ς

γ
ντ

θ ε
1 1

1

ε
(55)

Again by multiplying both sides of (50) by

( ) ( ) (( ) )

( )((( ) ) )

( )∑ − + − +

− + −

=

−
− + −

+ + −

εr γ εr β τ θ η γ ηβ

ν η γ ηβ γ

1

Γ 1
ς
ε

ς ς ς ς
ν

ε ε
τ θ

ε ε
τ θ

ε
τ θ ν

1
1 1 1

1
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and integrating with respect to η and using the same procedure as earlier, we have

⎜ ⎟
( )( )

( )
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

[ ( )]∑ ∑

+ +

− −

+

≤
+ +

= =

−

−

ν τ θ
β γ f εr α ε r

β γ
K F γ1

Γ 1 2
1
2

.ν ε
τ θ

ε
τ θ ν

ς

ε

ς ς
ς

ε

ς
ς ς

β
ντ

θ ε
1 1

1

ε
(56)

By adding (55) and (56), we obtain the first part of the inequality (48).
To prove the second part of the inequality (48), we utilize the convexity of f as follows:

( ( ) ) ( ) ( ) ( )+ − ≤ + −f ηβ η γ ηf β η f γ1 1ε ε ε ε (57)

and

( ( ) ) ( ) ( ) ( )+ − ≤ + −f ηγ η β ηf γ η f β1 1 .ε ε ε ε (58)

Adding (57) and (58) and then using Lemma 1 for =n 2, =σ η1 , and = −σ η12 , we obtain

( ( ) ) ( ( ) ) ( ) ( ) ( )
⎛

⎝
⎜

( ) ( )
⎞

⎠
⎟∑ ∑ ∑+ − + + − ≤ + ≤ − +

= =

−

=

−

f ηβ η γ f ηγ η β f β f γ εr f α εr f β εr f γ1 1 2 .ε ε ε ε ε ε
ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
1 1

1

1

1
(59)

Multiplying both sides of (59) by

( ) ( ) (( ) )

( )( (( ) ) )

( )∑ − + − +

− − +

=

−
− + −

+ + −

εr γ εr β τ θ η γ ηβ

ν β η γ ηβ

1

Γ 1
ς
ε

ς ς ς ς
ν

ε ε
τ θ

ε
τ θ

ε ε
τ θ ν

1
1 1 1

1

and integrating with respect to η, we obtain

( ) ( )

( )
( ) [ ( ) ( )] ( )

⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥∑ ∑ ∑

+ +

−

≤ + ≤ − +
+ +

= =

−

=

−

+

τ θ ν
β γ

K F β f β f γ εr f α εr f β εr f γΓ 1
2

1
2

1
2

.
ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε ε ε

ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
1 1

1

1

1

ε
(60)

Again by multiplying both sides of (59) by

( ) ( ) (( ) )

( )((( ) ) )

( )∑ − + − +

− + −

=

−
− + −

+ + −

εr γ εr β τ θ η γ ηβ

ν η γ ηβ γ

1

Γ 1
ς
ε

ς ς ς ς
ν

ε ε
τ θ

ε ε
τ θ

ε
τ θ ν

1
1 1 1

1

and integrating with respect to η, we have

( ) ( )

( )
( ) [ ( ) ( )] ( )

⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥∑ ∑ ∑

+ +

−

≤ + ≤ − +
+ +

= =

−

=

−

−

τ θ ν
β γ

K F γ f β f γ εr f α εr f β εr f γΓ 1
2

1
2

1
2

.
ν

ε
τ θ

ε
τ θ ν β

ντ
θ ε ε ε

ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
1 1

1

1

1

ε
(61)

By adding (60) and (61), we deduce the second and third part of inequality (48). □

Another, weighted form of Theorem 5 on the basis of Lemma 2 is obtained as follows:

Theorem 8. Let ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , ( )= …γ γ γ γ, , , ε1 2 , and ( )= …r r rr , , , ε1 2 be four tuples,

where >β γε ε and [ ]∈ =α β γ I γ β, , ,ς ς ς ε ε , ≥r 0ς with ≠r 0ε for all = …ς ε1, 2, , , and =ε r
1
ε
. Let >ν 0 and

�∈τ , ( ]∈θ 0, 1 such that + >τ θ 0. Let �[ )⊆ ∞ →f I: 0, be a function such that ( )∈f L Iθ and ( ) =F z
( ) ( )+f z f z˜ , ( ) ( )= + −f z f β γ z˜

ε ε . Also, suppose that f is convex function on I and −α β, β, −α γ, and γ are
monotonically in the same sense and

∑ ∑ ∑ ∑= =

= = = =

r α r β r α r γ, ,
ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς
1 1 1 1

then
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⎜ ⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( ) ( )

( )
[ ( ) ( )]

[ ( ) ( )]

( )
⎡

⎣
⎢ ( ) ( )

⎤

⎦
⎥

∑ ∑

∑ ∑ ∑

−

+

≤

+ +

−

+

≤ +

≤ − +

= =

−

+ +

= =

−

=

−

+
−f εr α εr

β γ τ θ ν
β γ

K F β K F γ

f β f γ

εr f α εr f β εr f γ

2
Γ 1

4
1
2

1
2

.

ς

ε

ς ς
ς

ε

ς
ς ς ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε β

ντ
θ ε

ε ε

ς

ε

ς ς
ς

ε

ς ς
ς

ε

ς ς

1 1

1

1 1

1

1

1

ε ε

(62)

Proof. By using Lemma 2, we can derive (62) by following the steps given in the proof of Theorem 7. □

Remark 4. Weighted versions of Theorem 6 can also be established in a similar manner by utilizing
Lemmas 1 and 2.

4 Derivation of new integral identities and bounds for the main
results

First, in this section, we construct two new integral identities connected to the right and left sides of our
major inequalities. Then, by using these identities, we bound the absolute difference between the terms on
the right and left of the main results.

Lemma 3. Let ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , and ( )= …γ γ γ γ, , , ε1 2 be three tuples, where >β γε ε and
[ ]∈ =α β γ I γ β, , ,ς ς ς ε ε , for all = …ς ε1, 2, , , and >ν 0, [ ]∈η 0, 1 , �∈τ , ( ]∈θ 0, 1 such that + >τ θ 0. Also, let

�[ )⊆ ∞ →f I: 0, be a differentiable function such that ( )′ ∈f L Iθ , then

[ ( ) ( )]
( ) ( )

( )
[ ( ) ( )]

( )

( )
( )

⎛

⎝
⎜

( ( ) )
⎞

⎠
⎟∫

∑

∑ ∑

+ −

+ +

−

+

=

−

−

∇ ′ − + −

+ +

=

−

+ +
+

= =

−

+
−f β f γ τ θ ν

β γ
K F β K F γ

γ β

β γ
η f α ηγ η β η

1
2

Γ 1
4

4
1 d ,

ε ε

ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε β

ντ
θ ε

ς
ε

ς ς

ε
τ θ

ε
τ θ ν τ θ

ν

ς

ε

ς
ς

ε

ς ς
1
1

0

1

1 1

1

ε ε

(63)

where

( )
⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∇ = − − − − − − − − −

+ − − − − − − − − −

+

= =

−

=

−

+

+

= =

−

=

−

+

+

+

= =

−

=

−

+

+

= =

−

=

−

+

η α η γ η β γ α η β η γ γ

β α η β η γ β α η γ η β

1 1

1 1 .

τ θ
ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

1 1

1

1

1

1 1

1

1

1

1 1

1

1

1

1 1

1

1

1

Proof. By using integration by parts, we obtain
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( )
( )

( ) ( )
( )

( )

( ) ( )

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

∫

∑

∑ ∑ ∑

∑ ∑ ∑

=

−

+ +

+

−

+ +

× − − − −

× ′ − − −

+ +

=

−

+

= =

−

=

−

+

= =

−

=

−

+K F β
β γ

τ θ ν
F γ

γ β

τ θ ν

β α η β η γ

F α η β η γ η

Γ 1 Γ 1

1

1 d .

γ
ντ

θ ε
ε
τ θ

ε
τ θ ν

ν ε
ς
ε

ς ς

ν

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

1
1

0

1

1 1

1

1

1

1 1

1

1

1

ε

(64)

Also, we obtain

( )
( )

( ) ( )
( )

( )

( ) ( )

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

∫

∑

∑ ∑ ∑

∑ ∑ ∑

=

−

+ +

−

−

+ +

× − − − −

× ′ − − −

+ +

=

−

= =

−

=

−

+

+

= =

−

=

−

−K F γ
β γ

τ θ ν
F β

γ β

τ θ ν

α η β η γ γ

F α η β η γ η

Γ 1 Γ 1

1

1 d .

β
ντ

θ ε
ε
τ θ

ε
τ θ ν

ν ε
ς
ε

ς ς

ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

1
1

0

1

1 1

1

1

1

1 1

1

1

1

ε

(65)

By adding (64) and (65), we obtain

( ) ( ) ( ) ( )

( )
[ ( ) ( )]

( )

( )

⎡

⎣

⎢
⎢

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎤

⎦

⎥
⎥

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )

∫

∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

+

−

+ +

−

+

=

−

−

− − − −

− − − − − ′ − − −

+ +

=

−

+ +

= =

−

=

−

+

+

+

= =

−

=

−

+

= =

−

=

−

+
−

f β f γ τ θ ν
β γ

K F β K F γ

γ β

β γ
α η β η γ γ

β α η β η γ F α η β η γ η

2
Γ 1

4

4
1

1 1 d .

ε ε
ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε β

ντ
θ ε

ς
ε

ς ς

ε
τ θ

ε
τ θ ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

1
1

0

1

1 1

1

1

1

1 1

1

1

1

1 1

1

1

1

ε ε

(66)

Also, we have

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

′ − − −

= ′ − − − − ′ − − −

= =

−

=

−

= =

−

=

−

= =

−

=

−

F α η β η γ

f α η β η γ f α η γ η β

1

1 1 .

ς

ε

ς
ς

ε

ς
ς

ε

ς

ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς
ς

ε

ς

1 1

1

1

1

1 1

1

1

1

1 1

1

1

1
(67)

And

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

∫

∫

∫

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

− − − − ′ − − −

= − − − − ′ − − −

− − − − − ′ − − −

= =

−

=

−

+

+

= =

−

=

−

= =

−

=

−

+

+

= =

−

=

−

= =

−

=

−

+

+

= =

−

=

−

α η β η γ γ F α η β η γ η

α η γ η β γ f α η γ η β η

α η β η γ γ f α η γ η β η

1 1 d

1 1 d

1 1 d .

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

ς

ε

ς
ς

ε

ς
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ε

ς

τ θ

ε
τ θ

ν

ς

ε

ς
ς
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ς
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ε

ς

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ
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ν

ς
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ς
ς

ε

ς
ς

ε

ς

0

1

1 1

1

1

1

1 1

1

1

1

0

1

1 1

1

1

1

1 1

1

1

1

0

1

1 1

1

1

1

1 1

1

1

1

(68)

Also,
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⎜
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⎜
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⎜
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⎜
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∫
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∫
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∑ ∑ ∑ ∑ ∑ ∑
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− − − − − ′ − − −
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−
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−

+
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−

=

−
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−

=

−

+
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−

=

−

+
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=

−
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−

=

−
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β α η β η γ f α η γ η β η

1 1 d

1 1 d

1 1 d .

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

0

1

1 1

1

1

1

1 1

1

1

1

0

1
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1

1

1

1 1

1

1

1

0

1

1 1

1

1

1

1 1

1

1

1

(69)

Now by using (68) and (69) in (66), we obtain (63). □

Remark 5.
(1) For + =τ θ 1, Lemma 3 reduces to Lemma 3 given in [48].
(2) For + =τ θ 1, =ν 1, =ε 2, =β α1 1, and =γ α1 2 in (63), we obtain the following identity:

( ) ( )
( ) ( ) ( ( ) )∫ ∫

+

−

−

=

−

− ′ + −

f α f α
α α

f u u α α η f ηα η α η
2

1 d
2

2 1 1 d .
α

α
1 2

2 1

2 1

0

1

2 1

1

2

(70)

The equality (70) has been proved by Dragomir and Agarwal in [14].

Lemma 4. Let all the conditions in the hypotheses of Lemma 3 hold true, then

⎜ ⎟

( )( )

( )

⎡

⎣

⎢
⎢
⎢

( ) ( )

⎤

⎦

⎥
⎥
⎥

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

( )

( )
( )

⎡

⎣

⎢
⎢

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎤

⎦

⎥
⎥

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

∫

∑ ∑

∑

∑ ∑ ∑

∑ ∑ ∑

+ +

+ − −

+

=

−

′ − +

−

− ′ − +

−

∑ ∑ ∑ ∑+
−

+

−

+

= =

−

=

−

+

+

= =

−

=

−

= =

−

=

−

= =

−

+

= =

−

−

ν τ θ
Q β γ

K F β K F γ f α
β γ

γ β

Q β γ
P η f α η γ η β

f α η β η γ η

Γ 1
2 , 2

4 , 2
2

2

2
2

2
d ,

ν

τ θ
ν

ε ε α
β γ

ντ
θ ε

α
β γ

ντ
θ ε

ς

ε

ς
ς

ε
ς ς

ς
ε

ς ς

τ θ
ν

ε ε
τ θ
ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

ς

ε

ς
ς

ε

ς
ς

ε

ς

2 2 1 1

1

1
1

0

1

1 1

1

1

1

1 1

1

1

1

ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

1 1
1

1 1
1

(71)

where

( )
⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎞

⎠

⎟⎟
∑ ∑ ∑ ∑= − − + + − + −

+

+

= =

−

+

= =

−

+

+Q β γ β α β γ α β γ γ, 1
2

1
2τ θ

ν
ε ε ε

τ θ

ς

ε

ς
ς

ε

ς ς

τ θ ν

ς

ε

ς
ς

ε

ς ς

τ θ

ε
τ θ

ν

1 1

1

1 1

1

and

( )
⎛

⎝

⎜
⎜

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎛

⎝
⎜

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
⎟

⎞

⎠

⎟
⎟

∑ ∑ ∑ ∑ ∑ ∑= − − +

−

+ − +

−

−
+

+

= =

−

=

−

+

= =

−

=

−

+

+P η β α η γ η β α η β η γ γ
2

2
2 2

2
2

.τ θ
ν

ε
τ θ

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ ν

ς

ε

ς
ς

ε

ς
ς

ε

ς

τ θ

ε
τ θ

ν

1 1

1

1

1

1 1

1

1

1

Proof. We can easily prove (71), by following the same procedure as adopted in the proof of Lemma 3. □

To prove some further results, we first give the following definition.

Definition 6. Let ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , and ( )= …γ γ γ γ, , , ε1 2 be three tuples, where >β γε ε
and [ ] [ )∈ = ⊆ ∞α β γ I γ β, , , 0,ς ς ς ε ε , for all = …ς ε1, 2, , , >ν 0, + >τ θ 0. If ∈ξ z I, , then we define the
operators:
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( ) ∣ ∣ ∣ ∣

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

∫ ∫+ = − − −

∑ ∑

∑ ∑

−

+

+ +

−

+

+ +

= =

−

= =

−

z τ θ z w w z w wΛ , d d .ν

γ

α
β γ

τ θ τ θ ν

α
β γ

β

τ θ τ θ ν
1

2

2
ε

ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

ε
1 1

1

1 1
1

(72)

( ) ∣ ∣ ∣ ∣

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞
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−

+
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−

+
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α
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β
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2

2

2
ε

ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

ε
1 1

1

1 1
1

(73)

( ) ∣ ∣∣ ∣ ∣ ∣∣ ∣

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

∫ ∫+ = − − − − −

∑ ∑

∑ ∑

−

+

+ +

−

+
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−
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−
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γ

α
β γ

τ θ τ θ ν

α
β γ

β

τ θ τ θ ν
1

2

2
ε

ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

ε
1 1

1

1 1
1

(74)

( ) ∣ ∣∣ ∣ ∣ ∣∣ ∣

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

∫ ∫+ = − − − − −

∑ ∑

∑ ∑

−

+

+ +

−

+

+ +

= =

−

= =

−

ξ z τ θ ξ w w z w ξ w w z wϒ , , d d .ν

γ

α
β γ

τ θ τ θ ν

α
β γ

β

τ θ τ θ ν
2

2

2
ε

ς
ε

ς ς
ε ς ς

ς
ε

ς ς
ε ς ς

ε
1 1

1

1 1
1

(75)

Theorem 9. Let f be a differentiable function defined on I and ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , and
( )= …γ γ γ γ, , , ε1 2 be three tuples, where >β γε ε and [ ]∈ =α β γ I γ β, , ,ς ς ς ε ε , for all = …ς ε1, 2, , . Let >ν 0 and

�∈τ , ( ]∈θ 0, 1 such that + >τ θ 0. If ≺β α, ≺γ α and ∣ ∣′f is convex on I , then

( ) ( ) ( ) ( )

( )
[ ( ) ( )]

∣ ∣

( )

⎡

⎣

⎢
⎢

( ) ∣ ( )∣ ( )
⎛

⎝
⎜

∣ ( )∣ ∣ ( )∣
⎞

⎠
⎟

⎤

⎦

⎥
⎥

∑

∑ ∑ ∑
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′ − ′ + ′
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=

−
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=

+

=

−

=

−

+
−

f γ f β τ θ ν
β γ

K F β K F γ

γ β

β γ
M β γ f α N β γ f β f γ

2
Γ 1

4

4
2 , , ,

ε ε
ν

ε
τ θ

ε
τ θ ν γ

ντ
θ ε β

ντ
θ ε

ς
ε

ς ς

ε
τ θ

ε
τ θ ν τ θ

ν
ε ε

ς

ε

ς τ θ
ν

ε ε
ς

ε

ς
ς

ε

ς
1
1

1 1

1

1

1

ε ε

(76)

where

( )
( ) ( )

( )
=

+ − +

∑ −

+

=

−

M β γ
β τ θ γ τ θ

γ β
,

Λ , Λ ,
τ θ
ν

ε ε

ν
ε

ν
ε

ς
ε

ς ς

1 2

1
1

and

( )

( )

[ ( ) ( ) ( ) ( )]

( )

=

∑ −

+ − + + + − +
+

=

−

N β γ
γ β

β β τ θ γ β τ θ γ γ τ θ β γ τ θ, 1 ϒ , , ϒ , , ϒ , , ϒ , , .τ θ
ν

ε ε
ς
ε

ς ς

ν
ε ε

ν
ε ε

ν
ε ε

ν
ε ε

1
1 2 1 1 2 2

Proof. By using Lemma 3, we have
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( ) ( ) ( ) ( )
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⎜

( ( ) )
⎞

⎠
⎟
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ε

ς ς
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ς

ε
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ε
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1
1
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1
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1
1

0

1
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1

ε ε

(77)

By taking =σ η1 , = −σ η12 , and =n 2 and applying Theorem 4 in (77), we have

∣ ∣
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∣ ( )∣

⎡

⎣
⎢ ∣ ( )∣ ∣ ( )∣ ( ) ∣ ( )∣
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⎦
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=

−

+

=
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ε

ς
ς

ε
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0
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(78)

By substituting ( )= ∑ − ∑ − − ∑
= =

−

=

−u α η γ η β1ς
ε

ς ς
ε

ς ς
ε

ς1 1
1

1
1 , the function ( )∇

+
ητ θ

ν becomes

( ) ( ) ((( ) ( ) ) ) ( (( ) ( ) ) ) ( )= − − + − − + − + − − −
+ + + + + + + +ψ u u γ β γ u γ β β γ u β u .τ θ

ε
τ θ ν

ε ε
τ θ

ε
τ θ ν

ε
τ θ

ε ε
τ θ ν

ε
τ θ τ θ ν (79)

We see that

( ) ( ( ) )= − −
+ +ψ γ β γ2 ,ε ε

τ θ
ε

τ θ ν

( ) ( ( ) )= −
+ +ψ β β γ2 ,ε ε

τ θ
ε

τ θ ν

and

⎜ ⎟
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⎝
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Therefore, we have

⎜ ⎟

⎜ ⎟
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2
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1
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(80)

Now, we find ∣ ( )∣∫ ∇
+

η ηdτ θ
ν

0

1
, ∣ ( )∣∫ ∇

+
η η ηdτ θ

ν
0

1
, and ( )∣ ( )∣∫ − ∇

+
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ν
0

1
as follows:
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ν
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α
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(81)
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Here,

( ) ( ) ( )

⎜ ⎟

⎜ ⎟
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⎜ ⎟
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⎜ ⎟
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By the change of variables = + −v β γ uε ε , we have
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By using (82), (85), and (86) in (81), we obtain
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And
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Here,
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By the same change of variables as adopted earlier, we obtain
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By using (89), (90), and (91) in (88), we deduce
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Similarly,
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By using (87), (92), and (93) in (78), we obtain (76). □

Remark 6.
(1) For + =τ θ 1, the inequality (76) reduces to inequality (36) in [48];
(2) For + =τ θ 1 and =ε 2, the inequality (76) reduces to inequality ( )3.4 in [30];
(3) For + =τ θ 1, =ε 2, =β α1 1, and =γ α1 2, the inequality (76) reduces to inequality (3.5) in [31].
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Theorem 10. Let f be a differentiable function defined on I and ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , and
( )= …γ γ γ γ, , , ε1 2 be three tuples, where >β γε ε and [ ]∈ =α β γ I γ β, , ,ς ς ς ε ε , for all = …ς ε1, 2, , . Let >ν 0 and

�∈τ , ( ]∈θ 0, 1 such that + >τ θ 0. If >q 1, ≺β α, ≺γ α and ∣ ∣′f q is convex on I , then
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where
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Proof. By using Lemma 3, we have
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By applying power mean inequality, we deduce
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Since ∣ ∣′f q is convex. Therefore, we apply Theorem 4 for the values =σ η1 , = −σ η12 , and =n 2 in (96) to
obtain
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Now again by substituting (87), (92), and (93) into (97), we obtain (94). □
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To obtain more new results, we give another definition as follows:

Definition 7. Let ( )= …α α α α, , , ε1 2 , ( )= …β β β β, , , ε1 2 , and ( )= …γ γ γ γ, , , ε1 2 be three tuples, where >β γε ε
and [ ] [ )∈ = ⊆ ∞α β γ I γ β, , , 0,ς ς ς ε ε , for all = …ς ε1, 2, , , >ν 0, + >τ θ 0. If ∈ξ ξ I,1 2 , then we define the
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On the basis of Lemma 4, we derive the following results.

Theorem 11. Let all the conditions in the hypotheses of Theorem 9 hold true, then
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Proof. By using Lemma 4, we have
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By using Theorem 5 for the values =n 2, =σ η
1 2 , and =

−σ η
2

2
2 in (102), we have
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By substituting (104), (105), and (106) in (103), we obtain (101). □

Theorem 12. Let all the conditions in the hypotheses of Theorem 10 hold true, then
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Proof. By using Lemma 4, we have
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By using power mean inequality, we have
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By applying Theorem 5 for the values =n 2, =σ η
1 2 , and =

−σ η
2

2
2 in (109), we have
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By substituting (104), (105), and (106) in (110), we obtain (107). □

5 Conclusion

New conticrete versions of the Hermite-Hadamard-Jensen-Mercer inequalities were obtained for general-
ized conformable fractional integral operators. These new inequalities were established by using majorized
tuples and convexity of the function along with fractional operators. As particular cases, new and old
versions of the Hermite-Hadamard-Jensen-Mercer inequalities were also presented for various fractional
operators such as Katugampola, Hadamard, Riemann-Liouville, conformable, and Riemann integrals. The
obtained results adopted a more beautiful look when they were expressed in a weighted form. These
weighted versions were acquired for two types of tuples, i.e., for decreasing tuples and the tuples which
show same monotonic behavior. Furthermore, two new identities were investigated by using a differenti-
able function and three tuples. Then by applying these newly obtained identities and assuming the con-
vexity of ∣ ∣′f and ∣ ∣ ( )′ >f q 1q , we constructed bounds for the absolute difference of terms involved in the
main results. The current work can also be seen as application of majorization theory and produces new set
of inequalities when combined with convex theory and fractional operators.
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