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Abstract: The aim of this article is to study the known susceptible-infectious (SI) epidemic model using
fractional order reaction-diffusion fractional partial differential equations [FPDEs] in order to better
describe the dynamics of a reaction-diffusion SI with a nonlinear incidence rate describing the infection
dynamics of the HIV/AIDS virus. We initially examined the nonnegativity, global existence, and bounded-
ness for solutions of the proposed system. After determining that the proposed model has two steady states,
we derived sufficient conditions for the global and local asymptotic stability of the equilibrium of the
proposed system and their relationship to basic reproduction in the case of fractional ordinary differential
equations and FPDEs by analyzing the eigenvalues and using the appropriately chosen Lyapunov function.
Finally, we used numerical examples to illustrate our theoretical results.
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1 Introduction

In this article, we are interested in studying a generalized nonlinear fractional epidemic reaction-diffusion
system model, where we present the following proposed fractional model describing the transmission of a
communicable disease between individuals such as HIV and AIDS. The humans population is divided into
two epidemiological classes denoted by susceptible-infective (SI), which is an extension of the work
proposed in [1,2].

Fm%m—d¢s=A—wwn—u3=anx "

SDI(E) = dbAT = ASP(I) — ol = Fy(S, I,

defined over R* x Q. In the context of this work, we denote by Q an open bounded subset of R" with a
piecewise smooth boundary 0Q. In addition, A denotes the Laplacian operator over Q, the parameters
di, d, > O represent the diffusion coefficients, and SD? denotes the Caputo fractional derivative over
(0, +00) with the fractional differentiation order @ being limited to the interval (0, 1]. S(x, t) and I(x, t)
represent, respectively, the relative density of the population of SI individuals at time ¢ and location x.
A > 0 denotes the birth rate, sometimes referred to as the recruitment rate of the population, and y denotes
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the natural death rate. In addition, A denotes the infection rate, and o represents the recovery rate from the
disease.
We assume bounded and nonnegative continuous initial data

SO(X) = S(X’ O)’ IO(X) = I(X’ 0) in Q’ (2)
where Sy(x) and Io(x) are in C%(Q) n C(Q), and the following Neumann boundary conditions on R* x 9Q

B_A_y, 3)
o v
Without going into too much detail regarding the physical interpretations of the parameters, let us
assume that

u>0, >0, A>0, and A>O0.

We would, however, like to emphasize that these conditions are realistic. The nonlinearity ¢ is assumed to
be a continuously differentiable function on [0, +c0) satisfying the criteria

$(0) =0, (4)
and
0<I¢/(I) < ¢p(I) forall I> 0. (5)

It can be seen that when setting a = 1 in our present work, we obtain the model studied in [1,2] as a model
on the spread of infectious diseases. Since it inception in 1927, this model has attracted the interest of many
researchers. Some authors [3-5] studied a simple model proposed by nonlinear iterations of the formula
S¢p(I) with d; = d, = 0 and a = 1. Similar work and results can be found in [6-8] with various formulas of the
form S¢(I). However, these studies only considered the simple diffusion-free case, while Djebara et al. [1]
studied the asymptotic stability of the classical reaction-diffusion SI epidemic model, with its first-order
time derivative, where d; # d,, @ = 1 and with a nonlinear incidence rate. Whereas Akdim et al. [9] studied
the local and global stability of the disease-free and endemic equilibrium of our system in the case of

d; = d, = 0 and a € (0, 1] according to the basic reproduction number with S¢p(I) = S(ﬁ1 - rf iII)I .Luetal.
[10] are the only ones who have studied and demonstrated the global existence, nonnegativity, and stability
of solutions for class of fractional order derivatives susceptible-infective-recovered (SIR) epidemic models
with a general incidence rate function, which satisfy stronger conditions than ours.

The fractional reaction-diffusion order systems on which we base our work are an extension of the
classical integer order reaction-diffusion systems. It should be noted that it has advantages over the classical
integer-order reaction-diffusion systems, in that it possesses memory and genetic properties that are not
found in these latter systems, which are usually applied by a lot of biological systems. Furthermore, these
systems have a more accurate description of population models than integer-order models.

Time-fractional systems of differential equations have been the focus of countless studies over the last
few decades. This interest stems from the realization that such systems appear in a wide range of applica-
tions across various disciplines such as biological mathematics, physics, and biology. Most recently, time-
fractional systems attracted the interest of researchers in the field of nonlinear dynamics, which has
resulted in a vast amount of valuable research. Interested readers may refer to [11-15].

One of the most important issues to be studied for any type of model including system (1)—(3) is to
determine its set of equilibrium and assess their local and global asymptotic stabilities. In this article, we
rely on the basic stability theory of dynamical systems containing a fractional derivative along with the
linearization and direct Lyapunov methods. In order to establish the system’s asymptotic stability, we
identify its two positive equilibrium and assess their asymptotic stability in two different cases with respect
to the reproduction number. Section 2 of this article gives some preliminary definitions and properties
related to fractional calculus, while in Section 3, the positivity and boundedness of the solutions are
studied. Then, Section 4 establishes sufficient conditions for the local asymptotic stability and instability
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of the disease-free equilibrium and the endemic equilibrium. In Section 5, we use an appropriate Lyapunov
functional to prove that the two steady state solutions of the model are globally asymptotically stable.
Finally, Section 6 presents some numerical simulations to illustrate our theoretical results of the stability of
the solutions of the epidemiological fractional reaction-diffusion model (1)-(3).

2 Preliminaries in fractional calculus

Throughout this work, we adopt the following definitions, and we need the following lemmas and stability
results to prove the main results, i.e., Propositions 7, 14, and 15 and Theorems 18 and 21.

Definition 1. [16,17] Define the Caputo fractional derivative of a function x(t) of order a > 0 fort > ty, which
belongs to class C" by

D) = — @4 - [ DD
0 I'n-a)J (t-1)rn1 I'n - a)

to to

T = (), (6)

where I is the gamma function I'(8) = roo e 'tP-1dt, n = min{i € N/i > a}, and the fractional integral of x(t),
t > ty, of order y € R* is defined as follows:

t
(t - )" x(1)
Ix(t) = | ——Z—2d1.
{ I'(y)

Note that the Caputo derivative in time is a good choice to include long-term memory effects as well
because the well-known Caputo derivative fulfills the following properties:

(1) We have tht“(x(t)) = 0, for all x(t) be a constant function.
(2) The Caputo derivative is linear, where

& DEX(®) + vy (1) = ueDE(X(®) + VD (D)
forall x,y : [a, b] — R such that thf‘(x(t)) and thf‘(y(t)) exist in [a, b].
Definition 2. Assuming two positives parameters y, §, and z € C, the Mittag-Leffler function of y and § is

defined as follows:

(e9]

Zi
Eys(z)= ) ——.
Y z.:zo I'(yi + 6)
For § = 1, Ey(2) = Ey(2) = Y- and if y = 6 = 1, then Fy1(2) = exp(z) = Y2

T(yi+1)

Lemma 3. [16,18] For two parameters, the Laplace transform £(.) of Mittag Leffler function is

sy-o
L(t°Ey s(at?)) = , @)
s —a
wheret > 0,s,a € R, R(s) > |aJy, and
n-1
LEDIV()) = s*E(V()) — Y BO0)s-1, ®)

i=0
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Theorem 4. [19, Theorem 3.7, page 4] Consider the fractional Caputo autonomous dynamic system

[éDf‘S(t) - F(S. D),

Cnha . (9)
o Df I(t) = F5(S,I) inR™,

with initial condition (So, Iy), where a € (0,1], F = (F,, F5) : Q ¢ R2 — R2. If F satisfies the local Lipschitz
condition with respect to (S, I), then there exists a unique solution of (9) on [0, +00) x Q. The constant (S*, I*)
is said to be an equilibrium point of (9) if and only if

F(S* I*) = F5(S*, I*) = 0. (10)

Lemma 5. The asymptotic stability of the point (S*, I*) established is subject to

|arg( (8", I > 25, for all i=1,2, (1)
where arg(-) is the argument of a complex number, A; are the eigenvalues, and ] is the Jacobian matrix.

For more on the previous lemma, the reader may refer to [20], where the authors established general
conditions for the asymptotic stability of fractional reaction-diffusion models.

Lemma 6. [11] If an equilibrium point (§*, I*) of (9) is locally asymptotically stable for the following system:

sty =R D, iR,
de

! 12)
—I(t) = (S, I in R,

SI0 =R, D in

then, it is also locally asymptotically stable for (9).
Corollary 7. [11,20] In the diffusion case, if an equilibrium point (S*, I*) of (9) is locally asymptotically stable

for the integer system

as
— - diAS = (S, I),
5 @ (S, D

% — Al = F(S,I) onR*x Q,

then it is also locally asymptotically stable for

EDES — dyAS = F(S, I),
EDAT - doAT = Fy(S, 1),

onR* x Q.

Lemma 8. [21-24] Let D be a closed and bounded set. Each solution of tCODt"‘U (t) = F(U) that starts from a
point in D stays in D over time. If there exists a function V(U) : D — R with continuous first partial
derivatives, then the following condition is satisfied:

£DAV(U) < 0.
Let M be the largest invariant set of
E={DV({U)=0, UeD}

Then, if M = {E*}, every solution in D tends to E* as t goes to infinity.



DE GRUYTER Stability of fractional reaction-diffusion model =—— 5

Lemma 9. [25] Suppose that S(t) € R* is a continuous and differentiable function. For all t > t,
CDESA(t) < 2S()EDES(L),
withO < a < 1.
Lemma 10. [24,26] Suppose that S(t) € R* is a continuous and differentiable function. Then, for all t > tg,
a € (0,1], and S* € R*, we have

fo[s -~ S5 -8 1ni] < (1 - S)fD:‘s.
0 S* S 0

3 Main results

3.1 Positivity and boundedness in the diffusion-free case

It is important to prove the existence and uniqueness of nonnegativity solutions and boundedness for our
system before studying its stability. Let us assume that the initial conditions (So, Ip) € R2,. Note that for
(S, I) € R2,, we have

£DiS(Bls=0 = F(0,1) = A >0, D{I(t)]1=0 = Fx(S, 0) = S¢(0) = 0.

Hence, the nonnegative quadrant R, is an invariant set. By dropping the diffusion terms, the proposed
system reduces to the following system of ordinary differential equations:

SDES(t) = A - ASp(I) - pS = Fy(S, D), )
SDAI(t) = ASp(I) — o = Fx(S,I) in R*.
S(0) = Sp = 0,1(0) = I, > 0. (14)

In the following subsections, we define an invariant region for the system, identify the system’s equilibrium
with their relation to the basic reproduction number R, the most important arithmetic quantity in infectious
diseases and biologically, R, can be interpreted as the average number of secondary infections produced
during the period of infection, the value of which was previously calculated in [1] by means of the next
generation matrix method formulated in [27], which is given by Ry = p(FV™!) = g%qb’(o). We also demon-
strate the global presence of solutions in time, and investigate the local stability of the system in ordinary
differential equation (ODE) and partial differential equation (PDE) scenarios.

3.2 Invariant regions

Throughout this article, we use the total population size N(t) = S(t) + I(t) and let gy = min(a, u). We also
define the region

Z)z{(S,I):S,IzO and S+I£A}.
0o

The following proposition shows that D is an invariant region of the fractional-order system 13-14 that
ensures the boundedness of the system’s solutions.

Proposition 11. The region D is a nonempty, attractive, and positively invariant and for the system 13-14 has
a unique solution on R*.
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Proof. We start by summing together all the equations of the fractional-order system 13-14, which yields
the following fractional order derivative of N(t):

EDEN() = (DS + {D{1 < A - 0oN.
Hence,
EDEN(E) < A - GoN.

Applying the Laplace transform and using (8) imply that (see also [19, Lemma 3, page 4] by the comparison
principle)

N < (1 - Eyl-0ut®) + NoEa(-0ut,
0
where E, is the Mittag-Leffler function. Substituting the value of NV yields

(S + D)D) < ((s + I)(0) - A)Ea(—aot"‘) S

Op Op

for t > 0. If the initial states satisfy (S + I)(0) < UAO, since 0 < E (—0pt%) < 1, then (S + I)(t) < GAO, which
implies that

limsupN(t) < A

t—00 Oo
Hence,
limsupS(t) < A
t—o00 0o
and

limsupI(t) < A, for t > 0.
t—oo 0o

Consequently, the solutions of system 13-14 are bounded for ¢ > 0. This completes the proof of Proposi-

tion. O

As a result, region D is positively invariant and attractive within R2,. Therefore, O is the biologically
feasible region of the system as D is sufficient to consider the dynamics of the model within D, where the
existence and uniqueness results hold for the system. The existence and uniqueness of solutions for system
13-14 in R* is deduced by using [28, Theorem 3.1, page 10] along with Lemma 4 (see also [1,2]), where we
can conclude that F = (F, F,) satisfies the local Lipschitz condition with respect to (S, I)(t) in R2,,.

3.3 Positivity and boundedness in the reaction-diffusion case

Proposition 12. Let a € (0, 1], and for any nonnegative initial data (So, In) € C(Q) x C(Q), there exists a
unique nonnegative global solution in time of the system (1)—(3). In addition, there exist two positive constants
T and M such that ¥t > T,

ISCt, Ilro) + IH(E, llo@) < M. (15)
Proof. By condition (4), it follows that Fi(S, I) = A — uS — AS¢(I) and Fx(S, I) = AS¢p(I) - ol, and satisfy the

local Lipschitz conditions. Hence, using the contraction-mapping principle method (see [20, pp. 3], [29,
Proposition 4, pp. 4], and [30, Theorem 3.1]), we can easily establish the existence and uniqueness of a mild
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solution to system (1)-(3) in [0, T). It remains to prove that the solution is bounded. Integrating the
equations of (1) over Q, applying Green’s formula and adding the resulting two identities, we have

¢DfQ = AlQ| - HIS(t, x)dx - UII(t, x)dx
Q Q

and
DRQ < A|Q| - 0,Q, (16)

where gy = min{o, u},Q = JQ(S(t, x) + I(t, x))dx. From the [19, Lemma 3, page 4], by using Laplace’s trans-
form, we obtain

o<y j(so e - A {Eont®) < A1 - Ea(—out®) + QoEa(~00t®).
0o A Op Oo

By taking into account O < E,(—0pt%) < 1, we obtain

Qt, ) < Qo + OA a7)

0

Thus, we conclude that the solution (5(t, .), I(t, .)) of the fractional order system (1)—(3) exists uniquely and
globally in time. In addition, the solution is uniformly bounded by a positive constant for large time ¢ (see
[29, Remarque 4.2, page 5] and [20, Proposition 1 and Corollary 1, page 4]). O

4 Local asymptotic stability conditions

We start by identifying the equilibrium of the proposed system (1)— (3) and then study the stability of the
system.

Definition 13. We call the point (S* I*) a constant steady state solution of (1)-(3) under to the Neumann
boundary condition (3) if

{Fl(s*, I =o, 8

E(S*1*) = 0.

Note that by using Theorem 4 and [1], we end up with the following proposition, where E, = (%, 0) and

E* = (§%, I*) are the equilibrium points with §* = A;EI)

Proposition 14. Assuming that the incidence function ¢(I) satisfies (4) and (5), system (1)—(3) has the one and
only disease-free equilibrium Eq = (%, 0). If Ry > 1, the system admits two equilibrium: Ey, and a positive

endemic equilibrium E* = (S*, I*), where Ry = g%(l)'(o).

The following proposition establishes sufficient conditions for the local asymptotic stability of the two
equilibrium points of the system 13-14.

Proposition 15. Assuming that the incidence function ¢(I) satisfies (4) and (5), the following statements hold
for the fractional-order system 13-14.

— Subject to Rg < 1, Eqy is the only locally asymptotically stable state of the system for a € (0, 1].

— Subject to Ry > 1, Ey is unstable, and E* is locally asymptotically stable for a € (0, 1].
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Proof. Applying Lemma 5 to the two cases Ry < 1 and Ry > 1.
(i) Evaluating the Jacobian matrix corresponding to the ODE system at Ey = (%, 0), we find that

_ —O'Ro
J(Eo) = ( 0 oy - 1))

- If RO <1,
larg(LJ Eo)| = 7 > % as a € (0, 1]

(because we have 0 < % < 7" < ).

On the other hand,

larg(a( (Eo)))| = larg(o(Ro — 1))| = 7 > %

as a € (0, 1]. It follows that the equilibrium point E, is locally asymptotically stable.

If Ry > 1, the eigenvalues A4; = -y and A, = 0(Ry — 1) > 0 and thus
an
larg(A)] = 0 < PR

because a is assumed positive. Then, the equilibrium E, clearly becomes asymptotically unstable for
Ry > 1 and a is assumed in the (0, 1].
(ii) Discuss now the asymptotic stability of the positive endemic equilibrium E* = (S*, I*), where S*, I* > 0.
The Jacobian matrix J(E*) evaluated at the E* = (S*, I*) equilibrium is given as follows:

JE) = —-ApU*) —p —AS*PT) :(_FO_H _GO)
I AS'PUAD) - o) F, Go-0)

Because E* satisfies (18), we find

¢

by ey = -2 As*[ —¢’<1*>] — AU + ] - 0 + ASFA) =~ As*[‘l’(’* ¢’<I*>] <0

On the other hand,
tr(J(E*)) = —(u + 0) + Go — Fp < 0.
The determinant of the Jacobian may be given as follows:
det(J(E")) = Aop(I*) + po — pAS*¢/'(I"),
and using (18), we obtain

S ¢(1*

det(/(E) = A2 L) ey AS[ P _ yary ]

and from (5), we obtain
det(J(E*)) > 0.
On the other hand,
det(J(E*)) = (Fp — u)(Go — 0) + FoGo = 0(Fo + p) — uGo > 0.
The characteristic equation of the Jacobian matrix is

P) = X2 — trg(E)A + detJ(E*) = 0
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and its discriminant is
R = [ttJ(E)] - 4detJ(E*) = [-(u + 0) + Go — Fo]* — 4[0(Fo + W) — uGol.

We study the different cases separately.
— First, if R > 0, then the eigenvalues A; and A, are real and can be rewritten as follows:

tr/(E*) + VR
/\1,2 =
2
Note that the negativity of the eigenvalues rests on the sign of the trace tr(J(E*)). Because
tr(J(E*)) < 0, then A = M < 0 and, therefore, |arg(A,(J(E*)))| = m. Since both eigenvalues
are real, tr(J(E*)) < 0, and det(J(E*)) > 0, it is evident that
an
larg(M U (E)| = larg(RLU(E)))| = 7 > -

as a € (0,1]. It follows that the equilibrium E* = (S* I*) is asymptotically stable. Both cases
tr(J(E*)) > 0 and tr(J(E*)) = O are not possible.
- If R =[tr] (E")]? — 4det]J(E*) = 0. Since the eigenvalues reduce to

trJ(E*)
2

< 0.

/\1,2 =

Then, because a € (0, 1], we have

ann

larg(hUEDD] = larg(LUED) = > —=.

Consequently, the equilibrium E* = (§* I*) is asymptotically stable. Both cases tr(J(E*)) > O and
tr(J(E*)) = 0 are not possible.
— Finally, if the discriminant R < 0, then the eigenvalues A; and A, are complex and can be rewritten as
follows:

_ () + i -R

A
1,2 >

and hence tr(J(E*)) < 0, then by means of Corollary 7, E* = (S*, I*) is asymptotically stable. Both
cases tr(J(E*)) > 0 and tr(J(E*)) = 0 are not possible. The proof is complete. O

Now, let us move on to the complete system (1)—(5). For this, we may use the eigenfunction expansion
method described by Casten and Holland [31].

Proposition 16. For the fractional-order system (1)—(3):

— Subject to Rg < 1, Ey is the only steady state of the system, and for all a € (0, 1], E, is locally asymptotically
stable. Note that the conditions of asymptotic stability are the same as those obtained in the case of free
diffusion established earlier in Proposition 14.

— Subject to Ry > 1, E, is unstable and for E*, we have the following cases:

(1) If d, = d,, then E* is asymptotically stable and subject to the same conditions of the diffusion-free case in
Proposition 14.
) If di # dy, R = [tt](EM)]? — 4det](E*) > O, then
— E* is an asymptotically stable constant and is steady state if d; < d, and (Fo + Go) — (0 — u) < 0 or
d, > d, and (Fy + Gy) — (0 — ) > 0, where Fy = Ap(I*) and Gy = AS*¢'(I*).
- Ifd <dy and (Fo + Gy) — (0 —u) >0 or d, > d, and (Fy + Gy) — (0 — p) < 0, E* is asymptotically

stable when the eigenvalues {; ,(A;) = w satisfy |arg(;(A))| > 5 and |arg(GAD)| > 5

for all /\01 < Ai < /\02.
- If (Fy + Go) — (0 — ) = 0, E* is asymptotically stable.
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3)Ifd, #+ dy and R <0, R; = [ttfi(E")]? — 4 detf;(E*) has two real roots Ag; < Agy, then E* is an asymptotically
stable constant steady state for A; > Aoy or A; < Aoy It follows that E* is asymptotically stable when the
eigenvalues (1’2(/\1-) satisfy |arg((1,2()l,-))| > % and |arg(AL(Ji(Ep)))| > % for all A; € (Ao1, Ap2).

Proof. In the presence of diffusion, the stability of E, and E* reduces to applying Lemma 5 to the linearizing
operator £ = DA + A. Note that A is the Jacobian matrix evaluated at the equilibrium point.
(i) The equilibrium point Eq = (%, 0) satisfies

diAS + A - AS*p(I*) — uS* = 0,

Al + AS*¢p(I*) — ol* = 0,

with Neumann boundaries

6_8_ng on R* x 0Q.

v
The linearizing operator may be given as follows:

i - —A%qb’(m

)

L(Ep) = A
0 doA + /l;q.')'(o) -0

where (A;); denotes the indefinite sequence of positive eigenvalues for the Laplacian operator A over Q,
with Neumann boundary conditions defined by 0 = Ag < A; < A < A3<... 2, see [31]. The stability of
E, depends on the eigenvalues of the matrices
A
—d; — p —A;W(O)
Ji(Eo) =

0 -doA; + A§¢’(0) -0
u
for all i > 0, which are given for alli > O by
t1 = hUi(Eo)) = —dki — 1,
ta = WHED) = Aok + A H0) - 0

foralli > 0,r;< 0, and r;; < O for Ry < 1 leads to
arg(M(i(Eo))) = arg(h(i(Eo))) = 7
and

largUi(Eo)))| > % larg(ALCh(Eo)))| > %

leading to the local stability of Ey = (%, O).
(ii) The case Ry > 1

— For Ey = (%, 0). In this case, it is easy to see that r;; < O for all i > 0, but there exists i = 0 such that

Tio = /\%(p’(o) - 0=0(Ry - 1) >0 for Ry > 1, where

largUi(Eo)))| > % larg( (Eo)))| = 0 < %
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because a is assumed positive. Then, the equilibrium E, clearly becomes asymptotically unstable for
Rop > 1 and a is assumed in the (0, 1].

We can state that E* = (§*, I*) is asymptotically stable if the eigenvalues of the linearized system
satisfy the conditions of Lemma 5. Let us set

db —ApU) — . —AS'P ) )

LED = ( Ap(I?) A + AS' I - &

The stability of E* reduces to examining the eigenvalues

§A), =12 i=1,23..
of the following matrices

J(E*) = (—dl/\i -F-pu -Go )

K —-doAi + Gy — O
for alli > 0, where
Fy = Ap(I*) > 0, Gy =AS*¢'(I*) > 0.
The characteristic equation corresponding to matrix J;(E*) is as follows:
det(h(E") = (DD = [P - (th(E")S(A) + det(E*) = 0, (19)
where the trace of J,(E*) is given as follows:
tr(Jy(E*) = -A(dy + d2) — (U + 0) + Go — Fy = -Ai(dy + do) + tr(J(S*, I*)) < O.

The determinant is

det(i(E*)) = didoA? + AiHy + det(J(E*)) > O
for alli > 0, where

H, = dl(U - Go) + dz(Fo + }1) > 0.

By taking the discriminant of (19), we have
Ri = (dy — dy))A? — 2(dy - dy)[(0 — Go) — (Fy + WA + R.
Hence,
Ri = (di — d)A? + 2(dy - d)HA; + R, (20)
where H; = (Fp + Go) — (0 — pu) and
R =[ttJ(EN]? — 4det]J(E")
R =[-( +0) + Go — Fol’ - 4[0(Fy + u) - uGo,
because
det(J(E")) = Aap(I*) + po — pAS*¢'(I") = o(Fo + p) — uGo
and
ttJ(E*) = -(u + 0) + Gy — F,.

The sign of R; is important for the stability of E*, and since R; is a quadratic polynomial in A;, its sign
depends on its own discriminant; we study the different cases separately. The discriminant of R; with
respect to A; is
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Ri=(dy - &) [(Fo + u) — (0 - Go)P? - (di — dr)*R
Ry = 4(d; — da)*FyGo.

We have two cases for R,:
(1) The case d; = d,, if d; = d,, it follows that

Ri=R.

Hence, the exact same conditions for fractional ordinary differential equations (FODEs) stability as
described in Proposition 14 apply here.
(2) The case d, # d, in this case, (d; — d,)? > 0. Then, R, = 4(d; — d»)*F,Go > 0. Hence, R; has two real
roots Ao; < Ag> and we have two cases as follows:
- If d; < d; and H; < 0, we have 2(d; — dy)H; = 2(d; — dy)[(Fo + Go) — (0 — )] > 0. Since R > 0, then the
solutions Ag; and Ay, of the equation R; = 0 are both negative regardless of i, (A; > 0). Hence, we have
R; > 0 for all i, and the roots of (19) are

QM:%WQEW—MUMW—4®M@mL

and

gm=%m@@m+¢mMW—4®wme

Since trj;(E*) < 0, det/;(E*) > 0, which implies that ¢; and ¢, are negative (¢, ,(A;) € R") that satisfy
larg(¢;(A))| = m > % and |arg({(A))] > %, which guarantees the asymptotic stability of E*.

- If d; < d; and H; > 0, we have 2(d; — dy)H, = 2(d; — d&,)[(Fy + Go) — (0 — w)] < 0. Since R > 0, it is evi-
dent that R; has two strictly positive roots, which will be denoted by Ap; < Ap,. The sign of R; depends
on A;, which gives us two distinct cases:

— Alternatively, for A; > Ag; or 0 < A; < Ag;, we have R; > 0, and the roots of (19) are

qmzém@wm—JmMW—4mmme

and

QM=%WGEW+JWMW—4®M@wL

and since trJ;(E*) < 0, det);(E*) > 0, which implies that {; and ¢, are
{1,2(/11') €R7,

and thus the arguments of the eigenvalues are | arg(é, ,)| = 7.
— Alternatively, if Ag; < A; < Agy, then R; < 0, and consequently, we have two complex eigenvalues given
by

tr); + i4det); — (tr);)?

gl,z(Ai) = 5

and the equilibrium E* = (S%, I*) is asymptotically stable if the eigenvalues {; ,(A;) satisfy (11).

- Ifd; > d; and H; < 0, we have 2(d; - dy)H; = 2(d; — &)[(Fy + Gp) — (0 — w)] < 0. Since R > 0, it is evi-
dent that R; has two strictly positive roots, which will be denoted by A¢; < Ap,. The sign of R; depends
on A;, which gives us two distinct cases:

— Alternatively, for A; > Ag; or 0 < A; < A1, we have R; > 0, the roots of (19) are

qm=§m@wm—«uwv—4®mme

and
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64 = %[tr(]i(E*)) + \(tiE")? - 4det(K(E") ],

and since trf;(E*) < 0, detJ;(E*) > 0, which implies that {; and {, are
fl,z(Ai) €R7,
and thus the arguments of the eigenvalues are

|arg(§1,2)| =T.

— Alternatively, if Ag; < A; < A2, then R; < 0, and consequently, we have two complex eigenvalues given
by
tr); £ iyJ4detf; — (tr))?

&, = : :

and the equilibrium E* = (S*, I') is asymptotically stable if the eigenvalues {; ,(A;) satisfy (11).
—-Ifd > d, and H; > 0, we have 2(d; - dy)H, = 2(d; — dy)[(Fy + Go) — (o0 — p)] > 0. Since R > 0, the solu-
tions Ag; and Ay, of the equation R; = 0 are both negative regardless of i, (A\; > 0). Hence, we have R; > 0
for all i, and the roots of (19) are

G = %[tr(]i(E*)) ~ J(E*? — 4det(i(E") ],

and

G = %[tr(Ji(E*)) + J(tFE*)? — 4 det(K(E") ].

Since trji(E*) < 0, det}i(E*) > O, which implies that {; and ¢, are negative (§, ,(A;) € R™) that satisfy
larg(¢,(A))| = m > % and |arg({,(A))| > %, which guarantees the asymptotic stability of E*.
- If (Fp + Go) — (0 — u) = 0, we have

R; = (d - &)A? + R > 0,

for all i, and the roots of (19) are

6ua8) = SUCGE) = J(REY? — 4detGiEN |,
and since trJ;(E*) < 0, detJ,(E*) > 0, which implies that {; and {, are
51,2(Ai) €R7,

and thus the arguments of the eigenvalues are

|arg(§, »)l = 7. O

5 Global asymptotic stability

Next, we study the global asymptotic stability of the two steady states E, and E*. The global stability
depends on the reproduction number Ry, which is why we have decided to treat the scenarios Ry < 1
and Ry > 1 separately.
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5.1 Global stability of E, when Ry < 1
In the beginning, we state a lemma that was developed in [32], which will be useful later.
Lemma 17. Condition (5) implies that
0< @ < ¢'(0) forall I>0. 1

Let us suggest the following candidate Lyapunov function (see [14,21]):
- . .S
L(t) = J S -1 - dln= | + I'|(t, x)dx. (22)
i
Q

Theorem 18. For a € (0, 1] and Ry < 1, Ey is globally asymptotically stable in D. Alternatively, for Ry > 1, Ey
is unstable.

Proof. Taking the time fractional order derivative in Caputo sense of (22) along the solution of the system,
we obtain

EDRE(t) = I[gnf(s G- ﬁln%) N th“(I)]dx,
Q
where @i = % Using Lemma 10, we obtain

paZ(e) < I(1 - %)gD;‘de + IgD,“I(t, X)dx
Q Q

and substituting $D?S, DT with its values, we obtain
DRT(e) < dlj(l - %)A.de + f (1 - %)(A _ AS(I) — pS)dx + dszdx " j(ASd)(I) - ol)dx.
Q Q Q Q
We apply Green’s formula with Neumann boundaries to expand the derivative to
SDAL(t) <H+ H,
where

H- —dlji IVSPdx < 0,
52
Q

and

. i i
- J(l - E)(A ~uS)dx - A f (1 - E)s¢(1)dx + f (ASH(I) — oT)dx.
Q Q Q
We can write

Cna 7 u A ~
CDET(E) < ~n I(l - E)(S - ;)dx 2 !(s — @DPI)dx + E[ ASp(Ddx - & ! Tdx

Q
<—u !(S S “)(s - %)dx -1 2[(5 — @DpIdx + !A&p([)dx p Z[Idx.

By defining @i = %, we obtain
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DT (t) < ~n I -0 ) I(s ~ Dp(Ddx + jAqu(I)dx o jldx

Q

J S-0° ) Ju¢(1)dx 0 Ildx

Then, using Lemma 17, we obtam
DA (t) < 0(Ro - 1)_[[dx.

Clearly, if Ry < 1, then th“Z(t) is negative. The proof is completed. O

5.2 Global asymptotic stability of E* when Ry > 1
First, let us state a necessary lemmas taken from [33], which will aid in what comes.

Lemma 19. [1] Assuming that ¢ satisfies criterion (5) and

Ly)=y-1-1n{y), foraly>DO0, (23)
o)
L( ) ) <<(;) 24)
Lemma 20. [1] We have the following equivalents
S* S S S*
(-5 -5)-45) - 45) e
Spm 1Y, I SO ;- SN (S, 2D AL o SeDr
(S*¢<I*> - F)(l 1) (1 ) s*qb(z*))(l -5)-5) L(W)) (7) L(S*qba*)z)'

Now we consider the candidate Lyapunov function

m(r):![s*z(; 1*1: ] j[s 5 - S*ln S)]d“ﬂl-z*—l*ln(%)]dx.

Theorem 21. For a € (0, 1] and Ry > 1, E* is globally asymptotically stable.

the inequality

holds.

Proof. Taking the time fractional order derivative of (22), we obtain

Cpasy(e) = Jng[s _so s ln(s )]dx " jgpf[l RS ln(%)]dx.
Q Q

Using Lemma 10 and substituting $D2S, SD?I with its values, we obtain

Epasy(t) < j(l _ %)ng‘de + I(l - ?)gnﬁdx
Q Q

<d, !(1 - %)Ade +d £(1 - E)Ndx . £(1 - %)[A — ASp(I) — pSldx

; £(1 - g)[/\s(pa) ~ of]dx
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Similar to the previous scenario, we apply Green’s formula with Neumann boundaries to expand the
derivative to

DUt < Hy + Hy,
where

s* r
H - —d1j§ IVSPdx - dzjﬁ IVIPdx < 0
Q

Q

and

Hy - '[(1 - %)[A ASH(ID) — pS]dx + I(l - ?)[/\qua) _ oT]dx
Q Q

Since E* is the positive endemic equilibrium, it fulfills the following equations
AS*P(I*) + uS* = A
AU _
I*

>

and using the last relationship, we can rewrite H, as follows:

O [ () S ) £y (R

+ AS*¢(I*)£(1 - %)(1 - %)dx

Applying Lemma 20 yields

H, = I US Widx + /\IS*tp(I*)Wzdx

where

and

ol $) - 05) - ) 4550

H, = HS*—([[_L(%) - L( S*)]dx +AS (;b(I*)'[[ (f((II*) L(%)]dx
- AS*(;[,([*)E[ [[j(% + L(%)]

Then, by applying Lemma 19, we obtain th"‘%(t) < 0. With thus, the proof is completed. O

which implies
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6 Numerical simulations

The aim of this section is to present some numerical simulations to illustrate our theoretical results and also
to investigate the nature of the solutions of the epidemiological fractional reaction-diffusion model (1)-(3)
for distinct values of the fractional order a € (0, 1].

6.1 Example 1

In the first example, we introduce the function

Bl

m+1

o) = (ﬁ1 - )I forall B, = B, > 0.

This results in the following problem:

1
DES — dyAS = —(ﬁl A )IS +A - puS in (0, 00) x Q,
m+1
SDPI — dyAI = B—ﬁIS—UI in (0, 00) x Q,
Jol [ (25)
S(O’ X) = SO(X)) I(O’ X) = IO(X) on Q,
a_szg:(), on (0, c0) x 0Q,
v v

which is a special case of the studied system (1)—(3). The system (25) is identical to the system proposed in
[9] but with d; = d, = 0, where the ODE scenario of this model was studied. The conditions (4) and (5) are
clearly satisfied as follows:

¢(0) = 0’

oy ~ B,I —B,(m +1) + B,I
¢(I)_(ﬁl m+I)+I( (m+1)? )
g B, B

m+I (m+1)>

I ’ B,
ﬁz[((mn‘l) _1+B_2]

- /32(# 1) B, + B, >0,

JL
1]

(m+1) -
¢I(0):ﬁ1’
B, By =Bl _
(ﬁl— m+[)1—12((m+1))—1¢(1) < o).

Table 1: Simulation parameters for the first example: system (25) with different values fora =1 and a = 0.9

Set Figure m S, Iy d d, B B, o A 7} Ry
FODEs Set1 Figurel 20 320 20 — — 0.0007 0.0005 0.25 16 0.05 0.896
Case Set2 Figure2 20 320 20 - — 0.002 0.001 0.25 16 0.05 2.56
FPDEs  Set1l Figure3 20 5gg 4 S50 5gg , sink) 3 5 0.0007 0.0005 0.25 16 0.05 0.896
300 300 4
Case Set2 Figure4 20 g 4 S0 Hgg s 3 5 0.002 0.001 0.25 16 0.05 2.56
300 300 4
FODEs Set1 Figure5 2 cos(x) sin(x) - = 2 1 1 3 2 0.6
g 0.2+ =% 0.5+ 7% - - >3
Case Set 2  Figure6 2 cos(x) sin(x) - - 2 2 1 2 3 1.92
& 0.5+ 8 2+ 8 5 7 2 5 4
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Figure 1: Numerical solutions of system (25) (ODE case) subject to the first set of parameters fora =1 and a = 0.9.

This is because

1) = ¢(I) -

B,

B

213

m

z 4
+I (m

+I)2:

System (25) possesses two constant steady states

=0

E(A

u

) and

300

B,

E* = (ﬁﬂ uo(Ro — 1)).

1

30

13
o) - ﬁ < ¢(D).

26 -

24

22

18 -

14

12
150

200

250

S(t)

300

Figure 2: Numerical solutions of system (25) subject to set 2 of parameters fora =1 and a = 0.9.
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Figure 3: Numerical solutions of system (25) subject to set 3 of parameters fora = 1.

Note that, for a € (0, 1], the second steady state E* exists only when the reproduction number
Rg = y—’;¢’(0) = H%BI > 1 and is globally asymptotically stable.
In addition, note that the first steady state E, is globally asymptotically stable if Ry < 1 (Table 1).
The following is the description of the results:
— Figure 1 shows the solutions in the ODE case subject to set 1, with Ry = 0.896. Ry < 1 and E; is globally
asymptotically stable for a« = 1 and a = 0.9.
— Figure 2 depicts the solution in the ODE case subject to parameter set 2, where Ry = 2.56 > 1, which by
Theorem 18 means that E* is globally asymptotically stable for & = 1 and a« = 0.9.
— Figure 3 depicts the solution in the PDE case subject to parameter set 3, where Ry = 0.896 < 1. By
Theorem 18, Ej is globally asymptotically stable for a = 1.
— Figure 4 depicts the numerical solutions obtained by using the parameter of set 4 in the PDE case with
Rp =2.56 > 1 for a = 0.9.
— Figure 5 shows the PDE solution obtained using parameter set 5. In this case, Ry = 0.6 <1 and by
Theorem 18, E; is globally asymptotically stable for a = 0.9 and a = 1.
— Figure 6 shows the PDE solution obtained using parameter set 6. Since Ry = 1.92 > 1, E* is globally
asymptotically stable.

6.2 Example 2

The second illustrative example that we are interested in is the fractional reaction-diffusion extension of the

ODE SIR model studied in [34], which is a special case of (1)—(3) with ¢(I) = 16711(1’ B >0, and k = 0. The

resulting system is described as follows:
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a=0.9 a=0.9
300 200 -,
e )
S—r
w0
100 100
10 10

Figure 4: Numerical solutions of system (25) (PDE case) subject to set 4 of parameters for a = 0.9.

0.5 2
0.45 |- B 1.9 - —
0.4 , 1.8 B
0.35 |- B 1.7 B
0.3 B 1.6 F B
— —
025 - g E 15¢ B
~ ~
0.2 , 1.4 B
0.15 | B 1.3 B
0.1F B 1.2 B
0.05 |- B 11F
O L L 1 L L L L L L
0 0.5 1 1.5 06 0.8 1 1.2 14 16
S(t) S(t)

Figure 5: Numerical solutions of system (25) (PDE case) subject to set 5 of parameters fora =1 and a = 0.9.
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Figure 6: Numerical solutions of system (25) subject to set 6 of parameters fora =1 and a = 0.9.

The imposed conditions (4) and (5) can be easily checked. It is clear that

¢0)=0 and ¢I)>0 forall > 0.

The derivative of ¢(I) is also defined as follows:

EDES — diAS = -A

JSDET - doAT = A
S(0, x) = So(x),
s _dl_
v v

>

BSI
1+ kI

BSI
1+ kI
1(0, x) = Ip(x)

+ A -uS

ol

in (0, 0c0) x Q,

in (0, 0c0) x Q,

on Q,

on (0, c0) x 0Q.

—_ 21

(26)

Table 2: Parameters for the numerical simulation of the third example: system (27) with different values fora =1and a = 0.9

Set So Iy dy d, A o A M k Ro
FODEs case Set 1 1 1.2 - - 1 1 5 2 2 10
2
Set 2 4 6 - - 2 1 6 3 1 9.33
3 3 7 3
Set 3 4 6 - - 1 5 7 2 2 7
5
Set 4 0.5 3 - - 1 1 3 2 2 0.6
2 5 7 5
FPDEs case Set1 cos(x) sin(x) 3 5 1 1 5 2 2 10
0.2 + T 0.4 + T " 3
Set 2 6 + 050 4 4 SN0 5 2 1 3 6 1 2 12
7 8 3
Set 3 cos(x) sin(x) 2 1 2 1 6 3 1 9.33
2.6 + 7 2.4 + 3 3 3 7 3
Set 4 cos(x) sin(x) 3 5 1 5 7 2 2 7
4+ 10 6+ 10 4 5
Set 5 cos(x) sin(x) B 2 1 1 3 2 2 0.6
0.7 + 7 0.5 + 3 4 3 s 7 s
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Set 1 Set 2
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— —
=3 X 15 1
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1 0.5 ]
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S(t) S(t)
Figure 7: Numerical solutions of system (27) subject to four sets of parameters for a = 1.
Set 1 Set 2
6 ! 6 !
5 5.5 4
4+ 5 4
=3 E 45 1
~ ~
2 4+ 4
1 3.5 4
0 s s s
0.9 1 1.1 1.2 1.3 8 10
S5(t)
Set 3
6
51 J
4t J
=3 |
~
21 J
1t J
0 L n
2.5 3 3.5 4 2
S5(t)

Figure 8: Numerical solutions of system (27) subject to four sets of parameters fora = 0.9.
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Figure 9: Numerical solutions of system (27) subject to five sets of parameters for a = 1.
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L (B _Ba+kD-KBI B o
¢(I)_(1+kl)_ (1 + kI)? _(1+kI)2>0 and  ¢(0) =B
In addition, we have
o B Bl
Ipd) = 1(1 + kI)? S1+Hd ¢D-

The constant steady states of system (26) are

(A,O) and E*
u

Ey

(Ro-1)
AB+k)”

where I* = u

O-*

B (Aqb(l*)’

o(1 + kI*)
AB

I*) _ ( 1)

For a € (0, 1], and provided that the reproduction number Ry = }%‘¢’(0) = 2—;\,8 > 1, E* exists and is

globally asymptotically stable. On the other hand, for a € (0, 1] and Ry < 1, Ej is globally asymptotically

stable with no conditions.

6.3 Example 3

The third illustrative example that we are interested in is the fractional reaction-diffusion extension of the

model studied in [7] and [35] in the case whered; = d;, = 0, a = 1, and ¢(I) =

of (1)—(3). The resulting system is defined as follows:

kI

)

which is a special case

EDES — diAS = —Ak;]s +A-puS in (0, 00) x Q,
1+ (f)
B
DAL — doAT = Ak—L—S — o in (0, 00) x Q,
B
S(O’ X) = SO(X)a I(Os X) = IO(X) on Q’
oS _of _ , on (0, co) x 0Q,
o v
for B > 0 and k > 0. The conditions imposed can be verified as follows:
¢(0) =0,and¢p(I) >0 forall I >0,
FH=—F o0, ¢O=k
I
] (1 * (E))
k kI
g =v 5 < —— = $(D).
<1 + (l)) 1+ (—)
B B
The steady states of system 27 are defined by Ej = (%, 0) and E* = ( A:;Z*)’I*) = (U(ﬁ;kl*),l*), where

* (RO*D
I = s

with the reproduction number Ry = %q&’(o) = %k > 1. Note that, for a € (0, 1], if E* exists,

then it is globally asymptotically stable and that E, is globally asymptotically stable when Ry < 1 (Table 2).

Figure 7-10 are graphics for the third example.
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7 Conclusion

In this work, we have generalized an integer-order model proposed earlier in Djebara et al. [1] to a frac-
tional-order model of the reaction-diffusion type. We proved the local asymptotic stability of the two
equilibrium by using Lemma 5 in the two cases, Ry <1 and Ry > 1. We also demonstrated the global
asymptotic stability of the equilibrium, where we used some suitable Lyapunov functions and the fractional
LaSalle’s theorem on the proposed model in the ODE and PDE cases. For future work, we believe that it will
be very important to study the behavior of the system at the critical state Ry = 1.
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