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Abstract: In this manuscript, we first generate topological structures by subset neighborhoods and ideals
and apply to establish some generalized rough-set models. Then, we present other types of generalized
rough-set models directly defined by the concepts of subset neighborhoods and ideals. We explore the main
characterizations of the proposed approximation spaces and compare them in terms of approximation
operators and accuracy measures. The obtained results and given examples show that the second type
of the proposed approximation spaces is better than the first one in cases of u and (u), whereas the
relationships between the rest of the six cases are posted as an open question. Moreover, we demonstrate
the advantages of the current models to decrease the upper approximation and increase the lower approx-
imation compared to the existing approaches in published literature. Algorithms and a flow chart are given
to illustrate how the exact and rough sets are determined for each approach. Finally, we analyze the
information system of dengue fever to confirm the efficiency of our approaches to maximize the value of
accuracy and shrink the boundary regions.
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1 Introduction

Rough-set theory is a novel mathematical approach originated by Pawlak [1] in the 1980s to manage
inexplicit and uncertain data that cannot be addressed by the classical set theory. The key idea in this
approach is the approximation space (AS) which comprises an equivalence relation R on a nonempty set U
of objects. By Pawlak’s approach, each subset of data can be approximated using approximation operators
called lower approximation and upper approximation, which are defined by the equivalence classes
induced by R. These operators categorize the knowledge obtained from the data into three main regions:
positive, negative, and boundary.

In many real-life issues that humans deal with in computer networks, economics, medical sciences,
engineering, etc., the condition of an equivalence relation does not appear as a description for the relation-
ship between the objects, which abolishes the ability of Pawlak’s rough-set theory to deal with these
problems [2]. To overcome this obstacle various frames of rough set theory defined with respect to non-
equivalence relations, known as generalized rough-set theory or generalized AS, have been proposed.

The first generalized rough-set model constructed by a non-equivalence relation was introduced by Yao
[3] in 1996. He defined the concepts of “right neighborhood N,” and “left neighborhood N;” of each object
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under arbitrary relation as alternatives to the equivalence class. That is, the granules or blocks that are used
to approximate the knowledge obtained from the subset of data are these types of neighborhoods. Then,
researchers have established other kinds of generalized ASs under specific relations like tolerance [2],
similarity [4,5], quasiorder [6,7] and dominance [8,9]. It has been introduced that many generalized ASs
are produced by specific kinds of neighborhood systems; for example, Dai et al. [10] scrutinized some
models of ASs using the maximal right neighborhoods defined over a similarity relation. Al-shami [11]
completed studying the other kinds of maximal neighborhoods under any arbitrary relation and showed
how they applied to classify patients suspected of infection with COVID-19.

To improve the approximation operators by adding objects to the lower approximation and/or
removing objects from the upper approximation, the concepts of core neighborhoods and remote neighbor-
hoods were presented by Mareay [12] and Sun et al. [13], respectively. Also, Abu-Donia [14] adopted a new
line of rough-set models depending on a finite family of arbitrary relations instead of one relation. Recently,
Al-shami with his co-authors have displayed novel sorts of neighborhood systems and their generalized
rough paradigms inspired by some relationships between N,-neighborhoods, such as C,-neighborhoods
[15], Sp-neighborhoods [16], and E,-neighborhoods [17].

Topology is another interesting orientation for studying rough-sets. The possibility of replacing rough-
set concepts with their topological counterparts follows from the similar behaviors of topological and
rough-set concepts. Investigation of this link was started by Skowron [18] and Wiweger [19]. This domain
attracted many scholars and researchers to initiate rough-set notions via their topological counterparts; for
instance, Lashin et al. [20] suggested a family N,-neighborhood of each element as a subbase for topology,
and then they coped with the notions of rough-set theory as topological concepts. Salama [21] debated how
the missing attribute value problem is solved topologically. Al-shami [22,23] benefited from somewhere
dense and somewhat open subsets of topological spaces to present various types of approximation opera-
tors and accuracy measures. Al-shami and Alshammari [24] successfully applied the structure of supra
topology, one of the generalizations of topology, to study generalized rough ASs. To complete this line of
research and enhance the role of generalizations of topology to describe the main concepts of rough sets,
Al-shami and Mhemdi [25] investigated the rough approximation operators via the frame of infra topology,
and the authors of [26,27] discussed these operators via minimal structures. Many ideas and relationships
that associated rough-set models with topological counterparts have been elucidated and reveled in
[28-33].

In 2013, Kandi et al. [34] provided a novel method to construct ASs depending on the structure of an
ideal. They aimed to improve approximation operators and increase accuracy measures. Then, Hosny [35]
introduced new rough-set models induced from topological and ideal structures. Recently, some types of
neighborhoods with ideal structures have been applied to obtain rid of uncertainty via information systems
in [36-40].

The major motivations for writing this article are, first, to dispense an equivalence relation that limits
the applications of Pawlak rough-set theory. Second, to keep the greatest number of properties of Pawlak
approximation operators that are missing in some existing approaches generated by topological approaches
or otherwise. Third, to maximize the accuracy measures and minimize the boundary regions of subsets
compared to the previous approaches introduced in [11,40] under arbitrary relation and those introduced
in [17,35,41] under similarity relation.

The rest of this article is designed as follows. In Section 2, we review the main concepts of rough sets
and topology required to understand this work and shed light on the inducements that led to these
contributions. In Section 3, we provide a method to build some topologies by using subset neighborhoods
and ideals with respect to any arbitrary relation. Then, we establish new generalized rough-set models by
making use of these topologies and discuss their fundamental characterizations. In Section 4, we construct
the counterparts of the previous generalized rough set and elucidate their advantages to develop the
approximation operators. In addition, we provide an algorithm illustrating how to determine exact sets.
We analyze the information system of dengue fever disease in Section 5 to demonstrate the effectiveness
and robustness of the followed approach to maximize accuracy values and shrink boundary regions.
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Finally, we summarize the main contributions and give some thoughts that can be applied to expand the
scope of this manuscript in Section 6.

2 Preliminaries

To make the exposition self-contained, we mention in this section some basic concepts and results of
rough-set theory and topology used in the sequel. In this work, the order pair (2, R) will denote an AS,
where U is a nonempty finite set and R is an arbitrary binary relation on U . If R is an equivalence relation
(reflexive, symmetric, and transitive), then we call (2, R) a Pawlak AS.

Definition 2.1. [1] Let (U, R) be a Pawlak AS and [v] be the equivalence class of v € U induced from R. We
associate every subset V of U with two sets called lower approximation H(V) and upper approximation
H(V). They are defined as follows:

HV)={veU:[vicV} and HV)={veU:[vInV ¢}

The next proposition outlines the essential properties of these approximation operators, which is the
key point of rough-set theory.

Proposition 2.2. [1] Let V and W be subsets of a Pawlak AS (U, R). Then, we have next properties.

@y HWV)cV (U XcHY)

12 H@p)=¢ (U2) H(p)=¢

I3) HU)=U (U3) Hu)=U

(L&) X VcW, then HV)c HW) (U4) If V< W, then HV)<HW)
L5 HWVnW)=HV)nHW) (U5) HVnW)<HWV)nHW)

(L6) H(V)uHW)c< H(VuW) (U6) H(VuW)=HV)uHW)

(L7) HVe) = HWV))© (U7) H(V) = (HWV))

(L8) H(H(V)) = H(V) (U8) HH(V)) =H(V)

(L9) H(HW)) = HWV)) (U9) H(HWV))) = H(V))

Every subset of data is divided into three regions using approximation operators, aiming to discover the
knowledge obtained from a subset and its structure.

Definition 2.3. [1] We associate every subset V of a Pawlak AS (U, R) with three regions defined as follows:

H*(V) = H(V) (positive region),
B(V) = H(V)\H(V) (boundary region),
H~(V) = U\H(V) (negative region).

The measure (or completeness degree) of knowledge obtained from a nonempty subset V is given as
follows:

_ 1H)

HWV) = =—=.
W [H (V)]

To expand the applications of rough-set theory, Yao [3,42] replaced the equivalence relation with
arbitrary relation. In this situation, we need a counterpart for the equivalence classes as a granule for
computing. So, it was defined as “right and left neighborhoods,” which play a role in equivalence classes in
Pawlak AS.
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Definition 2.4. [3,42] Let (U, R) be an AS. Then, the right neighborhood N, and left neighborhood N; of
v € U are, respectively, given as follows:

NW)={ueUU:(v,u) eR} and NW)={peU:(uv)eR}

The approximation operators were formulated in view of right and left neighborhoods as follows.

Definition 2.5. [3,42] It was introduced the Np-lower and Np-upper approximations of a subset V of an AS
(U, R) for p € {r, 1} as follows:

Hy(V)={veU:Nwv)cV} and Hy(V)={veU:NW)nV+e¢}

Subsequently, researchers and scholars have investigated various forms of generalized rough sets
inspired by new neighborhood systems, aiming to improve the approximations and increase the accuracy
measures of rough subsets. In what follows, we list some of them.

Definition 2.6. [4,43,44] The p-neighborhoods of each v € U, denoted by N,(v), induced from an AS
(U, R) are given for p € {(r), (1), i, u, (i), (W)} as follows:
6]
(N N,(p): thereexists N,(u) including v

Npy(v) = { veNw)
0] otherwise

(ii)
( N(u): there exists Ny(u) including v

Ml)(v) = veN()
(0] otherwise

(iii) Ni(v) = N.(v) n N(v).
(iv) Nu(v) = Ni(v) U Ni(v).
(v) Np(v) = Np(v) N Np(v).
(vi) Nyy(v) = Npy(v) U Ngy(v).

Following a similar technique of Definition 2.5, the above neighborhoods were employed to present new
sorts of approximation operators.

But using the formula of Pawlak accuracy measures leads sometimes to obtaining values greater than
one, which is illogical. To remove this failure, the definition of accuracy measures was adjusted as follows.

Definition 2.7. [3,4,42-44] The accuracy measures of a nonempty subset V in an AS (U, R) is given as
follows:

|Hnp(V) 0 V]

HilV) = Hy,(V) U V|

Two of the celebrated types of rough neighborhoods are E,-neighborhoods and S,-neighborhoods. They
were defined as follows.

Definition 2.8. [17] The E,-neighborhoods of each v € U, denoted by E,(v), induced from an AS (U, R) are
given for p € {r, , (r), (I}, i, u, (i), (u)} as follows:
(i) E(v) ={ueU:N@ nN®W) + ¢}
(i) EW) ={u e U : NG n N() # ¢}
(ili) Ex(v) = E/(v) n E(v).
(iv) Eu(v) = E/(v) U E(v).
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(V) Egy(v) ={u € U : Npy(u) N Npp(v) # ¢}.
(vii) Eq(v) = {p € U : Noy(u) N Ny(v) # ¢}
(viii) Ep(v) = Epy(v) N Egy(v).

(ix) Eqgy(v) = Eny(v) U Egy(v).

Definition 2.9. [16] The S,-neighborhoods of each v € U, denoted by S,(v), induced from an AS (U, R) are
given for p € {r, I, (r), (I), i, u, (i), (w)} as follows:

i S(v) = {H €U :N®W) < Nr(}l)}

(i) S(v) ={p e U : N(v) € N()}.

(iii) Si(v) = S,(v) n (V).

(iv) Su(v) = S (v) U (V).

(V) Spy(v) = {u € U : Nyy(v) € Ny}

(vi) Spy(v) = {u € U : Ny(v) < Ny}

(vii) Sp(v) = Spy(v) n Sp(v).
(viii) S<u)(V) = Sm(V) U S<1>(V).

Lemma 2.10. [16] Let (U, R) be an AS such thatv € U .
(i) If R is reflexive, then Sy(v) < E,(v) for each p.
(i) IfR is similarity, then Sy(v) € N,(v) < E,(v) for each p € {r, 1, i, u}.

Definition 2.11. [16,17] The lower and upper approximations and accuracy measure of a subset V of an AS
(U, R) for each p are defined with respect to E,-neighborhoods and S,-neighborhoods as follows:

Hp(V)={veU:Ev) cV} Hg,(V)={ve U :Syv) cV}
Hy(N)=veU:EW)NV+dt Hyp(V)={velU:S,w)nV%+ed}
\Hp,(V) 0 V] |Hs,(V) 0 V]

wlV) Bz, (V) U V] V) |Hs,(V) U V]

To minimize the vagueness of the data by decreasing the upper approximation and increasing the lower
approximation, the approximation operators were constructed from an ideal structure. We first mention
the definition of ideal and then present how this idea was exploited to produce new operators of
approximation.

Definition 2.12. We call a non-empty family K of 2¥ an ideal on U if it is closed under subset and finite
union. That is, it satisfies the following axioms:

(i) fVeK andWe K,thenVuU We K.

(i) fVeKand Wc V, then W e K.

Henceforth, we call the triplet (U, R, K) an ideal approximation space (IAS).

Definition 2.13. [34] The lower and upper approximations and accuracy measure of a subset V of an IAS
(U, R, K) for each p are defined with respect to N,-neighborhoods as follows:
HEW)={veU:N®)-Vexk}
Hy(V)={veU:Nv)nV¢%K}, and
|H (V) n V|

HEWV) = —
g Hy(V) U V|

where V # ¢.

Definition 2.14. [41] The lower and upper approximations and accuracy measure of a subset V of an IAS
(U, R, K) for each p are defined with respect to E,-neighborhoods as follows:
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HEWV)={veU:EW)-VekK}
Hi(V)={ve U :EW)nV¢%K}, and
|HE(V) n V|

— , where V # ¢.
H (V) u V|

H (V)=

Definition 2.15. A subfamily Q of P(U) is called a topology on U if ¢, U € Q, and it is closed under
arbitrary union and finite intersection. We call an order pair (U, Q) a topological space. We call a member
of Q an open set and call the complement of an open set a closed set.

For any subset V of U, the interior points of V, denoted by int(V), is the union of all open sets that are
contained in V, and the closure points of V, denoted by cl(V), is the intersection of all closed sets con-
taining V.

The rough-set paradigms have been studied topologically in several published literature. The followed
methods to link neighborhoods systems and topological structures are proved in the following results.

Theorem 2.16. Let (U, R) be an AS. Then, each one of the following families is a topology on U for each p:
(@) Qnp ={V < U : Ny(v) €V for each v € V} [43].

(i) Qpp ={V < U : E,(v) <V for each v € V} [17].

(iti) Qsp ={V < U : Sp(v) € V for each v € V} [40].

The aforementioned topological spaces have been employed to construct novel types of ASs.
Definition 2.17. [17,40,43] Let (U, R) be an AS. Then, some types of lower and upper approximations and

accuracy measures of a subset V ¢ U/ induced from topological spaces Qy; and Qy; are, respectively, defined
as follows:

N,(V) = inty,(V) N,(V) = cly,(V) Awo(V) = IN (V)|
Np P P p )} |]vp(V)|
E,(V) = intey(V) V) = clgy(V) Agy(V) = 220
Ly Ep P Ep Ep IEP(V)|

i S 1S,(V)I
SoV) = intgl(V) - S,(1) = clyp(V) Ap(V) = 7

To improve the approximation operators and increase the accuracy measure of a set, the topological
structures given in Theorem 2.16 were enlarged by inserting ideals as illustrated in the next theorem.

Theorem 2.18. Let (U, R, K) be an IAS. Then, each one of the following families is a topology on U for
each p:

(i) O, ={V< U : N(v) - V € K for each v € V} [35].

(i) QF, ={V < U : E,(v) - V € K for each v € V} [41].

Definition 2.19. [35,41] Let (U, R, K) be an IAS. Then, some types of lower and upper approximations and
accuracy measures of a subset V ¢ U induced from topological spaces Q}’V(, and Qg are, respectively, defined
as follows:

IN (V)|

N, (V)]

|E; (V)]

G

NX() =intf(V) NJ(V)=cf W) AKWV) =

EX(V) =intl(v) EX(V)=dEW) AKWV)=
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3 ASs generated by subset topologies and ideal

In this section, we provide a new method to propose a topological approach to construct ASs inspired by the
ideas of subset neighborhoods and ideals. First, we illustrate the relationships between them and explore
their main characterizations. Then, we confirm the good performance of the proposed approach in terms of
improving the accuracy measures and approximation operators compared to some previous methods
introduced in [16] for p € {r, L, i{r), (D), (i)} and [40] for each p under any arbitrary relation. Furthermore,
the current approach is more accurate than that of Hosny’s [35] under a similarity relation and Yildirim’s
[41] under a reflexive relation for each p. Finally, we give an algorithm and flow chart to illustrate how the
exact and rough sets are determined.

Theorem 3.1. Let (U, R, K) be an IAS. Then, the family ng] ={Ve2¥ :(S,(v) - V) e K for eachv e Viisa
topology on U for each p.

Proof. It is clear that S,(v) - U = ¢ € K for each v e U and Sy(¢p) - p=¢p € K. So, U, P € ng,. Now,
consider X; € Qgg,wherei € I.Then, (Sy(v) - X;) € K foreachv ¢ X;. Obviously, (S,(v) — JiX) € (Sp(v) — X)).
According to the hereditary property of X', we obtain (S,(v) — [JiX;) € K foreachv e [JiX;. Thus, | JiX; € QZ;.It
remains to prove that X; n X, € Qf forany X, X; ¢ QZI(J. To do this, letv € X; N X,. Then, v € X; and v € X,. By
assumption, S,(v) - X; € K and S,(v) - X; € K. Since Sy(v) — (X1 N X,) = (Sp(v) — Xp) U (Sp(v) — Xy), it fol-
lows from the union condition of K that X; N X, € ng,. Hence, the proof is complete. O

The following result elaborates on the relationships between these topologies.

Theorem 3.2. The next results hold true.
1) QX c oX c k.
2) QX cof c of.
3) Q) < O, < 0.
(@) Q) < of < OF,,.
(5) If R is symmetric, then
0fF = Qf = Qf =0f and QF,, = Of, = O = Q).
(6) If R is an equivalence, then

K K K vie Vs V\S V\e Vis
QSr = QSI = QSi = QSu = QS(r) = QS(Z) = QS(I') = QS(u)'

(7) IfR is a quasiorder (reflexive and transitive), then O, = Q% .

Proof. The proofs of items 1-4 follows from the below relationships and the hereditary property of the ideal.

Si(v) € §;(v) € Su(v);  Si(v) € Sv) € Su(v);
S(i)(V) c S(r)(V) Cc S(u> and S(,')(V) - S(l>(V) - S(u).

Since the equalities S,(v) = S§i(v) = S;(v) = Su(v) and S¢y(v) = Si(v) = S»(v) = Spy(v) hold true under a sym-
metric relation and the equality S,(v) = §i(v) = S;(v) = Su(v) = Si(v) = Sp(v) = S»(v) = Spy(v) hold true
under an equivalence relation, we obtain the proofs of the results (5) and (6).

The proof of result (7) follows from the fact that N,(v) = N,(v) for each element v under a quasiorder
relation. O

Now, we benefit from the topological structures constructed in Theorem 3.1 to initiate novel types
of ASs.
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Definition 3.3. we call the triplet (U, R, Q}Z) an ideal subset topological approximation space (ISTAS),
where ng) is the topological space obtained from Theorem 3.1. A subset V of an ISTAS (U, R, Q'Slf)) is said to

be an S -open set if X € QF, and the complement of an S)-open set is said to be an S)-closed set. The

family Y;, of all S -closed sets is given as follows: Y4, = {W c U : W¢ € Q¥}.

Definition 3.4. Let (U, R, Q) be an ISTAS. The S)-interior and S, -closure of a subset V of U are,
respectively, defined as follows:

intf(V)=u{G € O : G < V}
df(V)=n{H e Y : V< H}.

The main concepts of ASs are defined with respect to an ISTAS (U, R, QZ;) as follows.

Definition 3.5. Let (U, R, QZ;) be an ISTAS. The lower approximation S [')K , upper approximation EZ( s
boundary region BgS, positive region 0", negative region 0%, and accuracy measure A of a subset V
are, respectively, given as follows:
- S)(V) = intf(V).
- 5K W) = dEw).
- BE(V) =S5, (V) - $X(V)
- 0F" (V) = SY(WV).
- 0X-(Vy=u - 5] W).
K ISK|
Ao (V) = SR’ where V + ¢.

The following theorem states the properties of the lower approximation S ;,K and upper approxima-
. &k
tion S, .
Theorem 3.6. Consider (U, R, QZ;) as an ISTAS and let V and W be subsets of ‘U . Then,
(1) SX(V) cveSSW).
2 SX(¢) =5, ()= ¢.
(3) Sy =5, () =U.
@) IfVc W, then SX(V) ¢ SX(W) and 5, (V) < 5 (W).
) SX(Wnw)=SKXW)nSXW)and S, (Vu W) =5S(V)uS W).
6) SX(WV)uSKW)cSK(VuW)andS,)(VnW)cS(V)nS (W)
() SFISK(VI] = SX(V) and SIS, (V)] = S, (V).
(8) SX(Ve) =[S, (V)I and 5, (V°) = [S, (V)[-.

Proof. The proof follows from the properties of interior and closure topological operators. O

Proposition 3.7. Let (U, R, ng,) be an ISTAS and V € U . Then,
(D S (V) € S7(V) € S*W).
(ii) S,K(V) < $X(V) c S*W).
(i) §<Z,(>(V) < §<Z§(V) < §<?>((V)-
(iv) §<Z(>(V) c §<7>((V) < §<?§(V)-
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W) 55wy <55 W) < 5Kw).
i) 5¥v) < 55wy < SX).
(i) Sgy (V) € Sy (V) € Sgp(V).

(vii)) Sgy (V) € Sy (V) € Sgp(V).

Proof. We suffice by proving (i), and the other cases can be proved following a similar technique. Let
v e SKX(V). That is, v € intX(V). Then, it follows from Theorem 3.2 that v ¢ intX(V). This means that
v e SX(V). Therefore, S (V) c § (V). In a similar way, we obtain S,(V) ¢ (V). Hence, the proof is
complete. O

Corollary 3.8. Let V be a nonempty subset of an ISTAS (U, R, Q's’f,). Then,
(@) AS(V) < A(W) < AFW).

(i) AKWV) < AKX (W) <AKW).

(i) ALV < ABV) < AK V).

(v) ALV < AFV) < AK V).

Proof. We suffice by proving (i), and the other cases can be proved following a similar technique. To do this,
note that SX (V) ¢ S (V) ¢ $/(V). This automatically leads to the next equality
1SV < 18KV < 1SHW)I. 1)

In addition, note that 5 (V) ¢ §(V) ¢ §X(V), which automatically leads to the following equality:

1 1 1
— < —% S ——-
1Sy DI 1SN 1S (V)]

@)

By (1) and (2), we obtain

ISEWL_ 1S WDl _ 1S5 (W)l
el 15F w7l I5Kw)l

which ends the proof. O

In the following proposition and example, we show that the the current ISTASs are more efficient at
removing vagueness than their counterparts given in [40].

Proposition 3.9. Let V be a subset of an ISTAS (U, R, Q%). Then, As,(V) < AJ(V) for each p.

Proof. Let V be a subset of U such that V € Qg,. By (iii) of Theorem 2.16 we obtain S,(v) ¢ V foreachv € V.
This implies that S,(v) - V = & for each v € V, which automatically means S,(V) - V € K. According to

Theorem 3.1, we obtain Qg, < QF,. Therefore, ints,(V) < intfy(V) and cIg(V) < cls,(V) for each subset V of
U . This automatically leads to the following equalities:

1S,(V)] < 1S,V 3)
IS, (V) < 1S,(V). )
| Sp(V) | | S| .
It comes from (3) and (4) that 50| < SE as required. O

Example 3.10. Let (U, R) be an AS, where U = {61, 8, 63} be a universe set, and R = {(61, 61), (81, 83),
(65, 65)} be a binary relation on %/ . We compute the systems of N,-neighborhoods and S,-neighborhoods in
Tables 1 and 2, respectively.
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Table 1: N,-neighborhoods

Subset N, N, N; N, Ny Ny N N
01 {01, 03} {01} {01} {04, 03} {04, 03} {01} {01} {04, 03}
0, {03} ¢ ¢ {03} ¢ {01, 05} ¢ {01, 02}
03 ¢ {01, 02} ® {01, 62} {03} ¢ ¢ {03}

Table 2: S;-neighborhoods

Subset S, Sl S,' S,, 5(,) S([) 5(,') S(u)

01 {04} {01, 03} {01} {01, 03} {01} {01, 02} {01} {04, 02}
0, {01, 02} u {01, 02} Uu u {02} {02} Uu

03 Uu {03} {03} u {01, 03} u {01, 03} Uu

First, we generate eight topologies from the system of S,-neighborhoods.

Qsy = {¢, {61}, {61, 62}, U}

Qs = {¢, {65}, {61, 65}, UL

Qsi = {¢, {61}, {63}, {61, 63}, {61, 62}, UL
Qg = {d)’ (L{}§

| Qs = {6, {613, {61, 633, U

Qsqy = {9, 162}, {61, 62}, U},

Qsqiy = {, {61}, {62}, {61, 82}, {61, 63}, U}
Qsqy = {p, U}.

©)

In Tables 3-5, we compute the approximation operators S, and §p and accuracy measures A, of each
subset of U produced by the approach given in Definition 3.5.

Table 3: S,-approximations

Subset S, 5 S; Sy S S S Sw
{01} {01} ¢ {01} ® {01} é {01} ¢
{02} ¢ ¢ ¢ ¢ ¢ {0} {02} ¢
{03} é {03} {03} é ¢ é ¢ ¢
{01, 02} {01, 02} ¢ {01, 02} ¢ {04} {01, 02} {01, 02} ¢
{61: 63} {61} {61: 63} {619 63} ¢ {611 63} ¢ {61: 63} ¢
{02, 03} ¢ {03} {03} ¢ ¢ {02} {02} ¢
Table 4: 5,-approximations

Subset S S 5i S Sy Sw Sy Sw)
{04} Uu {01, 02} {01, 02} Uu u {01, 03} {01, 03} Uu
{02} {02, 03} {02} {02} Uu {02} Uu {02} Uu
{03} {03} Uu {03} u {02, 03} {03} {03} Uu
{04, 03} Uu {04, 07} {04, 05} Uu Uu Uu Uu Uu
{04, 03} Uu Uu Uu Uu Uu {01, 03} {04, 03} Uu
{02, 03} {02, 03} Uu {0, 63} Uu {02, 03} Uu {02, 03} Uu
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Table 5: As,-accuracy measures

Rough approximation spaces

Subset As, Asy Asi As(ry Asqy Asiy
{64} 1 0 1 0 1 0 1 0
3 2 3 2
{05} 0 0 0 0 0 1 1 0
3
{03} 0 1 1 0 0 0 0 0
3
{04, 05} 2 0 1 0 1 2 2 0
3 3 3 3
{04, 83} 1 2 2 0 2 0 1 0
3 3 3 3
{05, 03} 0 1 1 0 0 1 0
3 2 2

Second, we consider K = {¢, {6:}} and generate eight topologies from the system of S,-neighborhoods

and ideal K.

In Tables 6-8, we compute the approximation operators S g( and S :( and accuracy measures /157; of each

QX = {p, {61}, {623, {61, 623, {62, 85}, U
QY = {¢, {63}, {61, 63}, {62, 63}, U};
0f = P(U);

Q% = {¢, {6, 63}, U

|9, = 1, {6, {65}, {61, 633, 162, 633, U
QZ?D ={¢, {62}, {61, 82}, {62, 85}, U}

Oy = P(U);

0¥, = 1, {62, 85}, U}

subset of U produced by the current approach given Definition 3.5.

Table 6: S -approximations

Subset sx 5K sk S S f) S {1§ f§

{04} {04} Lo {01} ¢ {04} {04} ¢

{02} {82} ¢ {82} ¢ [ {02} {02} ¢

{03} ¢ {03} {03} ¢ {83} {83} ¢

{01, 02} {01, 02} ¢ {01, 05} ¢ {01} {01, 05} {01, 02} ¢

{61) 63} {61} {61’ 63} {61’ 63} ¢ {61: 63} {611 63} ¢

{02, 03} {02, 03} {02, 03} {03, 03} {0 {02, 03} {0,, 03} {02, 03} {0
Table 7: §,;K—approximations

s st s st s 55 si s sh
{01} {041} {01} {041} {01} {01} {01} {01} {04}
{02} {02, 03} {02} {02} Uu {02} Uu {02} Uu
{03} {03} Uu {03} Uu {02, 03} {03} {03} Uu
{01, 02} Uu {01, 02} {01, 02} u {01, 83} Uu {01, 03} Uu
{01, 03} {01, 93} Uu {01, 03} Uu u {01, 03} {01, 03} Uu
{0, 03} {02, 03} Uu {02, 03} Uu {02, 03} Uu {0, 03} Uu
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Table 8: A;’f,-accuracy measures

Subset A& Ad A& A ALy Ay Ay Ay
(61} 1 0 1 0 1 0 1 0
(6, 1 0 1 0 0 1 1 0
2 3
(65} 0 1 1 0 1 0 1 0
3 2
(64, 55} 2 0 1 0 1 2 1 0
3 2 3
(64, 05} 1 2 1 0 2 0 1 0
2 3 3
{02, 03} 1 2 1 2 1 2 1 2
3 3 3 3

It can be seen from Tables 3-8 that the current approach maximizes the lower approximation and
minimizes the upper approximation; hence, heightening the value of accuracy. This gives an advantage for
our approach in terms of improving the approximation operators and increasing the accuracy measure of a
subset compared to the approach studied in [40] for all cases of p under any binary relation. The cells given
in bold in Tables 6—-8 validate this fact.

Remark 3.11. It was proved in Proposition 6 of [40] that the topological approaches and their counterparts
given in [16] are identical for p € {r, I, i(r), (I), (i)}. So, according to the previous results and example
presented herein, we infer that the current approach is also better than the approach given in [16]
for p e {r, L, i(r), (1), (i)}.

Remark 3.12. The current approach and the approach introduced in [37] are independent of each other.
This matter can be confirmed by the computations given in Tables 6-8, and computing their counterparts
induced by the system of containment neighborhoods.

In the next two results, we point out that the current approach is better than the approach discussed in
[41] under a reflexive relation.

Proposition 3.13. Let V be a subset of an IAS (U, R, K) such that R is reflexive. Then, E(V) ¢ S, (V) and
S, (V) < EJ(V) for each p.

Proof. Let ve E g( (V). Then, there is an open subset W< V in Q%; containing v. This implies that
E,(w) - W e K for each w € W. By reflexivity of R, it follows from (i) of Lemma 2.10 that S,(w) < E,(w)

for each p. This means that W is also an open subset in Q:éf,. Thus,v e S ,',K (V). Hence, we obtain the desired

result. Following a similar technique, we prove that §p7< (V)CE [',K(V). O
Corollary 3.14. Let V be a subset of an IAS (U, R, K) such that R is reflexive. Then, Agf, < A;’; for each p.

Following similar arguments, one can prove the next two results, which show the advantages of the
current approach compared to the approaches displayed in [35,41] to improve approximation operators and
increase the value of accuracy.

Proposition 3.15. Let V be a subset of an IAS (U, R, K) such that R is similarity. Then, E g< ") c
NX(V) c SX(v) and 5} (V) < N) (V) € EJ(V) for each p € {r, 1,1, u}.

Proof. Let p € {r, 1, i, u}. It follows from (ii) of Lemma 2.10 that S,(v) < N,(v) < E,(v). Since K is closed
under subset relation, we obtain E,(v) - Ve K = N,(v) - Ve K = Sy(v) - V € K. Therefore, ok ¢ Q}{fp

< O, Hence, the proof is complete. O
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Corollary 3.16. Let V be a subset of an IAS (U, R, K) such that R is similarity. Then, A, < AJS < Ads for
each p € {r, 1,1, u}.

Definition 3.17. A subset V of an IAS (U, R, K) is called S -exact if S (V) = §Z<(V) = V. Otherwise, it is
called an S} -rough set.

Proposition 3.18. A subset V of an IAS (U, R, K) is S -exact iff BX(V) = ¢.

Specify a relation
R on the
universal set U

Calculate N,-
neighborhoods of each
v € U for every p

Calculate S,-
neighborhoods of each

v € U for every p

Specify an ideal K
on the universal
set U

Construct a topology QE

Calculate gf(V) Is ﬁplc(v) =¢?

1S5 (V)]
15, (V)]

Compute )\f(V) =

Yes

V is an
5] ,’,C—exact
set

Figure 1: Flow chart of determining S)¢-exact and S)-rough sets.
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Proof. Let V be an S)-exact set. Then, 85(V) = §;K(V)\§g((V) = §Z<(V)\§:<(V) = ¢. Conversely, let
B%(V) = ¢. Then, 5, (V)\S K (V) = ¢. S0, 5, (V) € SX(V). But S (V) < §,°(V). Hence, SX(V) = 5 (V),

which means that V is SZ< -exact. O

In the end of this section, we provide Algorithm 1 and Figure 1 to illustrate how it can be determined
whether a subset of an IAS (U, R, K) is S -exact or S, -rough.

Algorithm 1: The algorithm of determining S;)K -exact and SZ( -rough sets in an IAS (U, R, K).

Output: An IAS (U, R, K).
Output: Classification a set in an IAS (U, R, %) into two categories: S -exact or S -rough.

1 Specify a relation R over the universal set U ;
2 for each p do
3 Calculate N, -neighborhoodsofall v € U;
4 Calculate S,-neighborhoodsofall v € U
5 end
6 Specify an ideal K over the universal set U ;
7 for each p do
8 | Build a topology fo using Theorem 3.1
9 end
10 for each nonempty subset V of U
11 Calculate its lower approximation S ;,K V);
12 if SX(V) = ¢ then
13 | return V isan S -rough set
14 else
15 Calculate its upper approximation S, Z( (V)
I SXW) |
16 Compute A X (V) = =2,
P o (1) 15|
17 if (V) = 1 then
18
| return V isan S -exact set
19 else
20 , ,K
, | return V isan S, -rough set
1
22 end
end
23 end

4 ASs generated by subset neighborhoods and ideal

In this section, we give another method to produce ASs from subset neighborhoods and ideals in a direct
way. We reveal the relationships between them and discuss their essential features. Also, we mention the
characterizations of Pawlak approximation operators that are missing via the current approach. Compared
to the approach given in the previous section, we demonstrate that the current approach improves the
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approximation operators for each p and produces higher accuracy for the cases u and (u). On the other
hand, an open question is put for the relationship between the other cases of accuracy measures. Moreover,
the current approach are better than approaches displayed in [16] under any arbitrary relation, [41] under a
similarity relation and [34] under a reflexive relation for each p.

Definition 4.1. Let (U/, R, K) be an IAS. The lower approximation H 5’; and upper approximation H. 57; of a
subset V of U induced from R and % with respect to S,-neighborhood are, respectively, defined as follows:
HEWV)={veU:Sv)-Vek}

Hy(V)={veU :S,0)nV¢Kh.

The accuracy measure induced from the above approximation operators is given by

|H}(V) n V]|

HE W) =
) H (V) u V|

The following results present the main properties and characterizations of the approximation operators
HZ and H, 3,5 }

Theorem 4.2. Let (U, R, K) be an IAS and let V and W be subsets of U . Then,

(1) HEU) = U and Hy($) = ¢.

(2) IfVc W, then HE(V) ¢ HEX(W) and Hgy (V) < Hgy (W).

3) HX(Wnw)=HEXWV)n HXW) and Hgy(V U W) = Hgs (V) U Hgy (W) for each p € {r, 1, i, r), (), (i)}
(4) HEV) = [Hey (V)] and Hgy (V) = [Hgy (V).

Proof. We suffice by proving the theorem in case of lower approximation H g; , and the results of upper

approximation H. s}; can be proved in the same way.

(1) Since Sy(v) - U = ¢ € K, we obtain v € HZ(U) for each v € U. So, HE(U) = U.

(2 LetVc Wandv e H g,g(V). Then, S,(v) - V € K. Since S,(v) — W < S,(v) - V, it follows from condition
(ii) of % that S,(v) - W € K as well. Hence, v € H g;(W), as required.

(3) From (2) above, we obtain H(V n W) ¢ HE(V) n HE(W). Conversely, let ve HE(V) n HE(W).
Then, v € H&(V) and v € HE(N). This means that S,(v) - V€ K and S,(v) - W € K. It follows
from the condition of K that [S,(v) — V] U [Sp(v) — W] = Sp(v) - (VN W) € K. Thus, v € ﬂg;(V nw).
Hence, we obtain the required equality.

@ ve HEWVY) & Sm-Viek & S(MNVeK o veHy(V) o veHp(V)r. m]

Corollary 4.3. Let (U, R, K) be an IAS and let V and W be subsets of U. Then, H (V) U HE(W) <
HEW U W) and Hy(V n W) € Hiy(V) 1 Hoy(W).

Proof. Obviously, V< VU W and Wc Vu W, so it follows from (2) of Theorem 4.2 that H g;(V) c
HEWVUW) and HE(W) < HE(V U W). Hence, HE(V) U HE(W) ¢ HE(V u W). Similarly, it can be

proved that Hey(V n W) < Hgy (V) 1 Hgy (W). m]

The next properties of approximation operators in Pawlak model are missing in the current model.
(1) HEW) < Ve Hy (V).
(2) HE(¢) = ¢ and Hoy(U) = U.
(3) HEHEW)] = HE(V) and Hg, [Hgy (V)] = Hg, (V).
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@ HEWAW)=HEWV)n HEW) and His (VU W) = His (V) u Hes (W) for p € {u, w)}.

Theorem 4.4. Let (U, R, J) and (U, R, K) be IASs and let V be a subset of U . Then,
(1) IfV e, then HJ (V) = U and Hy)(V) = ¢.

2 IfJ <K, then HJ (V) ¢ HE(V) and Hgy(V) < Hy)(V).

(3) If K = P(U), then HE(V) = U and Hz (V) = ¢.

@ HI™(V) = HI(V) n HX(V) and Hg"™ (V) = Hg)(V) u Hgg (V).

(5) HJ™ (V) = HJ(V) v HE(WV) and Hy, " (V) = Hg) (V) U Hgy(V).

Proof. We suffice by proving the theorem in case of upper approximation H, s(’;, and the results of lower
approximation H 57; can be proved in the same way.

(1) SinceV e J,wefindS,(v) N Ve J foreachv € U.Hence,v ¢ Hgg(V) foreachv ¢ (ll;i.e.,ﬁgZ(V) = ¢.

(2) Let ve Hg;(V). Then, Sy(v) NV ¢ K. By assumption J < K, we obtain S,(v) NV ¢ . Hence,
Hy (V) c Hy (V).

(3) It is obvious.

(4)

H) (V) =fveU :S,0mnVe¢TnKh
=fveU:S,(v)NnV¢Jror{veU:Sv)nV¢ K]
=velU:S55WNV¢JtufveU:S(v)nV¢ K.
=Hg) (V) u Hgy(V).

®)

H) " (V)=veU :S0)nV¢ITVEK.
=veU:5Wv)nV¢guK
=veU:S5(v)nV¢grand {ve U :S,v)nV¢KE
=fvelU:5WMNVe¢egin{velU:5Wv)nV¢K}
= Hy (V) n Hgy (V). 0O

In the next two results, we elucidate that the current ASs produce the best approximation operators and
accuracy measures in cases of i and (i).

Proposition 4.5. Let (U, R, K) be an IAS and V € U . Then,
(1) HEWV) < HEW) < HEW).

) H(V) < HE(V) < HE(V).

3) HE,(V) c HE,(V) c HE(V).

(4) HE,V) < HE,(V) < HE(WV).

(5) Hg (V) € Hg (V) € Hg, (V).

(6) Hg (V) < Hg (V) € Hg, (V).

(7) Ho(V) € He(V) € Higy(V).

(8) Hyg(V) < Hgy(V) € Hegy(V).

Proof. We suffice by proving (i), and the other cases can be proved following a similar technique. Let
v e HX(V). Then, S,(v) - V € K. Since S,(v) € S,(v), it follows from the condition of X that S,(v) - V € K.
Therefore, v € HX (V). Thus, HX (V) ¢ HX(V). In a similar way, we obtain HX (V) ¢ HX(V). O
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Corollary 4.6. Let V be a subset of an IAS (U, R, K). Then,
1) HEW) < HEWV) < HEW).

2 HEWV) < HEW) < HEW).

B) HEWV) < HENV) < HENV).

(@) H (V) < HEWV) < HEy V).

Proof. We suffice by proving (i), and the other cases can be proved following a similar technique. To do this,
note that HX(V) ¢ HX (V) ¢ HX(V). This automatically leads to the next equality.
IHEWDI < [HEW)) < |HE (W) )

In addition, note that H. S']l-((V) C H. g,((V) C H. g,f(V), which automatically leads to the next equality.

1 1 1
FEV UV HEV) UV HEW) U Y] ®
By (7) and (8), we obtain
H& (V) n V] _ HGWV)n V| _ [HG(WV) V]|
He(V)u V|~ [He(V)u Vvl ~ [HEWV)u V|
which ends the proof. O

The next results elaborates that the approach presented in this section is better than the approach given
in the previous section in terms of approximation operators.

Theorem 4.7. Let X be a subset of an IAS (U, R, K). Then, S }(X) ¢ HZ(X) and H, 57; X)cS§ ;,K(X ) for eby the
computations givenach p.

Proof. First, letv € S ;,K (X). Thenv € intgf,(X ). Therefore there exists an open subset V such thatv € V ¢ X.
According to the definition of QZ;; in Theorem 3.1, we obtain S,(v) - V ¢ K. Thus, ve¢ H g;(X). Hence,
S ;,K X)cH é’;(X). Second, let v ¢ §K;K(X). Then, v ¢ CIZ;(X). So there exists a closed set W containing X
such thatv ¢ W. Now, W€ n X = ¢ where W°¢ is an open set containing v. This implies that S,(v) - W¢ € K,
50 S,(v) N W € K. Thus, v ¢ Hgs (X). Hence, Hoy(X) < 5, (X). O

To show that the converse of Theorem 4.7 fails, we consider an IAS (U, R, K) given in Example 3.10

and compute the H 57; -lower approximations and H, S’; -upper approximations of every subset in Tables 9 and
10, respectively.

Table 9: Hs,-lower approximations

Subset Hs Hg Hs; Hsy Hsy Hsyy Hsy Hsu
{04} {04} ¢ {01} ¢ {04} ¢ {01} ¢
{02} {01, 8} ¢ {81, 85} ¢ {04} {61, 02} {01, 05} {04}
{03} {01} {01, 03} {01, 03} {041} {04, 03} ¢ {04, 83} ¢
{01, 05} {01, 05} ¢ {01, 02} ¢ {04} {01, 05} {01, 02} {04}
{01, 03} {04} {01, 03} {01, 05} {04} {01, 03} ¢ {01, 03} ¢

{02, 03} ) ) ) ) ) ) U U
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Table 10: Hs,-upper approximations

Subset Hs, Hs Hs; Hs, Hsr Hs, Hs iy Hs )
{01} ] ¢ ¢ ¢ ¢ ] ] ¢

{02} {02, 03} {02} {02} {0, 03} {02} u {02} u

{03} {03} u {03} Uu {02, 03} {03} {03} {0, 03}
{01, 03} {02, 83} {02} {02} {02, 03} {02} Uu {02} u

{04, 03} {03} Uu {03} u {83, 03} {03} {03} {0, 03}
{02, 03} {02, 03} u {02, 03} u {02, 03} u {02, 03} u

It can be seen from the bold cells given in Tables 9 and 10 and their counterparts given in Tables 6 and 7
that the performance of the current approach to increase the lower approximation and decrease the upper
approximation is better than the approach given in the previous section for each p.

Corollary 4.8. Let X be a subset of an IAS (U, R, K). Then, A3y (X) < H §(X) for each p.

Proof. Since SX(X) <X and X ¢ §p7< (X), it follows from Theorem 4.7 that S)(X) ¢ H&(X) n X and
[S¥X) | |HEX)nX|
155001 ~ |HgX)uX|

that AJ(X) < H §,(X) for each p. O

H 57; X)uXc §I;K(X ) for each p. This automatically leads to that

. This ends the proof

Now, the direct question put itself is: Is the converse of Corollary 4.8 hold true? In fact, we partially
answer this question by showing that the converse generally fails for the two cases u and (u). To confirm this

matter, take two subsets {6, 65} and {6;, 8,} of U . It is clear that H X ({6, 65}) = H §§u>({61, 6} = %, whereas
AL ({61, 831 = AL,({61, 8,}) = 0. The other cases are still an open question.

Question 4.9. Is the converse of Corollary 4.8 hold true for p € {r, I, i, (r), (1), (i)}?

Remark 4.10. The current approach and the approach introduced in [37] are independent of each other.
This matter can be confirmed by the computations given in Tables 9 and 10 and computing their counter-
parts induced by the system of containment neighborhoods.

To confirm the good performance of the current approach, we show that the current approach improves
the ASs more than their counterparts given in [41] under a reflexive relation and [34] under a similarity
relation.

Proposition 4.11. Let V be a subset of an IAS (U, R, K) such that R is reflexive. Then,
(i) HE(V) < HE(V) for each p.

(ii) Hey(V) < Hyy(V) for each p.
Proof. (i): Let ve H g;(V). Then E,(v) — V € K. By reflexivity of R, we obtain S,(v) < E,(v). Therefore,
Sp(v) = Ve K as well. Thus, v e H 57; (V). Hence, we obtain the desired result.

One can prove (ii) similarly. O

Corollary 4.12. Let V be a subset of an IAS (U, R, K) such that R is reflexive. Then, H %; <H g,g for each p.

Following similar arguments given in Proposition 4.11, one can prove the following result.
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Proposition 4.13. Let V be a subset of an IAS (U, R, K) such that R is similarity. Then,
(i) Hgp(V) € Hyo(V) € HE(V) for each p.

(ii) Hsy(V) < Hy(V) < Hiy(V) for each p.

Corollary 4.14. Let V be a subset of an IAS (U, R, K) such that R is similarity. Then H Z‘(p <H }IV(p <H (s}f) for
each p.

Definition 4.15. A subset V of an IAS (U, R, K) is called HJ -exact if Hgs (V) = H, 5’; (V) = V. Otherwise, it is
called an H& -rough set.

Proposition 4.16. If V is Hg, -exact, then BE(V) = ¢.
Proof. Straightforward. O

In the end of this section, we provide Algorithm 2 to show how we can determine whether a subset of an
IAS (U, R, K) is Hs-exact or His -rough.

Algorithm 2: The algorithm of determining Hg; -exact and H. 57; -rough sets in an IAS (U, R, K).

Input: An IAS (U, R, K).
Output: Classification a set in an IAS (U, R, K) into two categories: H -exact or Hg; -rough.

1 Specify a relation R over the universal set U ;
2 for each p do

3 Calculate N,-neighborhoods ofall v € U;
4 Calculate S,-neighborhoods ofall v € U

5 end

6 Specify an ideal K over the universal set U ;
7 for each nonempty subset V of U do

8 Calculate its lower approximation H s]; V);
9 Calculate its upper approximation H. 37; V);
10 if HX(V) = Hgy(V) = V then

1 | return V is an Hg; -exact set

12 else

13 | V isan HZ -rough set

14 end

15 end

5 Medical example: Dengue fever

In this section, we examine the performance of the methods given herein and some previous ones via the
information system of dengue fever. This disease, according to World Health Organization [45], is a viral
infection transmitted to humans through the bite of infected mosquitoes; it is a leading cause of serious
illness and death in more than 120 countries around the world, mainly, in Latin American and Asian
countries. There is no specific treatment for dengue; however, early detection of disease progression
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associated with severe dengue and access to proper medical care reduce fatality rates of severe dengue to
below 1%. Now, we exploited the proposed approaches to analyze the data of some patients given in
Table 11. To illustrate the data of this table, the symptoms of dengue fever (attributes) [46] are presented
in the columns as follows: 4; is a temperature, A, is muscle and joint pains, As is a headache with vomiting,
and A, is a characteristic skin rash. The last column D is the decision of disease with two values “infected”
or “uninfected.” The set of patients under consideration U = {61, 6>, 83, 04, 65} is put in rows. The attribute
A takes the values very high (vh), high (h), and normal (n), whereas all the other attributes take two values:
“Yes” and “No” which, respectively, denoted the possession of a symptom or not by patients.

To be able to handle the variables descriptions of attributes of Table 11, we compute their quantity
values that demonstrate the similarities degrees between the patients’ symptoms in Table 12. It is well
known that the similarity degree s(;, §;) between two patients §;, §; is given as follows:

Y1 (Ak(8) = Ar(5))
. )

5(6,', 6]) = (9)
where n denotes the number of conditions attributes.

Now, we ask the experts in charge of the system to propose a relation that connects between
the patients according to their symptoms. Let us consider that they provide the following relation:
6iR6, & 0.5<5(6;, 6;) <1, where s(§;, §;) is calculated by equation (9). It is should be noted that the
suggested relations < and the values 0.5,1 can be changed depending on the estimation of experts of
system. To construct the neighborhood systems applied to establish the ASs, we, first, note that R is a
symmetry relation, so there will exist two types of N,-neighborhoods and S,-neighborhoods. In addition, it
is a reflexive relation. On the other hand, R is not a transitive relation because (6,, 6;) ¢ R in spite of
(62, 63) € R and (63, 61) € R.

Sake for the brevity, the upcoming computations will do in the case of r (Table 13).

Now, we consider the ideal is 7 = {¢, {65}}.

For a set of patients with infection from dengue fever A = {63, 83, 6,} and a set of patients without
infection from dengue fever B = {65, 85}, we calculate their lower and upper approximations, boundary
regions, and the accuracy measures induced from approaches displayed in [34,41] and our approach given
in the previous section.

(i) For patients with infection from dengue fever, A = {6, 63, 64}
— Hosny et al.’s approach [41]: The lower and upper approximations are H g;(A) =¢ and H, ,;-’;(A) =U,
respectively. Therefore, the boundary region is BZ;(A) = U and the accuracy measure is H %;(A) =0.
— Kandil et al.’s approach [34]: The lower and upper approximations are H K,;(A) = {6y, 6s}and H, Aq,f,(A) =U,
respectively. Therefore, the boundary region is BK,Z(A) = {6,, 03, 64} and the accuracy measure is H }’\fp(A) = %
— Our approach: The lower and upper approximations are H 5’; (A) = {6y, 65, 64, 65} and H. 57; (A) = {64, 63, 04},

respectively. Therefore, the boundary region is Bg[f (A) = ¢ and the accuracy measure is H :S];(A) =1.

Table 11: information system of dengue fever

u A; A, As A, Dengue fever
01 h Yes Yes Yes Infected

0, h No No No Uninfected
03 h Yes No No Infected

0y vh No Yes No Infected

05 n Yes Yes No Uninfected
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Table 12: The similarity degrees among symptoms of five patients

0, 0, 03 [ ds
01 1 0.25 0.5 0.25 0.5
0, 0.25 1 0.75 0.5 0.25
03 0.5 0.75 1 0.25 0.5
[ 0.25 0.5 0.25 1 0.5
[ 0.5 0.25 0.5 0.5 1

Table 13: N,-neighborhoods, E,-neighborhoods, and S,-neighborhoods for all patients

N, E S

0, {04, 03, Os} Uu {04, 03, Os}
0, {02, 03, 04} u {02}

03 {01, 03, 03, 05} Uu {03}

[ {02, 04, 05} Uu {04}

[ {04, 03, 04, Os} Uu {0s}

(ii) For patients without infection from dengue fever, A = {6,, 6s}
— Hosny et al.’s approach [41]: The lower and upper approximations are H b?;(A) =¢ and H, g;(A) =U,
respectively. Therefore, the boundary region is BE;(A) = U and the accuracy measure is H }’:—f)(A) =0.
— Kandil et al.’s approach [34]: The lower and upper approximations are H 1?12(14) =¢ and H, IZE(A) =
{82, 63, 04}, respectively. Therefore, the boundary region is BI'\’,;(A) = {6,, 83, 64} and the accuracy measure
is H{,(A) = 0.
— Our approach: The lower and upper approximations are H ;’;(A) = {6, 65} and HS(’; (A) = {63, 63, 64},

respectively. Therefore, the boundary region is ng‘ (A) = {63, 64} and the accuracy measure is H gf,(A) = %

From the above computations, it is obtained that the boundary regions of a subset of patients without
infection from dengue fever and a subset of patients with infection from dengue fever inspired by the
approach given in [34,41] are U and {6,, 63, 6,}, respectively. In this case, we are unable to decide whether
these individuals are infected from dengue fever or not, which enlarges the area of uncertainty/vagueness
and affects the precision of made decision. Whereas the boundary regions of these two subsets inspired by
our approach are the empty set and {63, 65}, which means that for a subset without infection, we completely
cancel the uncertainty in the data and minimize the vagueness in the data for a subset with infection. This
automatically leads to increasing the accuracy measure and enhancing the confidence of the made
decision.

6 Conclusion

Rough set was introduced to deal with intelligent systems characterized by insufficient and incomplete
information. It has been proposed several ways to develop and extend this theory; one of them follows from
the abstract ideas of “neighborhoods and ideals.”

Through this work, we have applied the concepts of subset neighborhoods and ideals to introduce two
versions of ASs. The first version was inspired by topologies, whereas the second one was directly generated
by subset neighborhoods and ideals. The main properties and features of these ASs have been investigated,
and the relationships between them have been illustrated with the help of illustrative examples. Some
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comparisons between the current approaches and previous ones introduced in [16,17,35,40,41] have been
conducted under different types of binary relations aiming to show the advantages of the current
approaches to maximize the accuracy measure of a subset by increasing lower approximation and
decreasing upper approximation.

To confirm that there is a need for investigation considering the various sorts of neighborhoods systems
so that these findings may contribute to remove uncertainty of real data, we examine and analyze the
performance of the current methods and some foregoing ones via the information system of dengue fever.
The obtained results concluded that the approaches proposed herein were more general and accurate.

In upcoming studies, we will adopt another type of neighborhoods to obtain rid of vagueness in data.
Also, we will research the current models depending on a finite family of arbitrary relations instead of one
relation. Moreover, we discuss the presented approaches in the content of soft rough set and fuzzy
rough set.
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