DE GRUYTER Demonstratio Mathematica 2023; 56: 20220222

Research Article

Ahmed Alsaedi, Bashir Ahmad*, Hana Al-Hutami, and Boshra Alharbi
Investigation of hybrid fractional g-integro-
difference equations supplemented with
nonlocal g-integral boundary conditions

https://doi.org/10.1515/dema-2022-0222
received November 1, 2022; accepted March 18, 2023

Abstract: In this article, we introduce and study a new class of hybrid fractional g-integro-difference
equations involving Riemann-Liouville g-derivatives, supplemented with nonlocal boundary conditions
containing Riemann-Liouville g-integrals of different orders. The existence of a unique solution to the given
problem is shown by applying Banach’s fixed point theorem. We also present the existing criteria for
solutions to the problem at hand by applying Krasnoselskii’s fixed point theorem and Leray-Schauder’s
nonlinear alternative. [llustrative examples are given to demonstrate the application of the obtained results.
Some new results follow as special cases of this work.
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1 Introduction

In this article, we explore the existence criteria for solutions of a new boundary value problem consisting of
a nonlinear hybrid fractional g-integro-difference equation involving Riemann-Liouville g-derivatives and
nonlocal g-integral boundary conditions. In precise terms, we study the following nonlocal hybrid g-frac-
tional integral boundary value problem:

uD;[u(x) - fO, u(x))] + (A - v)Dfu(x) = ag(x, u(x)) + bIth(x, u(x)), 0<x<1, 1

o
(0‘ _ qs)(yz’l)

srl (n - gs)%Y
L(r)

u(0) =0, uQ)= )
a

u(s)dgs + (1-¢) u(s)dgs, v ¥, >0, @)

where0<g<1,1<a,f<2,0<e<1,0<v<1,0<é<,a->0,0<n,0< 1,D§,andedenotethe
Riemann-Liouville fractional g-derivatives of order « and S, respectively, I; denotes the Riemann-Liouville
fractional g-integral of order €, and f, g, h : [0, 1] x R — R are continuous functions, a, b € R.
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Let us now dwell on some recent works on fractional g-difference equations. In 2013, Zhou and Liu [1]
applied Monch’s fixed point theorem together with the technique of measure of weak noncompactness to
investigate the existence of solutions for the following fractional g-difference equation with boundary
conditions:

‘Dyu(t) + f(t,ut)) =0, 0<t<1, 0<g<1,
u(0) = (Dju)(0) =0,  y(Da)(1) + BDu)(1) = 0,

where2<a<3,y,>0,and f:[0,1] x R —» R is a continuous function.
In [2], the authors studied the following nonlinear boundary value problem of fractional g-integro-
difference equation:

ADF + (1 - DDPyu(t) = af (¢, u(t)) + bIig(t, u(®)), te[0,1], a,beR",

(1 _ qs)()’rl) _ qs)()’fl)

1 1
u(0)=0, u jiu(s)dqs +(1- y)j a L) u(s)dgss =0, ¥, %,>0,
o o a\Y2

L(w

where 0<g<1,1<a,<2,0<6<1,0<A<1,0<u<l,a-B>1, and Dg denotes the Riemann-
Liouville fractional g-derivative of order a, and f, g : [0, 1] x R — R are continuous functions. For some
more results on boundary value problems involving fractional g-difference operators, we refer the reader to
previous studies [3-11].

Recently, in [12], a coupled system of nonlinear fractional g-integro-difference equations equipped with
coupled g-integral boundary conditions was studied. In [13], the authors proved some existence results for
a Langevin-type g-variant system of nonlinear fractional integro-difference equations with nonlocal
boundary conditions. On the other hand, for some recent works on fractional differential equations, for
example, see [14-19].

The objective of this present work is to investigate the criteria ensuring the existence and uniqueness of
solutions to problems (1) and (2). We make use of the Banach fixed point theorem [20] to obtain a unique-
ness result, while two existence results are established by means of Krasnoselskii’s fixed point theorem [21]
and Leray-Schauder’s nonlinear alternative [22]. Moreover, our results generalize the ones presented in [2]
in the sense that we consider a hybrid Riemann-Liouville-type fractional g-integro-difference equation
subject to nonlocal Riemann-Liouville g-integral boundary conditions. The second condition in (2) can
be interpreted as the value of the unknown function u(x) at x = 1 is proportional to the sum of its two-strip
contributions formulated in terms of Riemann-Liouville integral on the segments (0, n) and (0, 0).

We arrange the remainder of this article as follows. In Section 2, we recall some basic concepts related
to this study. Section 3 contains the main results, while examples illustrating the obtained results are
presented in Section 4.

2 Auxiliary material

Let us first recall some necessary concepts and definitions about g-fractional calculus and fixed point
theory.

For every a € R, the g-number [a], is defined by [a], = %, where g € (0, 1) is an arbitrary real

number. Also, the g-shifted factorial of real number a is defined by (a; q)o = 1 and (a; q), = H;’;é(l - aq’)
forn € N U {o0}. For a, b € R, the g-analogue of the power function (a — b)" withn € Ny := {0, 1, 2, ...} is
given by:

n-1

(a-b)@=1, (a-b®=]]a- bg).

j=0
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In general, if p is a real number, then (a — b)® = agﬂ}’joaa_’ b and a© = g when b = 0. If 0> 0 and

bge?
0<ac<bhc<t,then(t - b)® < (t - a)©®. The g-Gamma function [,(p) is defined as:
a-gq@©v?
I, = € R\{0, -1, -2, ...},
(@) 1= qet Y \{ }

which satisfies the relation I(p + 1) = [a],T,(0) [23].

Definition 2.1. [23] Let p > 0 and u : (0, c0) — R be a continuous function. The Riemann-Liouville frac-
tional g-integral for the function u of order g is defined by (I, Ou)(t) = u(t) and

Igu)(t) =

o )I(t— gs)@ Du(s)d,s = te(1 - q)kaO k(‘;’ ;))kku(tqk) 0>0, te(0,c0).

Definition 2.2. [24] The fractional g-derivative of the Riemann-Liouville type of order p > 0 is defined by
(DJw)(t) = u(t) and

Dqu)(t) = (DF'" *u)(®), @ >0,
where m is the smallest integer greater than or equal to p, Ié') is the Riemann-Liouville fractional g-integral

of order (-), and Dj" is the g-derivative of integer order m.

Alternatively, the Riemann-Liouville fractional g-derivative of order p > 0 for a functionu : (0, c0) - R
is defined by [23]:

u(s)

Dou(t) = j dgs,
MO T ) (¢ - gspert ®

n-1<p<n.

Recall that Ifl,‘}u(t) = If*gu(t) for p, B € R* [23]. Further, according to Lemma 2.8 in [13],

[(o+1)

4 — a) o) =
l(Gc=ay) Te+o+1)

(x-a)e*?), 0<a<x<b, peR*, oe(-1,0c0).

In particular, for 0 = 0 and a = 0, using g-integration by parts, we have

IgDG) =

17 Dy((x - H)©)
- d,t
T,(0) I -loly *

()
5 f Dy((x - Y®)d,t

q(Q
1

= 7)((9)'
[ +1)

3 Main results

We begin this section with an auxiliary lemma that characterizes the structure of solutions for problems (1)
and (2).
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Lemma 3.1. Let y € C([0, 1], R) and

a+y—1 _ a+y,-1
a1 ST@ - D@t G

I(a +y) I(a +y,)

The function u is a solution for the fractional g-difference boundary value problem

vD,;"[u(x) —fO,uC))] + Q- U)Dfu(x) =ykx), O0<x«<l,

n o
_ _ e [=gs) _p[le-g*? (4)
u(0) =0, uQ)=¢ ) u(s)dgs + (1 - &) 0 w0 u(s)dgs,
if and only if u is a solution for the fractional g-integral equation
u0) = f06 uG0) + s (” j(x 45) P Du(s)d,s + rql(a) j ( - g9« Dy(s)d,s
xa-1 ji‘( _ S)(le)f(s u(S))d S + g(ui j( S)(a By- l)u(s)d s
N R B B A
- > (a+y,-1) -1
Ul"q(a+y1 j(’l qs)\ - )’(S)ds+ q( ) I(a gs) 2" Df (s, u(s))d,s )
a-ow-1 - a0 f
+ W@ By J(o gs) P u(s)dgs + ———>— STt ) !(g gs) @V Dy(s)d,s
1
- Ww-1 (@p-1) 1 @ )
I - I A= @ = o & ! (1 - 45)*Vy(s)dys - f(1, uV) .

Proof. Let u be a solution of the g-fractional boundary value problem (4). Then, we have

DELUCE) — FCx, uGo)] = (” 1)Dfu(x) + Ly,

Taking the Riemann-Liouville fractional g-integral of order a to both sides of the above equation, we obtain

u(x) - f(x, ux)) = (U 1)1;Dfu(x) + —Ify(xX) + ax™ 1 + ox*2,

where ¢, and ¢ € R are the arbitrary constants. Since 1 < a < 2, it follows from the first boundary condition
that ¢, = 0. Thus,

u(x) = f(x, u(x)) + ( )I”‘ ﬁu(x) + = y(x) + ox*1, (6)
v
On the other hand, if © € {y, y,}, then we have

X

v-1

-z - — gs)@-B+6-1) d

vl(a - B + ©) .[ (= as) (s
0

IDu() = J-(X — gs)©Vf (s, u(s))d,s +

1
I4(©)

I
J—(X qs)(‘“@ 1)y(s)dqs + Cl&)(tue—l.

i vl"q(a + 0) [y(a + ©)
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Now, by using the second boundary condition and substituting the values © ¢ {y,, y,} into the aforemen-
tioned expression, we find that

= l n-D g(vi (a-B+y-1)
! Al L) I(U 4SS, Ul dgs + vl(a - B+ %) I(U gs) K u(s)dys
Tia s (@mD 0D
vrq<a+y1 I (0 = qs)e o y(s)dgs + T8 q( ™ j (0~ )% Vf s, u(s)dgs
w _ (a—B+y,~1) (@r1-1)
+ YIS I(o gs) P u(s)dygs + ———— Ur( = Yz) J(o‘ gs) @y (s)d,s

-— (a-p-1) _ (@-1) _
vl“q( o /3) _[(1 qs) u(s)dgs q( ) j(l gs) @ Vy(s)d,s - 1, u()) |,

where A is defined in (3). Substituting the value of ¢; in (6), we obtain solution (5). Conversely, it is clear that
u is a solution for the fractional g-difference equation (4) whenever u is a solution for the fractional
g-integral equation (5). This completes the proof. O

In relation to problems (1) and (2), we introduce an operator 7 : E — E by

(W00 = Fx, uG) + ﬁ j (x — g5)@BDu(s)d,s

+ o, (a) _[(x gs)@Vg(s, u(s))d,s + o f v j{-(x ~ gs) @+ e Dh(s, u(s))dgs
X:1 T, ,[ (7 = )" Vf (s, u(s)dgs + E(Uiﬁﬂﬁ) I(n qs) P Du(s)ds
+ vrq(a—”l _[('1 gs) @ Vg(s, u(s))dgs + m '[(,1 4s) @4 1-Dh(s, u(s))dys
q( ) _[(0 gs)¥>"Vf (s, u(s))dys + % f (0 - g8)« P Du(s)d,s "
U‘;q(a o _[ (0 - gs)@-Vg(s, u(s))d,s + % :(U g e RS, u(s)ds
- ulsqlz = _[(1 qs) P u(s)dgs - 1“:({1) I(l ~ )@ Vg(s, u(s))dys

L _ (a+e-1) _
s lﬂ 45)® ¢ Dh(s, u(s))dys - F(1, u(1) |

where u € E and x € [0, 1]. Here, E = C([0, 1], R) is the Banach space of all continuous real-valued func-
tions defined on [0, 1] equipped with the norm [[u]] = supyefo,17/u(x)|, u € E. Here, one can note that the fixed
points of the operator 7~ are solutions to problems (1) and (2).

In the sequel, we set
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¥ — oY
Q=1+ i + (- §)o" +L,

ALY+ 1D AT, +1D |4

Q, = laf ! + G + (1 - §)ot + !
2 [la+1) Aa+y+1) Alla+y+1) Al a+1) ’ .
0. |b| 1 &eretn . 1 = Horrern . 1 (8)
T I + €+ 1) Algla +e+y+1)  Alla+e+y,+1) Al a+e+1) ’
v -1 1 &2 Fn - &g Fm 1
Q4= + + + .
v [a-B+1) Ala-B+y+1) [Alfa-B+y,+1) Al a-B+1)

In our first result, we prove the uniqueness of solutions to problems (1) and (2) with the aid of the
Banach contraction mapping principle [20].

Theorem 3.2. Let f, g, h € ([0, 1] x R, R) satisfy the following conditions:
(H1) there exists a positive constant L, such that, for each pair of elements u,v € R,

If O, w) = fO6 V)| < Liju - v|,  x €0, 1];

(H2) there exists a positive constant L, such that, for each pair of elements u,v € R,
lgCc, w) — g(x, V)| < Loju —v|, xe€[0,1];

(H3) there exists a positive constant Ls such that, for each pair of elements u,v € R,

|h(x, u) — h(x,v)| < L3ju —v|, x €[0,1].

Then, the fractional hybrid q-difference equation (1) supplemented with q-integral nonlocal boundary condi-
tions (2) has a unique solution on [0, 1], provided that

Q= ngl + LzQz + L3Qg + Q4 <1, (9)

where Q4, Q,, Qs3, and Q, are defined by (8).

Proof. Let us verify that the operator 7 : E — E defined by (7) satisfies the hypothesis of the Banach
contraction mapping principle [20]. Setting supyejo,1jlf (x, 0)| = Ki < +00, SuPxe[o,1]18(X, 0)| = K; < +00, and
Supye[o,1]lh(x, 0)| = K5 < +oo and fixing r > (KiQy + KQ; + K3Q3)/(1 - Q), we show that 7B, c B,, where
B, ={u € E: |u|l|l <r}. Foranyu € B,, x € [0, 1], it follows by assumptions (H;), (H>), and (H3) that

[f O uCO)I < [f (x, u() - f(x, 0)] + If(x, O)| < Lir + K,
1§ (¢, u()| < [g(x, u(x)) — g(x, 0)| + |g(x, 0)] < Lor + Ky,
[h(x, u(x))| < |h(x, u(x)) — h(x, 0)| + |h(x, 0)| < L3r + K.

Then, for any u € B,, x € [0, 1], we have

I7ul = sup {[FGx, uG)] + ‘za;_”ﬁ) j(x ~ g5) e BDlu(s)|dys

xe[0,1] v
o j<x a9 s, udys + — L [ - qsyere Dlhcs, u(s)idgs
q q
n
x(@-1 B ¥-1) & — (a-B+n-1)
ol J 1 - @90 IS, s + S j(n 48)@ BN Dlu(s)ld,s
el 1bI¢

I(n gs) @ Ig(s, u(s))ldgs + I(n gs) @ Dlh(s, u(s))ldgs

vl (a + y) ul(a + € +y)
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( ) j(a gs) DI (s, u(s))|dqs+%j(a 45)@B1-Dlu(s)|d,s
q 2 2
Jaa-8

(@ry,-1) d
Ry j(o gs)@Dlg(s, u(s))|dys

e T
vl(a + €+ y,) 0

7” (a—p-1) (a-1)
+ @B I(l qs) lu(s)|dgs + I(l gs)@Dig(s, u(s))|d,s

q()

+ —_—
qu(a + &)

I(l - gs) @& DIh(s, u(s))ldgs + If(1, u(l))I]

f (0 - q9)" Vdgs +

xe[0,1] Al | T,Gp)

X(afl)
<(Lir + K) sup {1 +
q( ¥2)

I(o gs)¥Vdgs + 1]

+ (Lor + K) sup
xe[0,1] Urq(a)

n
wv| jaig
X - gs)@d s + X I — gs)@n-bd s
j( a9 Vs + [Urq(“yl) (n - gs)@n0d,
0

lal(t - &) J - lal J _
0 - gs) @2 Vd,s 1 - gs)@Vd,s
W@y, (0 - gs) @ +—— oL@ (1-gs) q
0
(L I() ( )(0{+S l)d X(‘X—l) |b|$ rl( )(a £+Y, 1)d
+ (L3r + sup —Ix qs S + '[n—qs *en=d, s
3 ¥ xefo,1] | vIy(a + &) 7 Al | vIa + €+ ) B
|b|(1 -

57 | (g - gs)@tery l)d5+7j‘1_ s)@+e- Dds
ul"q(a+£+y2 .[( ) ul(a + €) (1-4s)

X n
v - 1] 1 x(@-D & -1 P
+rsup i ———— | (x - gs)@BVd;s + (n - gs)@PBnDds
x| V@ - B) J B Ry RSO ’

1-&l (@-Biy,-1) et (a-p-1)
+vl“q(oz ﬁ+y2)j(o g s + q( —ﬁ)-[(l ) “

<(Lyr + Kl)[l + o' + @ - &) + L]
Ay + D AL, +1) Al

(a+yy) —_ (a+y,)
+ (Lor + K) lal ! + G + 1 - ot + 1
[a+1) Al(a+y+1) JAa+y,+1)  [All(a +1)

S| TS gt - goten !
[la+e+1) Alfa+e+y+1) [Alfa+e+y,+ 1) AT (a + € + 1)

s 1|( (N o/ Coos A C Bt 3 i LR 1 )
v qa-B+1) ALa-B+y+1) [ALa-B+y+1) |Alla-B+1) ’
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which, on using (9) and definition of r, implies that |7u| < r. Thus, 7B, c B, as u € B, is an arbitrary

element. For any x € [0, 1] and a pair of elements u, v € R, we obtain

lv -

17U — TVl < sup 1 If O u() - O, vOO) + ———
V(e —ﬁ)

x€[0,1]

X
|a|

* @ 0 (x = g5) @ PIg(s, u(s)) - g(s, v(s))ldgs

|b| X _ (a+e-1) _
+ —vl"q(a s, j(x qs) [h(s, u(s)) — h(s, v(s))|dys

a-1
+ X|A| I Loy I(T‘l gs)%V|f (s, u(s)) - f(s, v(s))d,s

j(x 45)@B-Dlu(s) - v(s)|dys

& _ (a—B+y,-1) _
T L@ B J (1 = gsy*HTIuGS) — v(S)ldes
+ urqij('i " !(n gs) @1 Vlg(s, u(s)) — g(s, v(s))ldys
L — (a+e+y,-1) _
i ul(a + € +y) _[(U qs)“*=Vlh(s, u(s)) = h(s, v(s))ldgs
+ I(a gs) = VIf (s, u(s)) - f(s, v(s))|d,s
q( ¥)
w _ (a-B+y,-1) _
" Urq(a - B + yZ) J(O' qS) ’ |u(s) V(S)ldqs
1
' Jgga 1) f (0= gy lgls, u(s)) - g5, vISDldes
L (a+e+y,-1) _
T U@ e+ yy) I (0 = gs)@r=2Vlh(s, u(s)) - his, v(s))ldgs
L (a=B-1) —
’ vl (a - ,[ (1-4s) lu(s) = v(s)ldgs
* vrl:(la) !(1 = g5)“ g (s, u(s)) - 8(s, v(s))ldgs
b 1
+ |b| I(1 — gs)@* & DIh(s, u(s)) — h(s, v(s))ldgs + If (1, u(1)) - f(1, v(l))|”
ul(a + €) !

i — Y;
5L1[1+ o’ + (1 = §)on v L lu - vl

AT n+ 1) AL, +1D A

(a+y;) 1= (a+y,)
+L2[Ial( 1, & , (- §olm

[a+1) Ala+y+1) [JAlla+y,+1) |AT(a +

1))]"14 -V
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(a+e+y;) 1= (at+ety,)
4L Ibl 1 N én Pl 9 A G 1 = v
[la+e+1) Aa+e+y+1) Ala+e+y+1) [Alla+e+1)

v - 1|( 1 &(a-Bm (1 - &)ga-Br) 1 )
+ + + + llu - vl
v [la-B+1) Aa-B+y+1) JAa-B+y,+1) [Ala-B+1)

<Qlu - v,

which, by condition (9), implies that 7~ is a contraction. In consequence, it follows by the conclusion of the
Banach contraction mapping principle [20] that the operator 7~ has a unique fixed point, which is indeed
the unique solution of problems (1) and (2). The proof is completed. O

In the next two results, we present the existence criteria for solutions to problems (1) and (2). The first
result is based on Krasnoselskii’s fixed point theorem [21], while the second one relies on Leray-Schauder
nonlinear alternative [22].

Theorem 3.3. Assume that
(H,) there exist ,, i, and i, € C([0, 1], R*) with

FOowl < 0, 180wl < ,(x),  h(x, W] < P;(x) V(x, u) € [0,1] xR,
and [Pyl = supxepo,ylh;l, i=1,2,3.

If Q4 < 1, where Q, is given in (8), then the fractional hybrid g-difference equation (1) with g-integral
nonlocal boundary conditions (2) has at least one solution on [0, 1].

Proof. Let us define B, = {u € E : |lul| < p} with

Q1 + [[h,]1Q P,llQ
S 91101 + 1,192 + Il 3. Q, <1, (10)
1-Q
p - Q

where Qy, Q,, Q3, and Q, are given in (8). Clearly B, is a closed, bounded, convex, and nonempty subset of
Banach space E. Now we verify that the operator 7 : E — E defined by (7) satisfies the hypothesis of
Krasnoselskii’s fixed point theorem [21]. For each x € [0, 1], we define two operators from B, to E as follows:

e (a-p-D X sw-1D (@-B+3-1
(Ta(x) = T (a - ﬁ) j(x qs) u(s)dgs + N TR j(n 4s) @ B+1Dy(s)d,s
(11)
a-Hw -1 (@-B+y,-1) . Ww-1 et
+ (@ - B +y,) I(G qs) Y-Du(s)d,s o, (@ I(l qs) u(s)ds |,
(TA)0) = Fx, u(0) + — I (x — gs)@Dg(s, u(s))d,s + b J‘(X a5 ks, u(s)ds
’ vig(@) o ’ T ula + e) ’ q
xa-1 n - at n _
A [T j('l - gs)"Vf (s, u(s))dgs + m J-(n — qs) @ Vg (s, u(s))dgs

i = .[ (1 — gs) @ e DR(s, u(s))dgs + ———=
vl(a + € +y) !

q( 2 j(o g5)Vf (s, u(s))dys (12)

al-§&) (@+y,-1) _ba-§& eyt
oL+ Yz) I(U gs) @ r>"Vg(s, u(s))d,s + ICETEEN I(o gs)@+ €1 Dh(s, u(s))d,s
b 1
- - G e _ (a+e-1) _
ul“q(a) J(l gs)@ Vg (s, u(s))d,s - ST e !(l gs) h(s, u(s))d,s — (1, u(D) |.
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For any u, v € B,, we have

% (x - g8) P Dlu(s)ldys

x€[0,1]

|Tu(x) + Tv(x)| < sup [lf(x, vOO)l +

|a| @D |7b| ( _ (a+e-1)
+ T J(x gs) @ V|g(s, v(s))|dgs + @ o j(x qs) (s, v(s))|d,s
x-1 -1 slvi (a—B+y,-1)
"l [ LW I(ﬂ gNfS, v(SDIdgs + vlg(a - B +y) ,[(71 gs)* FVlu(s)ldgs

_ lalg

j(n g5) @ HD|g(s, v(s))|dys
vl (a + y) !

n
L j(n - qs)(a+£+}/171)|h(s, V(S))ldqs
(@ +€+y) !

a-9O -1

_[(0 as)¥2VIf (s, v(s))ldgs + (0 — gs)@ P+ Dlu(s)|dgs

q( v) VB ry) )
|al(1 — {) @D
T (e v ) (0 - gs)“ 2 VIg(s, v(s))ldgs
bl —

L A e R (a+e+y,-1) h d
e yz) j(o gs) Ih(s, v(s))\dgs

j(l 45)@BDlu(s)|d,s + r':('a) j(l—qs)(*%g(s, V(s)ld,s

ul"q(a

+ —_—
qu(a +£)

j(l — gs) @ Vlh(s, v(s))ldgs + If(1, V(l))l}

j(n g5)0ds +

L,(n)

X(a—l
<llyll sup {1+
x€[0,1] |A|

-1
q(z) J(o gs)V: ds+1]

+ [lph,]l sup

x€[0,1] q( )

n
| a
(@-Dg g+ X I _ gs)ar-Dgd
f(x gs)*Vdgs + A [qu(a+yl) (n-gs) as
0

1
ald -4) J‘ lal .
(0 - gs) @ Vd,s + ——— f(l - gs)@Dd s
vl (a +y,) vly(a) ! !
||l,[) ll ( )(a 1) x(@D |b|§ '7( )(a e+y-1 g
+ sup 7Ix—qs re-lds + In—qs e ds
> o | vTy(a + €) ) 1 Al | vIa + &+ ) a

+ _bia-¢) J‘(a gs) e ld,s 4 ————— J(l - gs) @& Vd,s
vli(a+€+y,) qu( + 8)
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+p sup |1}4"‘0( gs)“PVd,s +
x€[0,1] Urq(a

x@D & -1
Al | vI(a = B +y)

n
j(rl _ qs)(“—ﬁ+)’1‘1)dqs

L a-ow-1

/ASal 2

s||¢1||[1+ g A-gon 1
AT(h+ 1) AGG,+ 1 1A

s Il x |a| 1 . & . 1 - ol . 1
2 la+1) Aa+y+1) |Alfa+y+1) [|Al(a +1)

||ll) | |b| 1 {n(a+e+y1) a- {)U(a+£+y2) 1
3 [(a + e+ 1) " Allla + e +y, + 1) " Al(a + € +y, + 1) " [AlTy(a + € + 1)

v -1 1 &na-pr @ - &)o@ by 1
+p + + +
v [la-B+1) Ala-B+y+1) JAa-B+y+1) [Alla-p+1)
<IPllQr + 19,01Q2 + 1h5llQ3 + pQy,
which implies that |7u + 7,v| < p by condition (10) and so 7w + 7,v € B, for all u,v € B,. From the
continuity of f and g, it follows that the operator 77 is continuous on B,.

In the next step, we show that the operator 75 is compact. Let us first show that 75 is uniformly
bounded. For each u € B, and x € [0, 1], we have

I75ull < sup 1 If G, u(x)| + —— I(x gs) @ D|g(s, u(s))|dgs + bl
q( ) v

(x — gs)@*eD|h(s, u(s))|dgs
x€[0,1] T(a+¢) .[ a

XlAl ) I(n qs)(y1 l)[f(s u(s))|dqs I ol T I |£ ) j(n qs)(a+y1 1)|g(s u(S))qus

L I(n — gs)@+ern-D|p(s, u(s))ldgs +
vl + &+ yl) !

q( o j(o g5) DI (s, u(s))|dgs

1al -8 [ @ CBA-O [ e
T U@ty vl (a +y,) 0(0 qs) 2 VIg(s, u(s))ldgs + L@+ e+ 1) 0(0 qs) 2" VIh(s, u(s))|dys

|a]

1
_ (a-1) |b| _ (a+e-1)
" o !(1 918 UMy + P ! (1 - g8)®*=Dih(s, u(s)dgs + [F(L, u(D))]

énh 1 -&o" 1
< 1 .
= "”’1”[ TRLG D ALy, D A ] + o

jal( 1 g (1 - ol 1
x | — + + +
v La+1) [Ala+y+1) Alla+y,+1)  [Al(a+1)

Ty E— fen (1= o 1
+ + +
¥s [la+e+1) Ala+e+y+1) AMla+e+y,+ ) [AlT(a + € + 1)

= yl1Q1 + Illl)zlle + [1511Qs.

In order to establish the equicontinuity of the operator 75, we assume that x, % € [0, 1] such that
X > x;. We will show that 7, maps bounded sets into equicontinuous sets. For each u € B,, we have
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|T2u(%) — THu()| < sup {1f (o, uGe)) - f04, uGa))| + j[(xz - qs) @D — (x - gs)*V]|g(s, u(s))|dgs
xe[0,1] v q(a) o

L 1 _ (a+e-1) _ _ (a+e-1)
+ I a+e) I[(Xz qs) (a - gs) 1Ih(s, u(s))|dgs

+ % Io{z - g5)“Dlg(s, u(s)ldys + % To@ - g5) @< Ih(s, u(s))Idgs
N xz(al)';Ixfal) rqul) jl' (1 - g8)VIf(s, u(s)|dgs

. Urqg'i 5 j(n g)\ @ Dlg(s, u(s)ldys

" ﬁ j (1 - )@ <1 V]h(s, u(s))ld,s

+ q( ) j(o gs)"V|f (s, u(s))|dys

. J‘r’l& = j (0 - g5) @ Dlg(s, u(s))\dys

L P-4 I (0 - gs)@ e Dl(s, u(s))|dgs

vli(a + &+,
0

L _ (a-1) _ (a+e-1)
+ oL@ !(1 qs)“VIg(s, u(s))ldgs + D@+ o) j(l qs) |h(s, u(s))|dgs
|a|||¢2” h (a-1) (a-1)
<|If o, u(x)) - fOa, u(a))| + oL (a) [Ce - gs) - (a - gs) ldgs
q
|b|"¢3" (a+e-1) _ (a+e-1)
s j[( - gs) (4 — g5) @ D]dgs

allol f g bl
" vly(a) I 06 = g Pdgs + vl(a +

(x("‘ 1 _ (rx—l)) ||1/J1||‘f'1y1 . Ialfllll)zlln<“+yl N |b|§'||¢3",1(a+e+yl)
|Al n+1D va+y+1) vljla+e+y+1)

. P, ~ &)or . lalllp,li(1 - &)otarr2) N bll;l(1 - &)a@rerr)
LG, + 1) ul(a +y,+ 1) ila+e+y,+1)

L laigal bl ]

j( qs)(a+£ l)d S

(@) vl a+e) |

Observe that the right-hand side of the above inequality is independent of u € B, and tends to zero as
x; — X. This shows that 77 is equicontinuous. Therefore, the operator 75 is relatively compact on B,, and
hence, the Arzela-Ascoli theorem implies that 75 is completely continuous and so 7> is the compact
operator on B,.
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Finally, we prove that the operator 77 is a contraction. For any u, v € B, and x ¢ [0, 1], one can write

[T - Tl < sup | —V=

e f (c = g5+ P V) - violdes
x€|0, q

Xa—l £|U
Al | vIy(a - /3+y1

j(n g5) a4 Dlu(s) — v(s)|dys

T
Urq(a - ﬂ + )/2) J-(U qS) vl |U(S) V(s)|dqs

T~ (a-B-1) _
* vl“q(a B) ,[(1 qs) [u(s) — v(s)ldgs

< Qyllu - v|.

Since Q, < 1, so 77 is a contraction. Thus, all the assumptions of Krasnoselskii’s fixed point theorem [21] are
satisfied. Therefore, the fractional hybrid g-difference equation (1) with g-integral nonlocal boundary
conditions (2) has at least one solution on [0, 1] and the proof is completed. O

Theorem 3.4. Assume that:
(H5) there exist continuous nondecreasing functions x,, x,, ¥; : [0, 00) — (0, c0) and functions ¢,, ¢,, ¢, €

C([0, 1], R*) such that |f(x, w)| < ¢,y (ul), 18(x, W] < P,0Ox,(lul), and |h(x, w)| < P;x(lul) for
each (x,u) € [0,1] x R;
(H6) there exists a constant G > 0 such that
(1 -Q,G
P, (G)Q1 + 11h,lIx,(G)Q2 + 5l (GIQ3

where Qq, Q,, Q3, and Q, are defined by (8).

> 1, 04 <1,

Then fractional hybrid q-difference equation (1) with gq-integral nonlocal boundary conditions (2) has at least
one solution on [0, 1].

Proof. We verify the hypothesis of Leray-Schauder’s nonlinear alternative [22] in several steps. Let us first
show that the operator 7, defined by (7), maps bounded sets (balls) into bounded sets in E. For a positive
number w, let B, = {u € E : ||Ju| £ w} be a bounded ball in E. Then, for x € [0, 1], we have

"Tu”SxS:[?,)u If Ox, uG))| + ﬂ f(x gs) P Dju(s)|dgs
Ur';‘('a) (¢ - a5, usids + % j(x - g8)@ e Dlh(s, u(s)ldys
le 0 !(n @S VIF s, u(sDIdys + — 5'” ﬁ+y1 !(n 4)e B Vlu(s)|ds
UrqEZ'i 5 j(n 491 Vlg(s, u(s)ld,s + % }(n gY@ N DIA(s, u(s))Idgs
q( > j(o a)%= VI (s, u(s)ldys + %I(o 48P Dlu(s)|dys
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lal( (a+y,~1) L (a+e+y,-1)
mme@‘wy'm“mM+qu+mﬁ“$)V'WWWM
1
v - (@-p-1) lal @
VL, - _[(1 qs) lu(s)ldgs + oT,(@) -([(1 gs) @ D)g(s, u(s))|dys

——— — (a+e-1)
+ ul(a + €) !(1 qs) |h(s, u(s))ldqs + IfQ, u(D)|

bl (@) sup 11+ X
<|lgyllx(w) sup {1+ ——
P o Al | T

I(n gs)nVdgs + ——= f(o gs)¥Vdgs + 1

q( ¥2)

x@n lal§
Al | vTya + y)

+ g, llx, (w) sup

j(x gs)@Vd,s +
xe[0,1] q( )

n
'[('1 - gs)“ Vd,s
0

al - $§)

(g qs)(a+y2 l)d St —— _[(1 qs)(zx l)d S
vl(a +y,) .[ q( a)

+ "¢3||X3(CU) sup (x - qs)(a+e—1)dqs

xefo,1] | VIg(a + €) -!

xe | bl
Al | vI(a + €+ y)

n
I(rl _ qs)(a+s+y1—1)dqs

o
|b|(1 - &) '[ (a+ety,-1) j
L e A _ a+e+y,~1dq 1- (a+e— l)d
vI(a+e+y,) ©-a) *F Ua + ) qu(a +€) (1-gs) as

(a-1) _
+ w sup o1 _[(x gs)@Fd,s + X S — 1) _[(?1 - qs)@PDd s
xefo,1] | VIg(ar — Al | vIg(a - B+ y)
A= -1 I (0 — gs)@FDd,s + _-1 I(l qs)@F-Vd,s
vy - B+y) ) VI, (@ - B)

<l (@)Q1 + N1, lx, (@) Q2 + 15l (@) Q3 + W Q.

Second, we show that 7~ maps bounded sets into equicontinuous sets of E. Let x;, x, € [0, 1] with x; < % and
u € B,. Then, we have
[TuCe) — Tua)| < sup {|f (o, u(x)) - fOa, uGx))|

x€[0,1]
X

|
|U - 1| [(XZ _ qs)(a*ﬂfl) _ (Xl _ qs)(a—ﬁ—l)]lu(s)|dqs

+ —
uly(a - B)

S L (a--1)
+ qu(a B) '[(Xz qs) [u(s)|dgs

a - (a-1) _ _ (a-1)
Urq(a) ![(Xz qs) (q - gs) 1lg(s, H(S))qus



DE GRUYTER

_ bl
vl(a + €) .[
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oL (a 5) j (6 - qs)(a+e 1 _ = qs)(zx+s 1)]|h(s u(S))qus
q

urj(a) ,[ (o = g5)\* Vg (s, u(s)ldgs

(% — gs)@*eD|h(s, u(s))|dgs

Xz(a—l) _ Xl(a—l)

ul(a + € +y)

-9 -1

UF(a+£+y2)

j(n gs) " DI (s, u(s))\dys

A | o

R L (a-B+y,-1)

BT j(n 45) @B Dlu(s)|dys
e

(a+y,-1)
ot ) J(n qs)**~Vlg(s, u(s))|dys

1ble j(n ~ 9@ e nDlh(s, u(s)ldgs

q( > j(a g5)DIF(s, u(s))\dys

_ (a-p+ 2’1)
oL@ By J(a gs) PV Plu(s)|dgs
Jald - &)

(a+y,-1)
o) j(a g5)@-Dlg(s, u(s))ldys

|b|(1 - I (0 — gs)@re v Dlh(s, u(s))|dgs

_[(1 gs) @ P Dlu(s)|dgs + Ia(l j(l = gs) @ D|g(s, u(s))|dgs

UI‘q(a

= _ (a+e-1)
Urq(a + E) j(l qS) |h(S u(S))ldqul}

X

< 1f G, u(w)) — £, uG)| + % 0 06 - g8)«BD — (x — gs)«B-D]d,s
oot o (a-p-1) Al e@) [ e peyen
o »l (6 = geH s + LS ! [0t - g5)@D — (x — gs)@D]d,s
|b|||4)3||)(3(a)) o @reeD) _ (y _ pe)ate-1)
7%(“ ) [Ce - gs) (4 - gs) ldgs

 lalll (@) wn, o Bllgsp@ Foo
vl (a) .[ 06 = gs)* Pdgs + vl(a + €) I 06 = gs) dgs
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L GO bl @)t gwly — 1 iyl (@)@
|Al L+ 1) vla-B+y+1) vl(a+y+1)
. |bI& 5 llxs (w)n@resn) . lyllx; ()1 — §)o” L wd-9 - 1|g@ B+
vlia+e+y+1) Ly, +1 ula-B+y,+1)
N lalllp,llx,(@)(1 - &)@+ . bllldsl (@)(1 — &)otaresr

vli(a+y, + 1) via+e+y,+1)

wp -1 |alllg,lIx, (w) .\ |blllbslx; (w)
ula - B+ 1) vl (a) ula+e) |

Obviously, the right-hand side of the aforementioned inequality tends to zero independently of u € B, as
X% — x. Therefore, it follows by the Arzela-Ascoli theorem that 7 : E — E is completely continuous.

In order to complete the hypothesis of the Leray-Schauder nonlinear alternative [22], it will be shown
that the set of all solutions to the equation u = ©7u is bounded for 8 € [0, 1]. For that, let u be a solution of
u = 07u for 6 € [0, 1]. Then, for x € [0, 1], we apply the strategy used in the first step to obtain

lull < Qallylx (lul) + Qalld,lx, lul) + Qslisles () + Qallull.

Consequently, we have

(1 - Q| -
161106 ()21 + 15, Iz + Ol bl Cul)

By the condition (Hg), we can find a positive number G such that |u|| # G. Introduce a set

U={ucE:|ul| <G} (13)

and observe that the operator 7 : U — E is continuous and completely continuous (U is closure of U). With
this choice of U, we cannot find u € oU (0U is boundary of U) satisfying u = 87u. Therefore, it follows by the
nonlinear alternative of Leray-Schauder type [22] that the operator 7 has a fixed point in U. Thus, there
exists a solution of problems (1) and (2) on [0, 1]. The proof is complete. O

4 Examples

Example 4.1. (Illustration of Theorem 3.2)
Let us consider the fractional hybrid g-difference equation
0.99D&2[u(x) - f(x, u(x))] + (1 — 0.99)D3u(x) = 0.25g(x, u(x)) + 0.251F2h(x, u(x)), (14)
with g-integral nonlocal boundary conditions

0.35
(0.35 — gs)©1-D
I,(0.1)

0.25
(0.25 — gs)©1-D

u(0) =0, uQd)= T0.0)
(0.

u(s)dgs + (1 -0.1) u(s)dgs, (15)

where a =15, ¢ =0.5, $ =101, n =0.25, 0 =0.35, e =15, v=0.99, £=0.1, ,=y,=0.1, a= b = 0.25,
x € [0,1], and

0.07|cos(rm)||u(x)|
3+ Ju()|

90u(x)|
1,000(1 + |u(x)])’

8lu(x)|
100(1 + [u(x)|)"

fx, u(x)) = , 8, u(x)) = h(x, u(x)) =
Then, L, = 7100, L, = 9100, L; = 8100 as

If G, u(x) = fOx, vOO))| < %(IM(X) - v, I8, u(x)) - glx, vO))| < %(IM(X) - v,
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IhGx, u(0) — h(x, vOO)| < %uu(x) —vD.

With the given data, it is found that A = 0.480477, Q; = 5.01705, Q, = 0.729128, Q3 =~ 0.654832, Q4 =
0.0458087, and Q = 0.51501 < 1. Clearly, the assumptions of Theorem 3.2 hold, and hence, problems (14)
and (15) have a unique solution on [0, 1] by the conclusion of Theorem 3.2.

Example 4.2. (Illustration of Theorem 3.3)
Consider the fractional hybrid g-difference equation

0.99D2[u(x) — f(x, u(x))] + (1 — 0.99)DEu(x) = 0.25g(x, u(x)) + 0.25I¥2h(x, u(x)), (16)

subject to g-integral nonlocal boundary conditions

0.25 0.35

mi—(—gsf”u@dqs +(1-01)
0.

(0.35 — gs)©1-D

u(0)=0, u()= I,(0.1)
+(0.

u(s)dgs. 17)

Here, a = 1.5, ¢ = 0.5, B =1.01, n = 0.25, 0 = 0.35, e = 15, v = 0.99, £ = 0.1, h=¥»=01,a=>b=0.25
x € [0,1], and

X?|u()]

1
foeu) = §(1 T )]

+ 41, g(x,u):lM_},l, h(x,u):l xju()| +71.
2\ 1+ [sinu| 4 501+ [u(x)|

On the other hand, there exists a continuous function ¥,(x) = (x + 3)5, Y,(x) = (4x + 1)8, and P;(x) =
(x +7)5 on [0, 1]. Also, we have [[,| = supyejo,;jip;(x) = 0.055556, [[,| = Supyejo,P,(X) = 0.3125, and
)]l = supxefo,P5(x) = 1.6. Using the given values, we have that Q, = 0.0458087 < 1. Clearly, all the
assumptions of Theorem 3.3 are satisfied. Therefore, the conclusion of Theorem 3.3 applies, and hence,
the fractional g-integro-difference equation (16) with g-integral nonlocal boundary conditions (17) has at
least one solution on [0, 1].

Example 4.3. (Illustration of Theorem 3.4) Consider the fractional hybrid g-difference equation

0.99D2[u(x) - f(x, u(x))] + (1 - 0.99)DE2u(x) = 0.25g(x, u(x)) + 0.25I¥2h(x, u(x)), (18)

subject to g-integral nonlocal boundary conditions

0.2

u(0) =0, u@)=

5 0.35
(0.25 — gs)©1-D

I,(0.1)

5 _ qs)(O.l—l)

u(s)dys + (1 - 0.1) I ©3 s (19)
0.
0

Here, a = 1.5, ¢ = 0.5, f=1.01, 1 =0.25, 0 =0.35, €¢=1/5, v=0.99, £=0.1, y=y,=0.1, a=b = 0.25,
x € [0, 1], and

3 cos(u)
3+ x)?’

) .
2(x, ) = (xu;r Du () = 4 sin(u)

fouy = +1 T o(x+ 4?2

With the given data, we obtain Q; = 5.01705, Q, = 0.729128, Q3 ~ 0.654832, Q, =~ 0.0458087, and

3 Dlul?
e 1< 252D = oo ub, g6 w] < S = . co00u,
e ] s T = 90 (u.
lul?

Clearly, §,(x) = 575 X (Iul) = cos(lul), p,00) = x + 1, xy(Iul) = 55 9500 = ' and xy(lul) = sin(lu).
Moreover, the condition (Hg) implies that there exists G > 2.28404. Thus, the hypotheses of Theorem 3.4 are
satisfied. Therefore, the conclusion of Theorem 3.4 implies that the hybrid g-difference equation (18) with
nonlocal g-integral boundary conditions (19) has at least one solution on [0, 1].
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5 Conclusion

We have developed the existence theory for hybrid fractional g-integro-difference equations involving
Riemann-Liouville g-derivatives of different orders, complemented with nonlocal Riemann-Liouville g-inte-
gral boundary conditions. Our results are new and contribute significantly to the known literature on
nonlocal hybrid g-fractional integral boundary value problems. In particular, our work generalizes the
results proved in [2]. Several special cases also follow from the results of this article, for instance, see
the following examples.

(i) For & =1, we deduce the results for the nonlinear hybrid Riemann-Liouville fractional g-integro-dif-

ference equation (1) subject to the nonlocal boundary conditions of the form:

¢ (rl _ qs)()ﬁ_l)

u(0)=0, u(l)= o)
aN

u(s)dgs, y, > 0.
(ii) Our results correspond to the following problem forv =¢=1,a=1,and b = 0:
DyTux) - fOx, u())] = gx, ux)), 0<x<1,

i (rI — qs)(}’fl)

u(0) =0, uQd)= )
aN

u(s)dgs, y, > 0.

(iii) We obtain the results for the following problem if we fix v = 12, a = 0, b = 12 in the present results:

D7[u(x) - f(x, u())] + D,fu(x) = I;h(x, u(x)), 0<x<1,

n g
_ -1 _ (-1
e[ =B s + (1 - ) [ LB y(5ydgs, ypy, > 0.

0)=0, 1) =
MO0 D e ) o

The aforementioned results are indeed new.
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