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Abstract: In this article, we study the regularity criteria of the weak solutions to the Boussinesq equations
involving the horizontal component of velocity or the horizontal derivatives of the two components of velocity
in anisotropic Lorentz spaces. This result reveals that the velocity field plays a dominant role in regularity
theory of the Boussinesq equations.
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1 Introduction and main result

The 3D Boussinesq system for the incompressible fluid flows in R3:

O — Au + (u -V)u + Vi = Oes,
0,0 — A6 + (u-V)8 =0,

V-u=0,

u(x, 0) = up(x), 6(x, 0) = Go(x),

1D

where u = u(x, t) is the velocity vector field, 8 = 6(x, t) is the scalar temperature, in which case the forcing
term fe; in the momentum equation (1.1) describes the action of the buoyancy force on fluid motion,
7 = n(x, t) is the scalar pressure, while uy and 6, are the given initial velocity and initial temperature with
V- ug = 0 in the sense of distributions, and e; = (0, 0, 1)T denotes the vertical unit vector. For simplicity, the
kinematic viscosity and thermal conductivity are normalized.

The Boussinesq equations play an important role in atmospheric sciences (see, for example, [1,2]), as well
as amodel in many geophysical applications, and have received significant attention in the mathematical fluid
dynamics community because of their close connection to the multi-dimensional incompressible flows (see
[3,4]). When 6, is identically zero (or some constant), equations (1.1) reduce to the well-known Navier-Stokes
equations, which are extremely important equations to describe incompressible fluids. These equations have
attracted great interests, among many analysts, and there have been many important developments (see, for
example, Lions [5], Temam [6] for survey of important developments).
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Let us review some previous works about the viscous Boussinesq equations. For the two-dimensional case,
the well-posedness problem is well understood. For more results in this direction, see [7-11] and references
therein. For the three-dimensional case, however, the global existence of strong or smooth solutions in 3D is
still an open problem. One can refer to [12-18] and references therein for recent developments along this line.
These motivate us to find some possible blow-up criterions of regular solutions to (1.1), especially of strong
solutions. The first blow-up criterion in the Lebesgue space was proved by Ishimura and Morimoto [19]:

Vu € LY0, T; L*(R?)).

Later, Qiu et al. [20] refined the following blow-up criterion in the largest critical Besov spaces by applying
Bony paraproduct decomposition to both the momentum equations and the diffusive equation:

u € LP(0, T; By «(R?),

where % + % =1+r, % <q<oo, -1<r=<1, and (q,r) # (., 1). Subsequently, considerable works are
devoted to the Boussinesq equations (we refer the readers to the interesting works [21,22] and references
cited therein).

The mixed Lebesgue space L7 (R3), with p” € (0, »]3, as a natural generalization of the classical Lebesgue
space LP(R?) via replacing the constant exponent p by an exponent vector p’, was investigated by Benedek and
Panzone [23]. Motivated by the aforementioned work of Benedek and Panzone [23] on the mixed Lebesgue
space L? (R3), Fernandez [24] first introduced the anisotropic Lorentz spaces. Indeed, these function spaces
with mixed norms have attracted considerable attention, and there has been made great progress since
Benedek-Panzone’s work. We refer to the readers to consult the recent preprint [25] and references therein.
Since the Lorentz spaces with mixed norms have finer structures than the corresponding classical function
spaces, they naturally arise in the studies on the solutions of partial differential equations used to model
physical processes involving functions in n dimension space variable x and one-dimensional time variable ¢
(see, for instance, [25]).

As a continuation of the previous work [26], in this article, we focus on the Cauchy problem of the three-
dimensional incompressible Boussinesq equations to give a further observation on the global regularity of the
solution for System (1.1) via two velocity components in anisotropic Lorentz spaces, which are more general
than the classical Lorentz spaces LP1 (see, e.g., [23,27-30]). The method presented here may be applicable to
similar situations involving other partial differential equations. This work can be modeled to apply for
Environmental Health and Safety by using the relationship with in fluid dynamic in atmosphere sciences
by some sort of reduction of the Navier-Stokes equation as well as the related equations of viscosity.

Before stating the precise result, let us recall the weak formulation of (1.1).

Definition 1.1. (Weak solution) Given 6y € L'(R%) N L*(R3) and uy € I*(R3) with V- uq = 0, a pair of functions
{u(t), 6(t)} defined for t > 0 is called a weak solution of the initial value Problem (1.1) if the following state-
ments are valid:
oy}
(u, 0) € L*(0, T; LXR3)) N L*(0, T; HY(R?)), 8 € L*(0, T; LX(R?) N L (R?)), 1.2)
forall T > 0.

(2) (1.1)13 are satisfied in the sense of distributions;
(3) the energy inequality

t t
IuCOIE: + 2 [I1VuCDlEade < uols + 2 [ [ busdxd,
0

0R®

t
16C.OIF. + ZIIIVB(',T)IIisz < 160l132,
0

foral0<t<T.
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A solution of (1.1) that is in
(u, 0) € L*(0, T; H'(R®) N L*(0, T; HA(R?))

is a strong solution. It is known that strong solutions are actually smooth [31] (see also [32], p. 364).

Remark 1.1. A weak solution of (1.1) is regular on time interval I if the Sobolev norm ||(u, 8)||gs is continuous

for s > % on I. One can apply a standard bootstrap argument to show if a solution is regular, then u and 8 are
smooth.

Remark 1.2. System (1.1) has scaling property that if (u, 6, ) is a solution of System (1.1), then for any A > 0, the
functions

u(x, t) = Au(Ax, 22t),  0(x, t) = BO(Ax, A2t), m(x, t) = Pr(Ax, A%t)
are also solutions of (1.1), with the corresponding initial data
uy(x, 0) = Aup(Ax),  Bi(x, 0) = 130¢(Ax).

This motivates the study of (1.1) in function spaces that are left invariant by the aforementioned scaling.

Vi, = (01, 02) denotes the horizontal gradient operator, and & = (i, Uy) is the horizontal components of the
velocity field u. Now, our main results can be stated in the following.

Theorem 1.2. Denote 7 = (13, 1, 13) > 2. Let (ug, 0y) € HY(R?) with V- uy = 0. Assume that (u, 9) is a weak
solution of (1.1) on some interval [0, T) with 0 < T < co. If the tangential components of the velocity U satisfy
one of the following two conditions:
@
PR S B . 21
ii € L*Giz3(0, T; L°(R3))  with ZF <1 (1.3)

i=1"1
(2) Assume that Zf‘:& = 1. Then, there exists § > 0 such that if
€ L([0,T]; I"*(R®) and ||ll=qor}; ow?) < 6> (1.4)

then the solution (u, 8) € C*((0, T) x R3).

The second result deals with regularity criterion expressed by the horizontal derivatives of horizontal
components of the velocity under the anisotropic Lorentz space framework.

Theorem 1.3. Denote 7 = (1, 13, 13) > 1. Let (ug, 8p) € HY(R3) with V- uy = 0. Assume that (u, 0) is a weak solu-
tion of (1.1) on some interval [0, T) with0 < T < o, If
2 3 1
Vil € L (i5)(0, T; IF=(R3)) with Z; <2, (1.5)

=1t

then the solution (u, 8) € C*((0, T) x R3).

Remark 1.3. Our results improve almost all known regularity criteria involving Lorentz spaces or two
components.

Remark 1.4. Since the blow-up criteria in Theorems 1.2 and 1.3 are only on the velocity field u and there is no
any additional condition on the temperature field 6, on the one hand, the velocity vector field plays a very
important role than the temperature field in the regularity criterion for the Boussinesq equations. On the other
hand, thanks to the fact that Boussinesq equations (1.1) with 8 = 0 reduces the Navier-Stokes equations,
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Theorems 1.2 and 1.3 cover the previous results [33] on Navier-Stokes equations in the largest anisotropic
Lorentz spaces.

We recall some tools from the theories of the anisotropic Lebesgue and Lorentz spaces (for details, see
[30]). Throughout this article, we denote C a universal constant depending only on prescribed quantities and
possibly varying from line to line. We endow the usual Lebesgue space LP(R3) with the norm ||-||;». We denote

by g; = Bixi the partial derivative in the x;-direction. Recall that the anisotropic Lebesgue space consists of all
measurable real-valued functions h = h(x, X, X3) with the finite norm:

Ihllaws = IRl arg sy = AR 2w lgw) < -
Let us recall the notation of anisotropic Lorentz space, which is a natural generalization of classical Lorentz
space.

Definition 1.4. Let multi-indexes p = (p,, p,,p;) and q = (q, Gy, q;) With 0 <p, <o, 0 < g; <o for all
i € {1, 2, 3}, the anisotropic Lorentz space LP-7(R%) is a set of measurable functions h(x, x;, X3) on R? such that
llpags, = Wl pogemoes = Al ligew lgew < o

For p,=p,=p,=p and q, = ¢, = ¢; = q, the spaces LP4(R%) coincide with the usual Lorentz space
LPA(R?). Note that the anisotropic Lorentz spaces LP-7(R?) introduced in [4] are another widely used general-

ization of isotropic Lebesgue and Lorentz spaces, a natural question arises whether the velocity u in scaling-
invariant anisotropic Lorentz spaces also means the regularity of weak solutions.

Lemma 1.5. Let p = (p;, p,, P3) and q = (qy, Gy, G3) With1 < p; < 0,0 < g, < = for alli € {1, 2, 3}.
(1) For any 0 < k < =, if |h[* € LP-4(R3), then h € L’*I(R?) and
K llpages, = IRlEsags,

where kp = (Kp,, Kp,, Kp3) and K§ = (Kq;, Kq,, Kq5).
) If f,g € LPA(R?), then f+ g € LP4(R%) and

If + glipagrs) < CCUIflIrawe) + Iglragws)s
where C = C(P, q) is a positive constant.

In the following, we recall the following embedding results for the anisotropic Lorentz spaces with
mixed-norm.

Lemma 1.6. Let p = (py, Py, P3), § = (qy; G5, G5), and T = (11, 13, 13) be the vector-valued indices. If 1 < p; < o,
1<q << foralli €{1,2,3}, then we have the following sequence of continuous embeddings:
LPAR?) = LPTRY) = LP=(R?),
with
Ifllz=w3 < Cllfllrrws < Cllfllpags),
where C = C(p, 4, T) is a positive constant.

Similar to the usual Lebesgue and Sobolev spaces, there is also the Ho lder inequality for the anisotropic
Lorentz spaces with mixed-norm.

Lemma1.7. Let1< p,s,aq; <o and1<q,n,B; < = for alli € {1,2, 3}. Then, if for each i = 1, 2, 3, it holds the
following relations:
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1 1 1 1 1 1
S+ and —=-+,
b S G G n B
then for any f € L%F(R3) and g € L57(R®), we have fg € LP-A(R3) with the estimate
Ilfg”Lﬁ*q(IR3) S Hf”]ﬁﬁ([RS)”g”L”([RS)'

In order to prove the main result, we need to recall the following version of the three-dimensional Sobolev
inequality in anisotropic Lebesgue spaces in the whole space R3, which is proved in [34]. In fact, since
LT2 < L[99 for 2 < g, < » for all i € {1, 2, 3}, we have

Lemma 1.8. Let us assume that 2 < q, q,, q; < © and

Then, for f € Cy(R%), we have the following estimate:
G2 %2 452

] 2 L2 11,11
_ q q; q. q 4 qz7 2
Ifllzz < ClloLfIl 2" 021122 N0 fll =" NIfIlzt ™ ™

1,.1.1,.1 3_1.1.1
Gt w2 g2 @0 )
<CIfL" ™ ™ CNfll ™ ™

(1.6)

and C is a constant independent of f.

Here, we make use of the following Gronwall-type inequality, which is a variant of the standard
Gronwall’s inequality as presented in [35, Appendix B.2.j].

Lemma 1.9. Let n(:) be a nonnegative, absolutely continuous function on [0, T, which satisfies for a.e. t the
inequality
n'@®) + P < pOn(t),

where ¢(t) and Y(t) are nonnegative, summable functions on [0, T]. Then,

1@ + [odr < () exp| [ o(rar
0 0

The proof follows the same idea as that presented in [35] and is omitted.

2 Proof of Theorem 1.2

We introduce the main ideas of the proof of Theorems 1.2 and 1.3. It is well known that there exists a unique
local strong solution to 3D Boussinesq equations (see [36]). For (uq, 8p) € HY(R®) with V- uy = 0, the weak
solution is the same as the strong solution in short interval (0, T). If we can find a priori uniform H'-bound in
(0, T) for the strong solution with the regularity condition of our main Theorem 1.2, then the solution can be
continuously extended to the time ¢t = T argued by standard continuation process (see, e.g., [37]). Thus, the
main Theorem 1.2 is reduced to establish the uniform H'-bound for such strong solution.

We are ready to present the proof of Theorem 1.2.

Proof. Let T > 0 be any given fixed time. From the second equation of (1.1), one may easily show that for any
s E [2? w]!

10C,Ollzs < ll6olls,  t € [0, T, @1
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where we have used the divergence-free condition V- u = 0, so

0 € L°(0, T; L5 (R?)).

2.2)

Next, taking the L?-inner product of the first equation and the second equation in (1.1) with (-Au) and

(-A0), respectively, and integrating by parts, we obtain

L a0 + 190C0IE) + 18uC. Ol + 1A6C,OIE:

2dt
= j(u V) - Audx + j(u V)0 - AGdx - ‘|'9e3 - Audx
R® R® R®
= h+ L+ 13

where
L= I(u Vu-Audx, = j(u V)0 -A0dx and Ty = —jee3 - Audx.
R® R® R3
For 713, it follows from the Cauchy-Schwarz inequality that

I3 = IakeakMBdX < [[Vull2 VOl < —(IIVHII 2 + [[VO][7).
k=1g3

By the Sobolev inequality ||f]|;s < C||Vf]|;2, the Holder inequality, and Young inequality, we obtain

I, <8011 [lulls V6|2
1
< CIIAGIILZIIVMIILZIIVGOII zIIAGII

< Cl|Vull2 V6017 + - |IA9II

%

where we have used the following interpolation inequality with (2.1):
1 1 1 1 1 1
96113 < ClIIZ A7 < CllOollZs 146117 < CIIVO0II7: 1146117

LZ’

due to the interpolation inequality and the energy inequality in Definition 1.1.

Now, we work on the first term on the right-hand side 7;. Using integration by parts, we obtain

IV(u ‘V)u -Vudx = Zjaku -Vu -oxudx
k= 1R

- z Iaku thakudx z Iakugaguakudx

klR klR

= Z Iu “VpOrud,udx + Z Ju “Vaudy 0, udx - Z Iakugaguakudx
k=13 k=13

=In+ Ip+ I

Case 1. Let
2 5 3 1
i € LGt (0, T; IP°(R3)  with ) — < 1.
=1t

(2.3

2.4)

Applying for the Holder inequality in anisotropic Lorentz spaces and Lemma 1.8, we estimate the first integral

Iy as:
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|23 < € [ 1 VullAuldx
IRS
< CIlye NVl 20, ), ol

r12r22r321 3[r12r22r32

2 2 2rs | 2 2ry | 2ry | 2r3
<cllafg=Ivull,” 7 " % Au IIz nomem

]IIAUII 2

1.1.1
++r3]

[1+1+1] N
= Cllall=NIVull 2 llAul|2
2

¥ o]
<% llAullZ. + Clla|- [IVul.

Similarly, the second integral 73, can be estimated as:

2

1 -
Tl < g l10uls + cnunLrL ]nwniz

Using integration by parts twice and divergence-free condition, we infer that

I3 = Z Iakugaguakudx Z Iaku353u36ku3dx
k=13 k=13

3
Z Iagakuguakudx + Z IakU3ua36kUdX + Z IakU3(alu1 + 9yUy) 0 Usdx
k=1 k= 1R3 k= 1R3

= Z Iagakuguakudx + Z Iakuguagakudx 2 z Ialakugulakugdx 2 z Iazakuguzakugdx.
k=1 k=1g3

By a slight modification of the proof of 73;, we find that

2

1,1,1
Tiql < l A +C [ r +r3] \v; 2
sl < I ullf. + ClIE 7o lIVulf;2

Substituting 733, I3, and 733 into 73, we obtain

2

s+
< EIIAMII 2+ Cllil| 7= [IVullz

Inserting the aforementioned estimates into (2.3), we have

d
E(IIVu(',t)Iliz + IVOCDIF2) + llAullZ. + [146]7

2

IA

Labed
r2 ' r3
C(IIVull3. + [IVOI22) + ClIVul[;21|V60l[2: + CllullLrL ]IIVulliz
2

IN

1,1,1
ca+ IIuIILrL ’ rg] + {1VullZ V8012 )UIVUllZ + IIVOI7.).
Hence, using Gronwall’s inequality and (1.2), (2.2) together with (2.4), we obtain
(u, ) € L*(0, T; HY(R®)) N I*(0, T; H*(R3)).
Thus, (u, 0) can be extended smoothly beyond T > 0.
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Case 2. Next, we consider the case of

3
- 1
e L°°([0, T], LF,OO([R?))) with ”ﬁ”Lw([O,T]; L?’m([RS)) <68 and Z_ =1. (25)

i1
Using Holder’s the inequality in anisotropic Lorentz spaces and Sobolev imbedding theory, we have

|2l < C [ [@119u] Aujdx
[R3

< < lulE, + Clalivulle,

< G 10wl + COI 10l 5, o, )

< sl + cnﬁnim||Vu||if"1l”1“’13)||Au||i[z’1”12+’13
< Ul + I Il

Similarly, we have
1 ~
| 7g] < gIIAulliz + Cllalfr | Aul..

The third integral 713 can be treated in a similar way. Then, exactly following a similar argument as before, we
may show our result in this case. Here, we do not repeat the details here.
Inserting the aforementioned estimates into (2.3), we have

d
E(IIVU(',t)IIiz + [IVOC,DIZ) + llAul: + 1126117
< [IVullf. + IVOIG. + ClIVull[IV600l3: + CINEI s 1 Aulf..
Taking 6 > 0 sufficiently small such that
@l =0, 17 F=wr?) < 6,

and absorbing the term, C62||Au||iz on the left hand, we derive the following estimate:

d
E(IIVM(',I)IIiz + IVOCDIF2) + llAullf. + [1A6]7

IA

[IVullf. + IVOII7. + ClIVully. [|V60l3
CQ + VUl 1900l3)(IVul2 + [IVOII72).

IA

Gronwall inequality together with (2.5) then implies that
(u, 0) € L=(0, T; HY(R3) N L%(0, T; HX(R?)).
Then, (u, 8) € C*((0, T) x R3). This completes the proof of Theorem 1.2. O

3 Proof of Theorem 1.3

In this section, we will complete the proof of Theorem 1.3. As for proving Theorem 1.2, we first assume that
(u, ) is a weak solution and need to derive only some a priori strong estimates of Vu and V6, which are
uniform in t € [0, T].
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Proof. Let

] 2 21

Vil € L0, T; LM°(R%)  with = + Y—=2 3.1
i=1't

We estimate 7, and 73 like in the previous theorem. Now, we split 7; as follows:

2 2 2 2
I =- Z Iakuiaiujakujdx - Z Iaguiain63UjdX - Z IakuiaiU3akU3dX - ZjaguiaiU3agu3dX

i, k=1R3 Lj=1R3 L k=133 i=1g3

2 2 2
- Z _[akugagujakujdx - Z J—agugagujagu]‘dx - z J—akugagugakugdx
Jik=1g3 JFIRS k=1p3

Taking advantage of the definition of Vj,il, we have

4
zjlm

m=1

< ¢ [ [l Vufdx.
|R3
Since d3u3 = -0y — 97Uy, it readily follows that

7
2 Jim

m=5

< c'[|—alu1 ~ 3| |Vufdx < CI|Vhﬁ||Vu|2dx.
R® R3

Thus, we obtain

L= j(u V) - Audx < cj|vhﬁ||Vu|2dx.
[R3

[RS
Using Holder’s inequality in anisotropic Lorentz spaces and Lemma 1.8, 7; can be estimated as:

|I1|SC”vhﬁ”LF'“”quZ[ﬂﬂZA]Z
Lirt-1'rp-1'r3-1f
o] [odked]
< C|Vadt|| 7= I Vul] 2 (| Auf;2
2

1 1 1
2_[71+ﬁ+§

< e ] [Vl

l18ull?. + ClIVl|

|-

By combining the estimates for 73, 7, and 73, we deduce that

d
S VuCOIE: + IV6C.OIE) + 18ulf + 1261

2
o)

< (IVulifz + 1IVOIE.) + ClIVull32 V6]t + ClIVAiEll 7.

2

[IVuli.

1 1 1
2‘[ﬁ+ﬁ+ﬁ

< CQA+ ||Vatl| 7o ] + IVullZ 966l + IVOI1.).

Gronwall inequality together with (2.4) then implies that
(u, 0) € L*(0, T; HY(R®) N L*(0, T; HA(R®)).

Then, (u, 8) € C*((0, T) x R3). This completes the proof of Theorem 1.3. O
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