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Abstract: The nonlinear fractional-order cubic-quintic-heptic Duffing problem will be solved through a new
numerical approximation technique. The suggested method is based on the Pell-Lucas polynomials’ opera-
tional matrix in the fractional and integer orders. The studied problem will be transformed into a nonlinear
system of algebraic equations. The numerical expansion containing unknown coefficients will be obtained
numerically via applying Newton’s iteration method to the claimed system. Convergence analysis and error
estimates for the introduced process will be discussed. Numerical applications will be given to illustrate the
applicability and accuracy of the proposed method.
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1 Introduction

Mathematicians, physicists, and engineers have undertaken a multidisciplinary endeavor to obtain a new
instrument for describing many complex problems [1–3]. One of the most important outcomes of these
efforts is the fractional calculus field [4]. This branch of science enables researchers to create a flow of ideas
for solving and describing many real-world problems [5,6]. Therefore, there are accurate descriptions for a
lot of application problems in terms of fractional-order differential equations in a wide range of fields, such
as physics [7], biology [8], mechanics [9], medical [10], astrophysics [11], engineering [12], and chem-
istry [13].

Other than modeling fractional-order differential equations, solutions to these models can be consid-
ered one of the important aspects as well. Several numerical techniques are used for solutions for fractional
differential equations such as wavelet method [14], a domain decomposition technique [15], spectral
Legendre method [16], Laplace transform approach [17], Chebyshev collocation [18], Tau procedure [19],
variational iteration method and differential transformation technique [20], Homotopy analysis approach
[21], operational matrix approach [22], finite difference method [23], nonstandard finite difference [24], and
other techniques [25–29]. The major characteristic of using the spectral Tau method and operational matrix
method is that it reduces the fractional-order problems to a system of algebraic equations. Moreover, the
advantage of using operational matrices and the Tau method is their simple procedure, rapid convergence,
and easy computation.
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As we know, the nonlinear differential equations appear to detail many physical phenomena located
around us [21]. One of these equations is the Duffing equation, whose general form is given by

( ) ( ) [ ]″ + ′ + + + + = = ∈u au bu cu du eu g t u u t t, , 0, 1 ,3 5 7 (1)

subject to the conditions

( ) ( )= ′ =u u u u0 , 0 .0 1 (2)

Equation (1) is called cubic, if = =d e 0; cubic-quintic, if =e 0; and cubic-quintic-heptic, if all coefficients
are nonzeros. Also, the nonfractional-order Duffing equation is a well-known nonlinear equation that is
adopted as a strong tool to handle some significant practical phenomena in applied science [30]. This
equation was used in the middle of the twentieth century to study electronics as in [31]. It is the most
uncomplicated oscillator, representing catastrophic rises in amplitude and phase when the frequency of the
forcing term is practiced as a gradually varying parameter. Also, the Duffing equation has a wide appear-
ance in applications such as brain modeling [32], Duffing oscillators for passive islanding detection of
inverter-based distributed generation units [33], electromagnetic pulses’ nonlinear media propagation [3],
radar systems and digital communication [34], nonlinear electrical circuits [35], and other applications.
Moreover, there exist some trials for solving the Duffing equation numerically [30,36].

As a result of the importance and appearance of the Duffing equations in many applications, the
researchers have studied the fractional form of this equation [37], but there are not many other works on
this topic. Therefore, this article will introduce a numerical treatment for the general formula of the non-
linear Duffing equation (cubic-quintic-heptic equation). Consider the following formula for this equation:

� � ( ) ] ] ] ] [ ]+ + + + + = ∈ ∈ ∈u a u bu cu du eu g x μ β x, 1, 2 , 0, 1 , 0, 1 ,μ β 3 5 7 (3)
subject to the conditions

( ) ( )= ′ =u u u u0 , 0 ,0 1 (4)

where ( )=u u x , the fractional terms� μ and� β are described in the Caputo’s definition; a b c d, , , , and e are
known coefficient values; the damping controller is a; and the initial values for the problem are u0 and u1.
Motivated and stimulated by the above-described works, we investigate a new operational matrix technique
of integer and fractional order in terms of Pell-Lucas polynomials and apply these matrices to solve the
problem in equation (3).

This work makes three main significant contributions: first, it introduces a new method for numerically
solving a nonlinear fractional-order Duffing equation of various orders using operational matrices of frac-
tional-order derivatives of Pell-Lucas polynomials. Second, it presents an algorithm that combines the use
of the spectral and Taumethods to solve a fractional-order cubic-quintic-heptic Duffing problem. Third, pay
close attention to the convergence analysis that results from the suggested Pell-Lucas expansion. Finally, it
illustrates that a variety of fractional-order differential equation issues can be solved using the created
operational matrix and methodology.

The organization of this work is as follows: In Section 2, briefly, some tools of the fractional calculus, in
addition to definitions and mathematical formulae of Pell-Lucas polynomials, are presented. In Section 3,
integer and fractional-order operational matrices in terms of Pell-Lucas polynomials are constructed. In
Section 4, expression of the problem in terms of derived matrices and claimed numerical solution is given.
In Section 5, a global error estimate and convergence analysis for the suggested Pell-Lucas expansion will
be derived. Section 6 demonstrates the accuracy and efficiency of the proposedmethod by introducing some
test examples. Section 7 gives the concluding remarks.

2 Preliminaries and principal formulae

Some principles of fractional calculus theory are presented in this section and will be helpful throughout
the rest of the article. Additionally, a description of Pell-Lucas polynomials is provided, along with a few
new formulas related to them.
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2.1 Fractional and integral operators

Definition 2.1. [4] The fractional-order integral operator I μ on the Lebesgue space [ ]L 0, 11 in Riemann-
Liouville sense is defined as follows:

( ) ( )

⎧

⎨

⎪

⎩
⎪

( )
( ) ( )

( )

∫
=

− >

=

−

I g x μ
x τ g τ τ μ

g x μ

1
Γ

d , 0,

, 0.

μ

x

μ

0

1
(5)

The Riemann-Liouville integration operator meets the following criteria:

( )

( )

( )
( )

( )

=

=
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+
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i I I I I
ii I I I

iii I x i
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x
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Γ 1
Γ 1

,
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where ≥μ γ, 0, and > −i 1.

Definition 2.2. [4] The fractional-order derivative of order >μ 0 in Riemann-Liouville sense is given by

� �( ) ⎛

⎝

⎞

⎠
( )= − ≤ < ∈

∗

−g x
x

I g x k μ k kd
d

, 1 , .μ
k

k μ (6)

Definition 2.3. [26] Consider the function ( )g x , which has the following differential formula:

� ( )
( )

( ) ( )( )
∫=
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− > >
− −g x
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1 (7)

This is known as the Caputo differential operator, where − ≤ <k μ k1 , �∈k .

The following relations are satisfied by the operator � :
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(8)

where the ceiling notation is ⌈ ⌉μ . For a more thorough examination of the fractional-order operators for
differentiation and integration, one can see [4,26].

2.2 Pell-Lucas polynomial overview

Generalized Lucas polynomials have also been widely studied and used in various areas of mathematics,
such as the study of Diophantine equations, number theory, and the solution of fractional- and integer-
order differential equations [38–42]. Pell-Lucas polynomials are a specific case of generalized Lucas poly-
nomials [43]. However, the properties, applications, and uses of both types of polynomials are sometimes
different depending on the properties and the application area because the properties of Pell-Lucas poly-
nomials are relatively simple and well-known, whereas the properties of generalized Lucas polynomials are
more complex [43].
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Definition 2.4. The following power expression defines Pell-Lucas polynomials of degree ≥m 1 in the
variable x.

( )
( )

( ) ( )
( )

⎢
⎣

⎥
⎦

∑=

−

+ − +
=

−x m m i
i m i

xPL Γ
Γ 1 Γ 2 1

2 ,m
i

m

m i

0

2
2 (9)

where ⌊ ⌋λ is the largest integer ≤λ.

Also, Pell-Lucas polynomials, ( )xPLm , can be produced by adopting the subsequent recurrence relation

�( ) ( ) ( )= + ≥ ∈
+ −

x x x x m xPL 2 PL PL , 1, ,m m m1 1 (10)

with the starting functions ( ) =xPL 20 , ( ) =x xPL 21 .
Additionally, the polynomials defined by ( )xPLm and their Binet’s formula are as follows:

( ) ( ) ( )= + + + − +x x x x xPL 1 1 .m
m m2 2 (11)

The generating functions for ( )xPLm are found according to the following equation:

( )
( )

∑ =

+

− −
=

∞

+
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xt t
PL 2

1 2
.

k
k

k

0
1 2 (12)

Theorem 1. The power function xk can be expressed in terms of the Pell-Lucas polynomials according to the
following:

( ) ( )
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where

⎧
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1
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2
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.
k i2 (14)

Proof. Equation (13) can be easily proved with the aid of [43]. □

Theorem 2. The following relation can be employed to illustrate how the original functions of Pell-Lucas
polynomials and their first derivative are related:

( ) ( ) ( )
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(15)

Proof. With the help of [43], equation (15) may be demonstrated simply. □

Presently, the analytical description of Pell-Lucas polynomials that were stated in equation (9) can be
rephrased as the following congruent formula:

( )
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( )

( )
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+ +

≥

=

+
+ +
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− +

x m
δ

m i i
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(16)

where
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⎧

⎨
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=δ z
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0, odd.z (17)

Also, equation (13) is equivalent to
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2
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2
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(18)

The two latter equations will be applied within some of the suggestion theorems in this article. For more
details and knowledge about Pell-Lucas polynomials and their associated characteristics, see [44–46].

3 Operational matrices of derivatives for Pell-Lucas polynomials

In this section, we look into the operational matrices of Pell-Lucas polynomials for both the integer and
fractional orders of derivatives.

3.1 Integer-order operational matrix of derivatives for Pell-Lucas polynomials

Consider a square Lebesgue function ( )u x that can be integrated on ( )0, 1 . Take into account that the Pell-
Lucas polynomials can be utilized to describe the function ( )u x as a linear independent combination of their
terms as follows:

( ) ( )∑=

=

∞

u x c xPL .
i

i i
0

(19)

As a result of the approximation theory, we are able to truncate all terms except for the first ( +N 1)-terms of
the infinite expansion, equation (19) became as follows:

( ) ( ) ( ) ( )∑≈ = =

=

xu x u x a x APL Ω ,N
i

N

i i
T

0
(20)

where

[ ]= …a a aA , , ,T
N0 1 (21)

and

( ) [ ( ) ( ) ( )]= …x x x xΩ PL , PL , ,PL .N
T

0 1 (22)

Let the first derivative of the vector ( )xΩ be described in the matrix form expression as follows:

( ) ( )( )
=x x

x
Wd

d
Ω Ω ,1 (23)

where ( )( ) ( )
= wW lm

1 1 is the ( ) ( )+ × +N N1 1 operational matrix of integer-order derivatives. The inputs
elements of ( )W 1 can be achieved within Theorem 2, equation (15). These components can be represented
explicitly by

⎧

⎨
⎩

( ) ( )

( )

( )
=

− > +

≤ +

≤ ≤

− +

w l ξ l m l m
l m l m
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0 ,

1
l m 1

2 (24)

For example, for =N 7, the operational matrix of the first derivative, ( )W 1 , is claimed by
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Hence, with the aid of Theorem 2, together with the two equations (23) and (24), we can produce an integer-
order operational matrix of derivatives in the generalized description for Pell-Lucas polynomials as follows:

( ) ( ) ( ) ( )( ) ( )
= =x x x

x
W Wd

d
Ω Ω Ω ,

M

M
M M1 (25)

where M is the integer order of the derivatives ≥M 1.

3.2 Fractional-order operational matrix of derivatives for Pell-Lucas polynomials

Theorem 3. Assume ( )xΩ to be the Pell-Lucas polynomial vector that is defined in equation (22). For any >μ 0
and for ( )∈x L0, , one has

� ( ) ( )( )
=

−x xx HΩ Ω ,μ μ μ (26)

where ( )( )
= hH μ

r s
μ
, is ( ) ( )+ × +N N1 1 -order square matrix that presents the fractional-order operational

matrix of derivatives for Pell-Lucas polynomials of order μ in Caputo sense of fractional derivative and it is
described explicitly as follows:
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⌈ ⌉ ⌈ ⌉ ⌈ ⌉ …

… …

…

ζ μ ζ μ μ

ζ r ζ r r

ζ N ζ N ζ N ζ N N

H

0 0 0 0. . . .. . . .. . . .
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, 0 , 0
. . . .. . . .. . . .
, 0 , 1 , 2 ,
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μ μ
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(27)

The elements entries ( )hr s
μ
, of this matrix can be given through the relation

⎧

⎨
⎩
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h
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, , , , 0, 1, , ,

0, , ,r s
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where

( )
( ) ( )

( )
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( ) ( ) ( )
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− +

− +=⌈ ⌉
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Γ Γ Γ Γ 1
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2
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2
2

2
2
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2

(29)

Proof. Caputo operator � μ effecting on both sides of equation (16) beside the relation in equation (8) yields
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� ( )
( ) ( )

( )

( )

∑=

+ − +=⌈ ⌉

+
+ +

+
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−x r
δ

r k k μ
xPL

2 Γ

Γ Γ 1
.μ

r
k μ

r k r k
r k

r k
k μ

1 2
2
2

2

(30)

We can accomplish the following if we continue with the explanation in equation (30) and carry out some
extensive algebraic calculations:

� ( ) ( ) ( )∑=
−

=

x x ζ r s xPL , PL ,μ
r

μ

s

r

μ s
0

(31)

and ( )ζ r s,μ is given in (29).
Equation (31) can be alternatively rewritten as the equivalence vector formula

� ( ) [ ( ) ( ) ( ) ] ( )= … … ⌈ ⌉ ≤ ≤
− xx x ζ r ζ r ζ r r α i NPL , 0 , , 1 , , , , 0, 0, ,0 Ω , .μ

r
μ

μ μ μ (32)

Moreover, we can write

� ( ) [ ]= … ≤ ≤ ⌈ ⌉ −
−x x r μPL 0, 0, ,0 , 0 1.α

r
μ (33)

The intended outcome is reached by assembling equations (32) and (33). □

4 Numerical treatment of fractional-order Duffing equation

Consider equation (3), then using equation (20) in addition to equation (25) and Theorem 3, we obtain the
following matrix form:

( ) ( ) ( ) ( ( )) ( ( ))

( ( )) ( ) [ ]

( ) ( )
+ + + +

+ = ∈

− −x x x x x
x

x a x b c d
e g x x

A H A H A A A
A

Ω Ω Ω Ω Ω
Ω , 0, 1 .

μ T μ T β β T T T

T

3 5

7
(34)

The residual of equation (34) can be computed through the following formula:

( ) ( ) ( ) ( )

( ( )) ( ( )) ( ( )) ( )

( ) ( )
= + +

+ + + −

+ +

+ + + +

x x x
x x x

x R x x ax bx
cx dx ex x g x
A H A H A

A A A
Ω Ω Ω

Ω Ω Ω .

μ β β T μ μ T β μ β T

μ β T μ β T μ β T μ β3 5 7
(35)

By means of Tau method implementation (see, e.g., [26]) we have

( ) ( )∫ = ≤ ≤ −
+x R x x x j NPL d 0, 0 2.μ β

j

0

1

(36)

Additionally, the approximate solution in matrix form (20) and the integer-order matrix of derivatives for
Pell-Lucas polynomials (23) are applied on the initial conditions that are given in equation (4) to have the
next description

( ) ( )( )
= =u uA 0 A W 0Ω , Ω .T T

0
1

1 (37)

Using equations (34) and (37), a system of nonlinear algebraic equations are created to represent the
unknown expansion coefficients ai of ( )+N 1 dimension. The generated algebraic system can be solved
using Newton’s iterative technique or any other suitable technique. As a result, the main equation pro-
blem’s desired approximation solution in equation (20) can be determined.

Pell-Lucas Tau algorithm for equation (3)
Step 1. Provided μ β, , and N .

Step 2. Determine ( )H μ and ( )H β .
Step 3. Evaluate ( )+x R xμ β according to equation (35).
Step 4. Calculate the results of equation (36).
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Step 5. Join (Output 4, equation (37)).
Step 6. Solve numerically (Results of 5).

5 Convergence and error estimate discussion

This section will discuss the error estimate and convergence analysis of the proposed methodology.
Following is an introduction to certain lemmas that are regarded essential for achieving this goal in the
sequel:

Lemma 5.1. Assume at the point =x 0, there exists an infinitely differentiable function ( )u x . Then, this
function can be expanded in Pell-Lucas polynomial terms as the next

( )
( ) ( )

( ) ( )
( )

( )

∑ ∑=

−

+ + +
=

∞

=

∞ +

+

u x
ξ u

q p q
x

1 0
2 Γ 1 Γ 1

PL .
p q

q
p

p q

p q p
0 0

2

2 (38)

Proof. In the beginning, according to Taylor series expansion, for any infinitely differential function ( )u x ,
we can describe the function as follows:

( )
( )

( )

( )

∑= =

+
=

∞

u x b x b u
k

, 0
Γ 1

.
k

k
k

k
k

0
(39)

Inserting equation (18) in equation (39), we have

( ) ( )

( )

∑ ∑=

=

∞

=

+

u x b γ xPL ,
k

k
j

k j

k

j k j
0 0

even

, (40)

where
( ) ( )

( ) ( )

=

− +

+

− + + +

γj k
ξ k

,
1 Γ 1

2 Γ Γ

j k
j

k k j k j

2

2
2

2
2

.

After expanding equation (40), combine the identical terms on its right-hand side. From there, the
following formula can be produced:

( )
( )

( )
( )

( )

∑ ∑=

+ +
=

∞

=

∞ +

+u x
u γ

p q
x

0
Γ 2 1

PL ,
p q

p q
r r s

p
0 0

2
, 2 (41)

hence Lemma 5.1 is proved. □

Lemma 5.2. [47] By using the well-known modified first kind Bessel function of order η which denoted by Iη,
then, the next equation is valid

( ) ( )
( )∑

+ + +

=

=

∞
+x

j j υ
I x

Γ 1 Γ 1
2 .

j

η j
η

0

2
(42)

Lemma 5.3. [48] Iη satisfies the following inequality:

( )

( )
∣ ( )∣

+

≥ ∀ >

x x
μ

I x xcosh
2 Γ 1

, 0.
η

η η (43)

Lemma 5.4. Pell-Lucas polynomials satisfy the following property:

�∣ ( )∣ [ ]≤ ∀ ∈ ∀ > ∈ = + +x λ x l l n where λ l lPL 2 , 0, , 0, , 1 .n
n 2 (44)
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Proof.We claim to prove through induction on order n. Suppose Lemma 5.4 is true for order −k 1 and −k 2,
then the following two relations hold:

∣ ( )∣ ∣ ( )∣≤ ≤
−

−

−

−x λ x λPL 2 , PL 2 .n
n

n
n

1
1

2
2 (45)

Using equation (10), we have

( ) ( ) ( ) ⎛
⎝

⎞
⎠

= + ≤ + = +
− −

− − −x x x x lλ λ λ l
λ

PL 2 PL PL 4 2 2 2 1 ,n n m
n n n

1 2
1 2 1 (46)

since

+ +

≤ + −

l l
l l1

1
1 ,

2
2 (47)

therefore,

+ ≤l
λ

λ2 1 (48)

From equation (48) and equation (46), Lemma 5.4 is proved. □

Theorem 4. Let the function ( )u x be defined on [ ]l0, and ∣ ( )∣( )
≤u M0j j, ≥j 0, where M is a positive constant.

Also, ( )u x is expanded in Pell-Lucas polynomials (i.e., ( ) ( )= ∑
=

∞u x a xPLi i i0 ). Then, the following estimation is
achieved:

∣ ∣
( )

( )

( )
≤

+

a
M

i

cosh

Γ 1
.i

M i
2 (49)

Moreover, absolute convergence of the series ( )∑
=

∞ a xPLi i i0 holds.

Proof. Lemma 5.1 in addition to the hypothesis of Theorem 4 enable us to write

∣ ∣
( ) ( )

( ) ( )

( )

( ) ( )

( )

∑ ∑=

−

+ + +

≤

−

+ + +
=

∞ +

+

=

∞ +

+

a
ξ u

s s i
ξ M

s s i
1 0

2 Γ 1 Γ 1
1

2 Γ 1 Γ 1
.i

s

s
i

s i

i s
s

s
i

s i

i s
0

2

2
0

2

2 (50)

In virtue of Lemma 5.2, we have

∣ ∣ ( )≤a I M .i i (51)

Through using Lemma 5.3, we have

∣ ∣
( )

( )

( )
≤

+

a
M

i

cosh

Γ 1
.i

M i
2 (52)

Hence, part one of the proof for Theorem (4) is completed.
Second, to prove ( )∑

=

∞ a xPLi i i0 is convergent, the comparison idea will be applied. Beginning with the
last inequality, equation (52), we obtain

∣ ( )∣
( )

( )
( )

( )
≤

+

a x
M

i
xPL

cosh

Γ 1
PL .i i

M i

i
2 (53)

Lemma 5.4 is applied here to gain

∣ ( )∣
( ) ( )

( )

( )
≤

+ +

+

a x
l l M

i
PL

2 1 cosh

Γ 1
,i i

M i i
2

2

(54)

Numerical treatment for nonlinear fractional-order Duffing equation  9



since

( )

( )

( )
∑

+ +

+

=

=

∞

+ +

l l

i
e

1

Γ 1
.

i

M i i

0

2
2

Ml M l2 1
2 (55)

Consequently, the proof of Theorem 4 is complete.

Theorem 5. Let ( )u x be the function that satisfies all conditions of Theorem 4, and assuming the global error is
defined as the expansion ( ) ( )= ∑

= +

∞E x a xPLN i N i i1 , then, the error estimate is described by

∣ ( )∣
( )

( )
<

+

+

E x e Q M
N

2 cosh
Γ 2

,N
MQ N 1

(56)

where ( )= + +Q l l 12 .

Proof. Theorem 4 implies that

∣ ( )∣ ( )

⎛
⎝

⎞
⎠

( )
∑≤

+
= +

∞

+ +

E x M
i

2 cosh
Γ 1

,N
i N

Ml M l i

1

1
2

2

(57)

where ( )= + +Q l l 12 . Moreover, we have

⎜ ⎟∣ ( )∣ ( )⎛

⎝

( )

( )
⎞

⎠
≤ −

+

+

E x e M N MQ
N

2 cosh 1 Γ 1,
Γ 1

,N
MQ (58)

where the symbol ( )Γ .,. indicates the incomplete gamma function. Now, applying the description formula
for both gamma and gamma incomplete functions in addition to the fact < ∀ >

−e t1, 0t , then we have

⎜ ⎟
⎛

⎝

( )

( )
⎞

⎠ ( )
−

+

+

<

+

+N MQ
N

Q
N

1 Γ 1,
Γ 1 Γ 2

.
N 1

(59)

Thus, the proof of Theorem 5 is completed. □

6 Numerical applications

In this section, we used the Pell-Lucas Tau operational matrix method to numerically solve the fractional-
order nonlinear Duffing problem. These numerical tests are provided to demonstrate the precision, applic-
ability, and effectiveness of the suggested method as well as to validate the theoretical findings.

Example 6.1. Consider the nonlinear cubic-quintic-heptic Duffing equation of the fractional-order as
follows:

� � ( ) ] ] ] ] [ ]+ + + + + = ∈ ∈ ∈u a u bu cu du eu g x μ β x, 1, 2 , 0, 1 , 0, 1 ,μ β 3 5 7 (60)

subject to the conditions

( ) ( )= ′ =u u0 1, 0 0, (61)

where ( )g x is compatible according to the analytical solution of the problem, and the exact solution of
equation (60) is given by ( ) = +u x x1 3 in the case of =μ 2, =β 1.

Case one: Consider the fractional orders as integer numbers = =μ β2, 1, and =N 3. Then, take the
following three different case studies of integer-orders for the problem given in Example 6.1:
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( ) ( )

( ) ( )

( ) ( )

= = = = =

= = = = = -

= = = = = - -

I a b c d e
II a b c d e
III a b c d e

2, 1, 8, 0, nonlinear cubic IDE .
2, 1, 8, 2, 0, nonlinear cubic quintic IDE .
2, 1, 8, 2, 3, nonlinear cubic quintic heptic IDE .

Table 1 lists the numerical results that were obtained using the Pell-Lucas Tau spectral method for three
distinct types of the integer-order Duffing equation (IDE). This table reports the absolute error of 6.1 case one
for the three types of Duffing equations ( ) ( ) ( )I II III, , , respectively. Also, we plot Figures 1 and 2 to display the
absolute error for the three case studies ( ) ( ) ( )I II III, , , respectively, for the value =N 3. The results in Table 1,
coupled with the results acquired through Figures 1 and 2, demonstrate that the suggested strategy achieves
good accuracy with a limited number of approximations in Pell-Lucas polynomial terms ( )=N 3 .

Case two: Consider several cases of the fractional-orders μ and β for nonlinear cubic-quintic-heptic
fractional-order Duffing equation with the parameters = = = = =a b c d e2, 1, 8, 4, 5, and =N 3.

The numerical results using the suggested technique for Case two are plotted in Figure 3. This figure
presents the numerical solution for the several choices of the fractional-order parameters. The plotted figure
indicates that the numerical solutions for distinct values in the fractional-order case have behavior similar
to that in the integer-order case. Also, these results supported the accuracy and applicability of our
proposed technique for solving various linear and nonlinear fractional-order differential equations.

The numerical results using the suggested technique for Case two are plotted in Figure 3. This figure
presents the numerical solution for the various selections of the fractional-order parameters ( )μ β, . Figure 3
indicates that the numerical solutions for distinct values in the fractional-orders μ and β exhibit behavior
that is comparable to that in the integer-order case ( ) ( )=μ β, 2, 1 . Also, these results supported the accuracy
and applicability of our proposed technique for solving various linear and nonlinear fractional-order
differential equations.

Example 6.2. Consider the following nonlinear fractional-order cubic Duffing equation:

� � ( ) ] ] ] ] [ ]+ − + = ∈ ∈ ∈u u u u g x μ β x4 2 3 , 1, 2 , 0, 1 , 0, 1 ,μ β 3 (62)

subject to the conditions

( ) ( )= ′ = −u u0 0.5, 0 0.5, (63)

where ( ) = −
− −g x e ex x3

8
3 5

2 , and the analytical solution is ( ) =
−u x e0.5 x only in the case of =μ 2, =β 1,

otherwise, ( )g x is described according to the exact solution of the problem.

The approximate solutions for Example 6.2 using the introduced technique are reported in Table 2. This
table lists these results for multi-choice terms for the power series approximation via Pell-Lucas polyno-
mials =N 3, 6, 9, 12, respectively. From Table 2 we can conclude that the absolute error is decreased in vise
versa relation of N . Also, the absolute error in these cases is presented in Figures 4 and 5. Moreover, by

Table 1: Absolute error via the proposed method for Example 6.1-case one

x (I) (II) (III)

0.1 2.54144 10−18
× 1.65877 10−17

× 3.87176 10−18
×

0.2 6.61306 10−18
× 5.70251 10−17

× 1.45989 10−17
×

0.3 6.88578 10−18
× 1.07323 10−16

× 3.08491 10−17
×

0.4 1.96947 10−18
× 1.53493 10−16

× 5.12900 10−17
×

0.5 2.52818 10−17
× 1.81547 10−16

× 7.45896 10−17
×

0.6 6.83802 10−17
× 1.77494 10−16

× 9.94154 10−17
×

0.7 1.36594 10−16
× 1.27348 10−16

× 1.24435 10−16
×

0.8 2.35252 10−16
× 1.71176 10−17

× 1.48317 10−16
×

0.9 3.69683 10−16
× 1.67184 10−16

× 1.69728 10−16
×
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Figure 1: The absolute error of Example 6.1-case one (I), (II), respectively.

Figure 2: The absolute error for Example 6.1-case one (III).

Figure 3: The absolute error for Example 6.1-case two.

Table 2: Absolute error via the proposed method for Example 6.2 in the case of μ β2, 1= = , and several values of N

x N 3= N 6= N 9= N 12=

0.1 1.0066 10−4
× 8.5872 10−8

× 1.2372 10−11
× 5.5511 10−17

×

0.2 3.1232 10−4
× 1.9730 10−7

× 2.4348 10−11
× 0

0.3 5.3283 10−4
× 2.6947 10−7

× 3.2236 10−11
× 5.5511 10−17

×

0.4 7.0102 10−4
× 3.1654 10−7

× 3.7797 10−11
× 1.1102 10−16

×

0.5 7.9285 10−4
× 3.5348 10−7

× 4.1800 10−11
× 0

0.6 8.1783 10−4
× 3.8144 10−7

× 4.4921 10−11
× 5.5511 10−17

×

0.7 8.1586 10−4
× 4.0143 10−7

× 4.7462 10−11
× 2.7756 10−17

×

0.8 8.5431 10−4
× 4.2420 10−7

× 4.9823 10−11
× 8.3267 10−17

×

0.9 1.0255 10−4
× 4.4752 10−7

× 5.1674 10−11
× 2.7756 10−17

×
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Figure 4: The absolute error for Example 6.2 at N 3, 6= , respectively.

Figure 5: The absolute error of Example 6.2 in the cases of N 9, 12= , respectively.

Figure 6: Comparison of analytic solution in the integer-order case and the approximate solution in fractional-order cases for
Example 6.2 at N 3= .

Table 3: Example 6.3 absolute error results using the suggested method whenever μ β2, 1= = , and N = distinct values

x N 5= N 7= N 9= N 11=

0.1 3.9380 10−6
× 1.9199 10−8

× 4.0906 10−11
× 5.9730 10−14

×

0.2 9.2710 10−6
× 3.9583 10−8

× 7.7022 10−11
× 1.0669 10−13

×

0.3 1.1147 10−6
× 4.5455 10−8

× 8.6332 10−11
× 1.1813 10−13

×

0.4 1.0251 10−5
× 3.9411 10−8

× 7.3506 10−11
× 9.9032 10−14

×

0.5 6.9675 10−5
× 2.5885 10−8

× 4.6586 10−11
× 6.1506 10−14

×

0.6 3.0442 10−6
× 9.3763 10−9

× 1.5239 10−11
× 1.8208 10−14

×

0.7 7.4005 10−6
× 5.6495 10−9

× 1.3338 10−11
× 2.0650 10−14

×

0.8 4.0632 10−6
× 1.7186 10−8

× 3.4603 10−11
× 4.9738 10−14

×

0.9 6.0542 10−6
× 2.5488 10−8

× 4.8835 10−11
× 6.7835 10−14

×
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changing the integer-order values of μ and β into the fractional-order ones, we obtain the numerical results
shown in Figure 6. All the obtained results in Table 2 and Figures 4–6 prove and support the high accuracy
and efficiency of the recommended technique.

Example 6.3. Consider the following nonlinear quintic Duffing fractional-order differential equation:

� � ( ) ] ] ] ] [ ]+ + + + = ∈ ∈ ∈u u u u u g x μ β x2 8 , 1, 2 , 0, 1 , 0, 1 ,μ β 3 5 (64)

subject to the conditions

( ) ( )= ′ =u u0 1, 0 0, (65)

where ( )g x is given through the exact solution of equation (64) with initial conditions equation (65), and
( ) =u x xcos at =μ 2, =β 1.

Figure 7: Example 6.3 absolute errors at the two values N 5= and N 7= .

Figure 8: Example 6.3 absolute errors for the values N 9= and N 11= .

Figure 9: Analytic solution plotting in the integer-order case beside the fractional-order cases approximate solution for Example
6.3 at N 3= .
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We implement the presented method for different values of N with constant values of =μ 2 and =β 1.
The absolute error results for =N 5, 7, 9, 11, respectively, are declared in Table 3. Also, the absolute errors
plotting according to these values are illustrated in Figures 7 and 8. Moreover, the numerical solution for
the distinct fractional-order values of ( )μ β, in addition to their integer ones ( )2, 1 is demonstrated through
Figure 9. The last illustration displays the identical style curve in both the integer-order case and the
fractional-order case. The gained results in Table 3, Figures 7–9 show that the suggested methodology is
capable of providing workable numerical solutions for this example and similar applications with high
accuracy.

7 Conclusion

In this article, a nonlinear cubic-quintic-heptic Duffing equation of the fractional-order is solved numeri-
cally via a systematic technique. The method under investigation is based on developing new operational
matrices of the integer/fractional-order derivatives of Pell-Lucas polynomials in conjunction with the use of
the appropriate spectral Tau method. The fractional-order is described by the Caputo sense operator. The
convergence and error estimates are examined using the new suggested technique. We solved the examples
via the proposed technique with multiple possibilities for the fractional parameters μ and β. The outcomes
of the numerical applications demonstrate the applicability, accuracy, and simplicity of the suggested
method. Additionally, we believe that the proposed methodology can be used in a number of applications
to solve various classes of linear and nonlinear fractional-order differential equations. All calculations were
performed using the HP Core i7 laptop and Mathematica 11.0 with 4GB of RAM.
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