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Abstract: Local fractional integral inequalities of Hermite-Hadamard type involving local fractional integral
operators with Mittag-Leffler kernel have been previously studied for generalized convexities and preinvex-
ities. In this article, we analyze Hermite-Hadamard-type local fractional integral inequalities via general-
ized (ﬁl, ﬁz)-preinvex function comprising local fractional integral operators and Mittag-Leffler kernel. In
addition, two examples are discussed to ensure that the derived consequences are correct. As an applica-
tion, we construct an inequality to establish central moments of a random variable.
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1 Introduction

In the area of mathematical inequalities, convex functions are connected with a variety of assumptions. The
most well-known inequality with its extensive geometrical structure is the Hermite-Hadamard inequality,
presented by Jacques Hadamard in 1881 (see [1]). It is well understood that a function Q is a convex function
on an interval ] if and only if it meets the following inequality:

s+r 1 [ Q(s) + Q(r)
Q( 2 )SZJ‘Q(Y)dySf’ @

for s,r € J and s < r. This classical inequality has been studied broadly in terms of extensions, general-
izations, and improvements via various generalizations of convex function (we refer to [2—-8] and references
therein for more details).
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One of the famous extended convex functions is preinvex function. Throughout this work, we assume
that O < R" is a non-empty set, Q : D — R" a continuous mapping, and 7n(.,.) : D x D — R" be a bi-
function. Recall that a set D < R" is said to be invex with respect to the bi-function n(.,.) : D x D — R"if

s+¢n@,s) e D,

where s,7 € D,and 0 < ¢ < 1. If n(r, s) = s — r holds, the invex set » becomes convex (see [9, p. 1]).

Definition 1. [10, p. 30] Given an invex set D with respect to n(.,.). Then, Q : D — R" is the preinvex
function on O if

Q(s + ¢n(r, s)) < (1 - ©)Q(s) + ¢Q(r), )

where s, € D and 0 < ¢ < 1. When —-Q is preinvex, Q becomes preconcave.

Definition 2. [11, p. 2] Given two non-negative functions f, i, : (0, 1) < J — R. A function Q on the invex
set D is said to be (le, fzz)-preinvex, if

Qs + ¢n(r, 9) < Il = Oh(OQ(s) + ”u(©)ha(1 - Q(), €)

where s,r ¢ D and0 < ¢ < 1.

Note that the Jensen-type (hy, hp)-preinvex function is obtained if ¢= % in (3), that is,
Q(M) Hl(%)ﬁz(%)[a(s) Q0.

2

Yang presented the theory of local fractional calculus in [12,13]. This theory has valid applications in
communication engineering, control theory, physics, and random walk process (see [14-17]). In the context
of ordinary and partial differential equations, local fractional calculus can be used to study the dynamics of
systems that exhibit non-differentiable behavior at certain points in space as well as time (see [18-25]). On
the other hand, different studies were conducted to extend the concept of convex functions on fractal sets to
explore Hermite-Hadamard inequalities (we refer [26—33] for more details). Some important generalizations
of convex functions in fractal sense include the results presented by Sun [34-40]. Ahmad et al. [41] studied
functional inequalities for convex functions emphasizing novel integral operators of fractional order with
exponential kernel. Sun in [42] defined two fractal integral operators with Mittag-Leffler kernel to study
local fractional inequalities of Hermite-Hadamard-type via generalized h-convex functions involving these
operators.

IN

Definition 3. [42, p. 4989] Let Q € L(s, r). The fractional integrals I?(g) and I*(g) of order ¢ € (0, 1) are
given as:

3 — -5
I:(x) = .{51"(1 3 I ( (g k))Q(k)dk, g>s, %)
and

& — 5
00 = g {)j ( Sk - g))a(iodk g<r. (5)

Theorem 1. [42, p. 4989] Let the function Q : [s,r] — R5 be a positive function with 0 <s <r and
Q(y) € I¥[s, r]. If Q is a generalized h-convex function on s, r], then
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[1¥ - Eg(—p)‘f], s+r § )5 ) 3]
pne (1) ‘2( 2 )S ((r =) [IFae) + I9QE)]

<[Q(s) + QI LPEe(—pg)i[hé(g) + (L - )],

(6)

where p = %(r - s).
Sun in [43, Lemma 5] proved the following identity for generalized preinvex functions.

Lemma 1. Let D <R be an open invex subset with respect to the bi-function n: D x D — R,
where s,r € D, s < s + 1(r, s). Assume that Q : 1 — R¢ is a local fractional differentiable function with
nr,s)20,s,reD. IFQY) € I¥s, s + n(r, s)], then the following equality holds:

Q(s) + Qs + n(r, s)) (1-¢&) © ©
2 - 25[15 — E{(—p)f] [Ig Qs + T’[(r, s)) + I(s+r1(r,s))‘Q(S)]
n(r, s)

1
- 1 N _ ¢
2[E - Ef(—p)]| T + &) !Ef( PS)I Q% (s + (1 - e)n(r, 5))(d)

1
1
TTA+ O I Eg(-pg)*Q¥(s + sn(r, £)(dg)t |.
0

2 Preliminaries

We recall some properties for addition and multiplication operations onR¢ for 0 < & < 1. Ifd¢, €%, f¢ € R¢, then
e d5 + e5 e RS, dSes € RS,
e di+ef=di+ef=(d+e) =(e+ds,
e dé+(ef+f)=(d+e)y +fs,
o diet = efdé = (de)f = (ed):,
o di(e’f?) = (d*e*)f?,
o dE(ef + F6) = déef + difE,
e d5+05=0%+d5=d, and &’ = 1°d¢ = d¥,
o Ifdf < €4, thend’ + f5 < ef + f5,
e If 0% < d¢, 0% < €%, then 0% < dfef.
We now review the concepts of local fractional continuity, derivative, and integral on R4 (see [12,
chapter 2] and [13, chapter 1] for more extensive study).

Definition 4. A non-differentiable mapping Q : R — R%, y — Q(y) is said to be local fractional continuous
at y,; if for any € > 0, there exists § > 0 such that

1Q(Y) - Q) < &

holds whenever |y - y,| < 8, with €, § € R. If Q(y) is the local fractional continuous function on (b, c), we
denote Q(y) € Cg(b, ©).

Definition 5. The local fractional derivative of Q(y) of order £ at y =y, is defined as follows:

#Qy) | _ . Ta+O@QW) - QW)

d¢¢ P s v - %)

Q(yy) =

(n+1)times

In this case, Dg(b, c) is called ¢-local derivative set. If there exists QX+D)(y) = D} ... DFQ(y) for any
y €l ¢ R, we denote Q € Dy.1¢(I), andn=0,1,2,....
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Definition 6. Let Q(y) € C¢[b, c]. The local fractional integral of Q(y) can be defined by:

lim Z Q(5)(Ag),

¢ zéc do)é =
5@ = o ‘5)£Q(C)( O = e pam

whereb = ¢, < ¢<...< ¢y; < Gy = ¢, [¢;, ¢, ] is a partition of [b, c], Ag; = A, — Ag;, A¢ = max{gy, ¢ ... Gy}

Note that beQ(y) =0 if b =c, and CIl‘fQ(y) = —bIEQ(y) if b < c. We denote Q(y) € I;,f[b, c] if there
exists bIﬁQ(y) for any y € [b, c].
Mittag-Leffler function of fractal order £ (0 < & < 1) on Yang’s fractal sets can be defined by:

[e¢]

£ y<
E;(y)—zm @ y €R. @)

Formulas for local fractional calculus of Mittag-Leffler function are presented as (see [12, chapter 2] and [13
chapter 1)]).

Lemma 2. The local fractional derivative and local fractional integration of Mittag-Leffler function can be
given as:

$ 4
FEy) = kEg(ky®), k is a constant, (8)
dy?
WIEE:(y%) = Eg(c?) — Eg(b). )

Lemma 3.
(1) Let g(y) = f®(y) € Celb, c]. Then,

»Ig(y) = f(c) - f(b).
Q) Let g(y), f(y) € Dglb, c] and g¥(y), f&(y) € Celb, c]. Then,
WEEFOW) = sF W5 - L 15gOWF ().

Lemma 4. Let Q(y) € C¢[b, c]. The local fractional derivative and integral of an elementary function
Q(y) = y* is given by:
dyss T+ sé)

- (s-1D¢&
dut  TQA+ (s - 1)&)

>

1 syt — LA+ SE)  (sing | psene
T+ 1) .b[y @) = 05 pEE), s> 0.

Lemma 5. Let Q(y) = 1. Then, by property of mean value theorem for local fractional integrals, we have

i = £
I+ f)

Lemma 6. (Generalized Holder’s inequality) Let p, ¢ > 1 with p™ + q7' = 1. Let g(y), f(y) € C¢[b, c]. Then,

1 1
p q

jlf(y)ﬂ(dy)f . (10)

j|g(y>f(y)|(dy)f j|g(y>|ﬁ(dy)f

r(g 1) r(§ 1) F(S D

We recall the generalized beta function, which will be used throughout the work:
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B 1
B ra+é¢)

1
B:(y, x) IcW’f(l - ¢)*Yé(dg)’, y>0,x>0. (11)
0

3 Main results

We begin by introducing the definition of generalized (Py, hp)-preinvex with respect to a bi-function n.

Definition 7. Suppose that Ry, hy: (0,1) €J > R are two non-negative functions with le"( # 09, ﬁf # 09,
and (0, 1) ¢ J is any interval inR. Let O be an invex set with respect to 5. A function@ : D — R5(0 < £ < 1)
is said to be generalized (fll, ﬁz)—preinvex with respect to n; if for each s, r € D and ¢ € [0, 1], we have

Q(r + gnis, 1) < I - O (9)QE) + A (O (1 - Q). (12)

Moreover, the function Q is generalized (hy, h,)-preconcave with respect to n if it satisfies the aforemen-
tioned reverse inequality.

Remark 1. If we assume ¢ =1 in (12), then a generalized (hy, ﬁz)-preinvex function becomes a classical
(hy, ﬁz)—preinvex function. If ﬁf(g) =¢% and ﬁf(v) = vS¥with s € [0, 1], then (12) becomes generalized

s-preinvex function. Moreover, if 515(1 - g)ﬁzf(g) + ﬁlf((")flzg(l - ¢) =1, then (12) becomes generalized
Toader-like preinvex function (see [44, p. 79]).

1-¢

For what follows, we set p = st

Theorem 2. Let D < R be an open invex subset with respect to the bi-functionn : D x D — R, where s, r € D,
ands < s + n(r, s). Let Q : D — R¢ be a positive function with n(r, s) > 0 and Q(y) € I*)[s, s + n(r, 5). If Q is

generalized (h;, h,)-preinvex function on s, s + n(r, s)], then the following inequalities hold:

[ — Ee(-p)*] Q(B + n(r, s)) <( £

¢
) [19QGs + 16, ) + 1), Q0)]

iR (3)R*(3) 2 n(s:r) 13)
<[Q(s) + QIEE(-po) [’ (1 - O’ (6) + h* (O - 9.
Proof. Since Q is a generalized (fll, flz)-preinvex function, then
Q(W) < le(%)fzz(%)[Q(w) QW)
Letw=s+¢n(r,s), and x =s + (1 — ¢)n(r, s). Then,
3 2s ,
¥ @( 1 S)) < Qs + g1, ) + Qs + (- OnCr, ). (14
ARG 2
112)%2 2

By multiplying both sides of the inequality in (14) by E¢(-p¢)?, then using local fractional integration
corresponding to ¢ over [0, 1] of the resulting inequality, we obtain

1

1 /(Z@+n(r,s)) 1 E 0
EIN: £(=pg)-(d)
RERG) N2 T J s)
1

ra+é)

1 1
S 1—‘(11 &) '([E{(_pg)fQ(s +¢n(r, 5))(dC)§ + !Eg(—pg)'f@(s + (1 - onr, S))(dg‘)‘f.

By setting s + ¢n(r, s) = u, and s + (1 - ¢)n(r, s) = v, we have
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19 Q(B + n(r, s))
PRGRG) Y 2

1 3 1 s+n(r,s) s - u ¢
P R AN ¢
- (ﬂ(r, S)) F(l + 5) ,[ E{( p( n(r’ S) )) Q(u)(du)
1 s+n(r,s) ¢
_ V-—-=s ‘
i T oz
1 ¢ 1 s+1(r,s) 1 € £
ol 5 Y- ¢
- (n(s,s)) I+ &) ,[ Ef( P( ‘ )) (s + nr, s) — W Qu)(du)

s+1(r,s) ¢
1 AN o - e
"Ta+ o I Ef( P( z )) ) a(v)(dv)]

& ¢
() 1906 209+ 180

(16)

Hence, we established the right side of the inequality in (13). Now to prove the left side of the inequality,
note that since Q is generalized (h;, h,)-preinvex functions on [s, s + n(r, s)], we have

Qs +on(r, 9) < I (1 - O (R + i (©h* (1 - 9)Q(s),
and
Qs + (1= oner, 9) < B (1 - O (9)QM) + =i (©R' (1 - 9)Q(S).
Furthermore, we have
Qs + gn(r, ) + Qs + (1 - On(r, 9) < [QE) + QOIAFOR (1 - ¢) + ' (1 - O ()] (D)

By multiplying both sides of the inequality in (17) by E¢(-p¢)?, then using local fractional integration
corresponding to ¢ over [0, 1] of the resulting inequality, we obtain

1
ra+¢)

1 1
r(1l+ &) ! E¢(-p§)*Q(s + gn(r, $))(dg)* + ! Eg(-p)*Q(s + (1 - 9)n(r, ))(d¢)*

1
ra+é)

1
< [Q(s) + Q0] ng(—pc)f [ = )] + By ()5 (1 - ©)I(dg)e.
0
From (15) and (16), we obtain

3
(L) [19QGs + n(r, ) + 1),y QG)]

n(s, r)
1
~ ~ ~ ~ 8
<12 + Q(r)]r(%m ! E(-pg) RS - RSO + A (R = ©lde) 8)
< Q) + QINICE(-pg) [ (1 - 9y’ (¢) + I (9°( - ¢)1.
Hence, the left side of (18) holds. |

Corollary 1. If ﬁlf(g) = 2—1{ and ﬁz"((g) = % in (18), then we obtain
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2s + n(r, s) 2(1-4§F
Q( T ) S B IOQs + n(r, ) + IE),,. Q)] < [Q(s) + Q.

Corollary 2. Using the fact that

15 — Ex(—p)¢

=1, 19
lim i (19)

we obtain inequality for classical (hy, hy)-preinvex function

s+n(r,s)

1 A2+ 1@, s) 1
th(g)ﬁz(;)&( 2 ) I s

< Q(S)Iﬁl(l - Ohy(g)dg + Q(’)Ifll@)ﬁz(l - ¢)dg.

Theorem 3. Let D € R be an open invex subset with respect to the bi-function n: D x D — R, where
s,r € D,s < s +1(r,s). Assume that the function Q : D — R$ is a local fractional differentiable function with
n(r,s) > 0andQ(y)* € I¥[s, s + n(r, )I. FIQ® |4 is the generalized (hy, hy)-preinvex function on[s, s + n(r, s)]
with p' + g1 = 1, p, q > 1, then the following inequality holds:

Q(s) + Qs + n(r,s) (1-¢&)»
% 2 ~ Eg(-p)’]
ns(r, s) (14’ - E:(-pp)* )’1’
~ (¥ - Ex(-p)°] (-pp)*

[19Qs + n(r, ) + 18, 5/Q6)] ‘

(20)

1
q

[na@(s)w + |a<f>(r)|4] {) j[hﬁ(l — Ohy () + A (Ohy (1 - c)](dc)‘f)

Proof. Utilizing Lemma 1 and the generalized Hélder’s inequality (10), we have

Q(s) + Q(s + n(r, s)) (1-¢&)F © ©
‘ 28 B 2 - Ex(—p)¢] [Is* Q(s + n(r, ) + I(sm(r,s))*Q(S)]
n*(r, )

{13 _ £
%[ - EE(_p)e]lm IEs( —PS)1Q°(s + (1 = ¢)n(r, $)I(dS)

1
1*(17{) _([E‘f(—PC){IQf(s + ¢n(r, 5))|(dc)§}

1 1
q

1 1
"lf(r, S) 1 _ ¢ ¢ 1 ¢ B ¢
2 — B ()] [m s ! Ecppey o) ] [m v !m (s + (1 - O, 1)

1
q

» 1
§(de)é 1 £ ¢
[F(l +&) IE5( ~ppeRS) ] (m +&) !'Q (s + ¢n(r, 5))1(dg) ]
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On the other hand, since |Q¥ |7 is the generalized (hy, hy)-preinvex function on [s, s + n(r, s)], then

1 1 1
! ¢ ¢ 1 FE i 1 T
I+ ) !IQ (s + ¢n(r, s)IUd¢)* < G !hl (1 - oh’(©)lQs) + Y3 _([hl (©h, (1
- ol
1 0 1 1 . 1 (21)
3 3 P& N b ~ g
T ! Q¥Cs + 1 DICH < s !hl O~ 9@ + g, ! Rfa
- ORI,
and
1 ¥ - Ex(-pp)*
— L[ Ee-ppe)i(de)f = —PP7 »
i ‘5)! (Cppoef = = @
By substituting (21) to (22) in (7), we obtain the desired result. O

Corollary 3. Choosing (¢) = ¢¢ and hy(¢) = ¢¢ in Theorem 3, we obtain
Q(s) + Qs + n(r,s)) (1-¢&)Y
2 25[1 - E¢(—p)°]

2né(r, s) (1* — Ex(-pp)*
[ — Ex(—p)*] (-pp)*

[Ig)Q(s +n(r, s)) + I((Qn(r’s))fQ(s)]

)(na@(s)w + 1QOMITIB(2, 2.

Lemma 7. Let D <R be an open invex subset with respect to the bi-function n: D x D — R, where
s,r € D,s <s+n(r,s). Suppose that Q : D — R¢ is a local fractional differentiable function with n(r, s) = 0
and Q(y)s € Iy@[s, s + n(r, s)]. If Q is the generalized (hy, hy)-preinvex function on s, s + n(r, s)], then

Q(s) + Qs + n(r, 5) a-&F
25 - 25[15 _ E£(_p)¢'] [IS(E)Q(S +n(r,s)) + I((jgn(r,s))fQ(S)]
1
_ n(r, s)° 1 o ]
261 - Ex(-p)f] [ It +¢§) ,0[ Eoper@(s + n(r, )(do) (23)

B 1
Ira+é)

1
jE;(—p(l — Qs + gnir, g |
0

Proof. By local fractional integration by parts, and letting u = s + ¢n(r, s), we have
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1
) !E;(—pc)fa«s + on(r, 9)(dg)é

i
= n(rl 9 E(-pg)*Q(s + gn(r, $))(d¢)lo -

r(1 j Q4(s + gn(r, )(Ex(-p))(dg)e

= [ | E=po)Qis + ontr, sHEoh -

§ 34 §
o ja (s + G0, (Ee(-ps))¥(dg)

r(1

1 (24)

= Ef(-p)*Q(s + n(r, s)) — Q(s) -

n(r,s)

Ef(-p)*Q(s + n(r, s)) - Q(s)
n(r, s)¢

F(l 5 IQf(s + ¢n(r, s))Eg(-pg)s (dg)* ]

s+1(r,s)

Y s+ 0, s) - u))
- (stnr9)-u .
& (n(r s)) §T(1+ &) I Ef( /’( 0 s) )) Q(u)(du)

o) - ¢
E¢(-p)°Q(s + n(r, 5)) - Q(s) ( 1-¢ ) 19Q(s + n(r, 9)).
n(r, s)% n(r, s)

Similarly, we obtain

r<1 5 j Eg(-p(1 - ©)¥Q5(s + gn(r, ))(dg)¢

) E£(_p)5Q(g)—Q(S+I](h5))_ 1-4 "((5)
) . s) s )

(25)

Q).

Subtracting (25) from (24), we obtain

1 1
1 1
Ta+ 8 !Es(—pc)595(s +¢n(r, $))(dg) - A E IE;(—p(l — O))¥Q5(s + ¢n(r, ))(do)é

_ [E - Ep)lQEs) + Qs + n(r, 9)] ( 1-¢

(26)

né(r, s) ner, s)) [19aGs + G, ) + 1), Q)]

which completes the proof. O

Theorem 4. Let D < R be an open invex subset with respect to the bi-function n: D x D — R, where
s,y € D,s<s+n(r,s). Assume that Q : D — R¢ is a local fractional differentiable function with ne,s)=0
and Q5(y) € I{¥[s, s + n(r, 5)]. IFIQ®)| is a the generalized (hy, hy)-preinvex function on s, s + n(r, s)], then the
following inequality holds:

Q9 +QX) 1§
2 2 — Eg(—p)f]

IPQGs + 10 ) + I, 0y QL)

@7)

1
B QO+ IREOD 1 Fo e
FE B TasD !(Es( PO — Ed(-p(1 — OIS - O’ (6)

+ I (O - ©))(dg)s.
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Proof. Since |Q®)| is a generalized (h,, hy)-preinvex function on [s, s + n(r, s)] and (A, h,) is a non-negative
function, then by utilizing Lemma 7, we can establish

Qe + QM) (-6

(9] 63)
2¢ 2818 - Eg(—p)‘f] I3'Q(s + nr, s) + I Q(s))

(s+n(rs))

né(r, s)
T 2E  E(pf1TQ

1
1+ 5 !us;(—pc)f ~ Ee(—p(1 - 9FNIQEs + ¢n(r, $)I(dg)E
1

£ 2 3 .
G ! - | Eepert - Eep1 - 9IRS - ) (9@
0

T 2818 - E(—p) ]| T +

1

+h (9 (1 - 9IQOS)II(dg) + D

1
j(E;(—p(l - o))
1
2

— Ef(-p¢)¥)I’ (1 - O (9)IQEO) |+ (§)h,° (1 - ¢)IQEX(s)](dg)*
1

¢ 2 3 3
. s) L - [ eep)t - E-pta - 09I - ) (IO
0

~ 2AF - ECpFl| Ta

+i (R (1 - ©)IQO(s)] [(dg)f + (Ee(—p6)é — Ee(=p(1 - ¢))¥)

1
ra+é)

O C— [

x 11t = O (RO +h* ()R (1 - ¢)IQE(s)|I(dg)E ]

1

£ 2 . . e
(. s) ! - [ e-p = Bep1 = 699 x (i1 - " (6) + R to)RF (1 - 6010
0

" 2F - E(pFITa+

+1QE(s)(de)*

1

15, )(1QVM) + 1Q9(s)) 1} e
) “Ta+ &) ! (Ee(=pg)> = Ee(-p(1 = ) )’ (1 = ©)ha*(9)

21 — Eg(—p)*]
+ (O (1 - ©)(dg)?,

which completes the proof. O

Corollary 4. (Dragomir-Agarwal-type inequality) Suppose that ﬁl‘((g) = 2% and ﬁz"((g) = 2—1{ in (27), then we
obtain

Q(s) + Q(r) (1-¢)y ® ®
‘ % 2 - E(-p)] I°Q(s +n(rs 9)) + I,y QLS)) o5
1| 7°(r, 9I@Q()| + 1QW(N)) PY

Proof. If ﬁls(g) = 2—1{ and flzf(g) = 2—1; in (27), then
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l

r(1 &)

- FaTH JU%( PO~ Ee(-p(1 ~ ) )(dg)¢

[ - 2‘(]55(?)5 + Eg(-p)*]
_ 2
(¥ - E3¥)

Substituting (29) into (28), the intended result yields after simplification.

Corollary 5. For ¢ — 1, we obtain
lim (a-&r = !
&1 281 - E;(—p)g] n(r, s) ’

and

lim

j( {(—p¢)5 — Ex(—p(1 — )6’ (1 - O’ (¢) + I’ (©)° (1 - ¢))(dg)¥

(Eg(-pg)* — Ef(-p(1 = ¢))*) 1-2

-1 2[F - E(-p)*] -2

Letting £ — 1 in Theorem 4, we have inequality for classical generalized (P, hy)-preinvex function,

s+n(r,s)
Q) +Qr) 1
5 m— Q(y)dy
M99 (52)'”@ ) f(l 2011 = ©)Filc) + Fu(g)n(1 - §1(d).

4 Examples

Example 1. For O < s < s + (7, s), the following inequality holds:

(s + n(r, s))? - 4s3 + 6s%n(s, s) + 4sn(s, s) + N3(s, s) <

4 = 4

— 11

(29)

(30)

(€3Y)

(32

Proof. Let Q(y) = y3, y € (0, co). Then, Q(y) is a classical generalized (P, hy)-preinvex function for le(g) =g

and Hz(c) = ¢; then, using the fact given in Corollary 2, we obtain

s+1(s,s)

2(ZS + n(r, s))3 <
2 rz(s s)

After simplifying the aforementioned inequality, we obtain (32).

Example 2. For O < s < s + n(r, s), the following inequality holds:

s+ 4s3 + 6s%n(s, s) + 4sn’(s, s) + n3(s, s)

f yldy <s _[c(l - 6)dg) +r Ic(l - ¢)(dg).

< 3n(r, s)(s? + rz).

2 4

33)
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Proof. Letting Q(y) = y3, y € (0, 00). Since Q(y) is a classical generalized (hy, ﬁz)-preinvex function for
ﬁl(g) = (¢ + 1)? and fzz(g‘) = (¢ + 1)%. Hence, using the fact given in Corollary 5, we obtain (33). O

5 Application to random variables

Assume that X is a continuous random variable and Q : © — R¢ is a generalized probability density func-
tion. Let © < R be an open invex subset with respectton : © x D — R, wheres,r € D, s < s + n(r, s). The
generalized %" central moment about an arbitrary point { € R of X, T = 0 is given by:

Ty L r O ¢ _
MO = s f(y OFedYY, T=1,23,.... (34)
Moreover, we have
TA+1OTA+&) 1 i
T & _ _ O\T-1Dé '3
MO =~ e T B j (v - O Dig(y)d(y)
and
WEQ) = - TEF A+ 8) prerirye

I+ (r - 1)¢&)

Proposition 1. Let D ¢ R be an open invex subset with respect to the bi-functionn : D x D — R, where
s,r € D,s < s +1(r, s). Assume the hypothesis of Corollary 3. Let Q(§) = M{({). If|(Mg({))'5|‘1 is a general-
ized (hy, hy)-preinvex function on [s, s + n(r, s)l, then for p' + g1 =1, p, q > 1, the following inequality
involving generalized moment holds,

M{(s) + M{(s + n(r, s)) ~ 1-¢&)Y
% 2 ~ Ey(-p)]

[Is(ng (s + n(r, s) + I((Q?n(r,s))'Ms‘T (5)]

2n8(r,s) T+ 1 + 5)(15 ~ Ex(-pp)}

E© (©) !
< [ E(p¥] T+ (- DD o) ) ([IM{SASNT + IMES()|71B(2, 2))a.

6 Conclusion

Utilizing the notion of integral operators of fractional order with Mittag-Leffler kernel on Yang’s fractal sets
defined by [42], this work intended to acquire some new identities of generalized local fractional integral
Hermite-Hadamard-type inequalities via generalized (f;, h,)-preinvex functions. Our results give definite
estimations for the variation between the left part and middle part together with the middle part and right
part in concerned inequality. Some novel generalized special cases manifested the imposing execution of
local fractional integration. The derived results have been illustrated by two examples to check the accuracy
of the obtained results. As special application, we constructed an integral inequality corresponding to
central moments of continuous random variables.

Acknowledgement: The authors would like to thank the anonymous referees for their comments and
suggestions, which helped greatly improve the manuscript.



DE GRUYTER LFIl involving LFI operators with Mittag-Leffler kernel =— 13

Funding information: This work received financial support from Pontificia Universidad Catélica del
Ecuador.

Author contributions: All authors contributed equally and significantly in writing this article. All authors
read and approved the final manuscript.

Conflict of interest: The authors declare no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or
analyzed during this study.

References

[1] J.Hadamard, Etude sur les propriétés des fonctions entiéres et en particulier daune fonction considérée par Riemann, ). de
mathématiques pures et appliquées. 9 (1893), 171-216.

[2] ). M. Viloria and M. Vivas-Cortez, Hermite-Hadamard type inequalities for harmonically convex functions on n-coordinates,
Appl. Math. Inf. Sci. Lett. 6 (2018), no. 2, 1-6, DOI: https://doi.org/10.18576/amisl/060201.

[3] M. Vivas-Cortez, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci. Lett. 4 (2016), no. 2,
39-45, DOI: https://doi.org/10.18576/amisl/040201.

[4] H.H. Chu, S. Rashid, Z. Hammouch, and Y. M. Chu, New fractional estimates for Hermite-Hadamard-Mercer’s type
inequalities, Alexandr. Eng. J. 59 (2020), no. 5, 3079-3089, DOI: https://doi.org/10.1016/j.aej.2020.06.040.

[5] S. I Butt, A. Kashuri, M. Tarig, J. Nasir, A. Aslam, and W. Gao, Hermite-Hadamard-type inequalities via n-polynomial
exponential-type convexity and their applications, Adv. Difference Equ. 1 (2020), 1-25, DOI: https://doi.org/10.1186/
s13662-020-02967-5.

[6] T.Du, M. U. Awan, A. Kashuri, and S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized
relative semi-(m, h)-preinvexity, Appl. Anal. 100 (2021), no. 3, 642-662, DOI: https://doi.org/10.1080/00036811.2019.1616083.

[71 Y.Q.Song,S.|. Butt, A. Kashuri, J. Nasir, and M. Nadeem, New fractional integral inequalities pertaining 2D-approximately
coordinate (r, hy) — (, hy)-convex functions, Alexandr. Eng. ). 61 (2022), no. 1, 563-573, DOI: https://doi.org/10.1016/j.
2ej.2021.06.044.

[8] V. Stojiljkovi¢, R. Ramaswamy, F. Alshammari, 0. A. Ashour, M. L. H. Alghazwani, and S. Radenovié, Hermite-Hadamard
type inequalities involving (kp) fractional operator for various types of convex functions, Fractal Fractional 6 (2022), no. 7,
376, DOI: https://doi.org/10.3390/fractalfract6070376.

[9] A. Ben-Israel and B. Mond, What is invexity? ANZIAM J. 28 (1986), no. 1, 1-9, DOI: https://doi.org/10.1017/
S0334270000005142.

[10] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, |. Math. Anal. Appl. 136 (1988), no. 1, 29-38,
DOI: https://doi.org/10.1016/0022-247X(88)90113-8.

[11] M. A. Noor, K. I. Noor, and S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics 7 (2019), no. 1,
29, DOI: https://doi.org/10.3390/math7010029.

[12] X.).Yang, Advanced Local Fractional Calculus and its Applications, World Science Publisher, New York, 2012.

[13] X.).Yang, D. Baleanu, and H. M. Srivastava, Local Fractional Integral Transforms and their Applications, Academic Press,
New York, 2015.

[14] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind
before vaccination? Chaos Solitons Fractals 136 (2020), 109860, DOI: https://doi.org/10.1016/j.cha0s.2020.109860.

[15] S. Kumar and A. Atangana, A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of
chemotherapeutic treatment, Int. |. Biomath. 13 (2020), no. 3, 2050021, DOI: https://doi.org/10.1142/
$1793524520500217.

[16] K. ). Wang, Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal
derivative, Fractals 29 (2021), no. 2, 2150044-1246, DOI: https://doi.org/10.1142/S0218348X21500444.

[17] X.].Yang, F. Gao, and H. M. Srivastava, Exact travelling wave solutions for the local fractional two-dimensional Burgers-
type equations, Comput. Math. Appl. 73 (2017), no. 2, 203-210, DOI: https://doi.org/10.1016/j.camwa.2016.11.012.

[18] N.D. Phuong, L. V. C. Hoan, E. Karapinar, J. Singh, H. D. Binh, N. H. Can, Fractional order continuity of a time semi-linear fractional
diffusion-wave system, Alexandr. Eng. J. 59 (2020), no. 6, 4959-4968, DOI: https://doi.org/10.1016/j.a€j.2020.08.054.

[19] N. H. Luc, L. N. Huynh, D. Baleanu, and N. H. Can, /dentifying the space source term problem for a generalization of the
fractional diffusion equation with hyper-Bessel operator, Adv. Difference Equ. (2020), Article ID 261, DOI: https://doi.org/
10.1186/513662-020-02712-y.


https://doi.org/10.18576/amisl/060201
https://doi.org/10.18576/amisl/040201
https://doi.org/10.1016/j.aej.2020.06.040
https://doi.org/10.1186/s13662-020-02967-5
https://doi.org/10.1186/s13662-020-02967-5
https://doi.org/10.1080/00036811.2019.1616083
https://doi.org/10.1016/j.aej.2021.06.044
https://doi.org/10.1016/j.aej.2021.06.044
https://doi.org/10.3390/fractalfract6070376
https://doi.org/10.1017/S0334270000005142
https://doi.org/10.1017/S0334270000005142
https://doi.org/10.1016/0022-247X(88)90113-8
https://doi.org/10.3390/math7010029
https://doi.org/10.1016/j.chaos.2020.109860
https://doi.org/10.1142/S1793524520500217
https://doi.org/10.1142/S1793524520500217
https://doi.org/10.1142/S0218348X21500444
https://doi.org/10.1016/j.camwa.2016.11.012
https://doi.org/10.1016/j.aej.2020.08.054
https://doi.org/10.1186/s13662-020-02712-y
https://doi.org/10.1186/s13662-020-02712-y

14

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40

[41]

[42]

[43]

[44]

— Miguel Vivas-Cortez et al. DE GRUYTER

H. T. Nguyen, N. A. Tuan, and C. Yang, Global well-posedness for fractional Sobolev-Galpern type equations, Discrete
Contin. Dyn. Syst. 42 (2022), no. 6, 2637-2665, DOI: https://doi.org/10.3934/dcds.2021206.

A. T. Nguyen, N. H. Tuan, and C. Yang, On Cauchy problem for fractional parabolic-elliptic Keller-Segel model, Adv.
Nonlinear Anal. 12 (2023), no. 1, 97-116, DOI: https://doi.org/10.1515/anona-2022-0256.

N. H. Tuan, V. V. Au, and A. T. Nguyen, Mild solutions to a time-fractional Cauchy problem with nonlocal nonlinearity in
Besov spaces, Archiv der Mathematik 118 (2022), no. 3, 305-314, DOI: https://doi.org/10.1007/s00013-022-01702-8.
N. H. Tuan, M. Foondun, T. Ngoc Thach, and R. Wang, On backward problems for stochastic fractional reaction equations
with standard and fractional Brownian motion, Bulletin des Sciences Mathématiques 179 (2022), Article no. 103158,
DOI: https://doi.org/10.1016/j.bulsci.2022.103158.

T. Caraballo Garrido, N. H. Tuan, T. B. Ngoc, and Y. Zhou, Existence and regularity results for terminal value problem for
nonlinear fractional wave equations, Nonlinearity 34 (2021), no. 3, 1448-1502, DOI: https://doi.org/10.1088/1361-6544/
abc4d9.

A. Tuan Nguyen, T. Caraballo, and N. Tuan, On the initial value problem for a class of nonlinear biharmonic equation with
time-fractional derivative, Proc. Roy. Soc. Edinburgh Sect. A Math. 152 (2022), no. 4, 989-1031, DOI: https://doi.org/
doi:10.1017/prm.2021.44.

S. Al-Sa’di, M. Bibi, and M. Muddassar, Some Hermite-Hadamard’s type local fractional integral inequalities for gener-
alized y-preinvex function with applications, Math. Meth. Appl. Sci. 46 (2023), no. 2, 2941-2954, DOI: https://doi.org/10.
1002/mma.8680.

M. Bibi and M. Muddassar, Integral inequalities for generalized approximately h-convex functions on fractal sets via
generalized local fractional integrals, Innovative J. Math. (IJM) 1 (2022), no. 3, 1-12, DOI: https://doi.org/10.55059/ijm.
2022.1.3/48.

M. Vivas-Cortez, ). Hernandez, and N. Merentes, New Hermite-Hadamard and Jensen-type inequalities for h-convex
functions on fractal sets, Revista Colombiana de Matematicas 50 (2016), no. 2, 145-164, DOI: https://doi.org/10.15446/
recolma.v50n2.62207.

0. Almutairi and A. Kilicman, Generalized Fejér-Hermite-Hadamard type via generalized (h — m)-convexity on fractal sets
and applications, Chaos Solitons Fractals 147 (2021), 110938, DOI: https://doi.org/10.1016/j.chaos.2021.110938.

T. Du, H. Wang, M. A. Khan, and Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets
and their applications, Fractals. 27 (2019), no. 07, 1950117, DOI: https://doi.org/10.1142/S0218348X19501172.

S. Iftikhar, S. Erden, P. Kumam, and M. U. Awan, Local fractional Newton’s inequalities involving generalized harmonic
convex functions, Adv. Difference Equ. 2020 (2020), 1-14, DOI: https://doi.org/10.1186/s13662-020-02637-6.

M. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc.
145 (2017), no. 4, 1527-1538, DOI: https://doi.org/10.1090/proc/13488.

H. Mo, X. Sui, and D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied
Analysis. 2014 (2014), Article ID 636751, DOI: https://doi.org/10.1155/2014/636751.

W. Sun, Hermite-Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their
generalization, Fractals 29 (2021), no. 04, 2150098, DOI: https://doi.org/10.1142/S0218348X21500985.

W. Sun, Generalized h-convexity on fractal sets and some generalized Hadamard-type inequalities, Fractals 28 (2020), no.
02, 2050021, DOI: https://doi.org/10.1142/50218348X20500218.

W. Sun, Some Hermite-Hadamard type inequalities for generalized h-preinvex function via local fractional integrals and
their applications, Adv. Difference Equ. 2020 (2020), no. 1, 1-14, DOI: https://doi.org/10.1186/s13662-020-02812-9.
W. Sun, Some local fractional integral inequalities for generalized preinvex functions and applications to numerical
quadrature, Fractals 27 (2019), no. 05, 1950071, DOI: https://doi.org/10.1142/50218348X19500713.

W. Sun, On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals,
Quaest. Math. 42 (2019), no. 9, 1159-1183, DOI: https://doi.org/10.2989/16073606.2018.1509242.

W. Sun and Q. Liu, Hadamard type local fractional integral inequalities for generalized harmonically convex functions and
applications, Math. Meth. Appl. Sci. 43 (2020), no. 9, 5776-5787, DOI: https://doi.org/10.1002/mma.6319.

W. Sun, Local fractional Ostrowski-type inequalities involving generalized h-convex functions and some applications for
generalized moments, Fractals 29 (2021), no. 01, 2150006, DOI: https://doi.org/10.1142/50218348X21500067.

B. Ahmad, A. Alsaedi, M. Kirane, and B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and
Pachpatte type inequalities for convex functions via new fractional integrals, ). Comput. Appl. Math. 353 (2019), 120-129,
DOI: https://doi.org/10.1016/j.cam.2018.12.030.

W. Sun, Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-
Leffler kernel, Math. Meth. Appl. Sci. 44 (2021), no. 06, 4985-4998, DOI: https://doi.org/10.1002/mma.7081.

W. Sun, Hermite-Hadamard type local fractional integral inequalities with Mittag-Leffler kernel for generalized preinvex
functions, Fractals 29 (2021), no. 08, 2150253, DOI: https://doi.org/10.1142/50218348X21502534.

S. Rashid, M. A. Noor, K. I. Noor, and F. Safdar, Integral inequalities for generalized preinvex functions, Punjab Univ. J.
Math. 51 (2019), no. 10, 77-91.


https://doi.org/10.3934/dcds.2021206
https://doi.org/10.1515/anona-2022-0256
https://doi.org/10.1007/s00013-022-01702-8
https://doi.org/10.1016/j.bulsci.2022.103158
https://doi.org/10.1088/1361-6544/abc4d9
https://doi.org/10.1088/1361-6544/abc4d9
https://doi.org/doi:10.1017/prm.2021.44
https://doi.org/doi:10.1017/prm.2021.44
https://doi.org/10.1002/mma.8680
https://doi.org/10.1002/mma.8680
https://doi.org/10.55059/ijm.2022.1.3/48
https://doi.org/10.55059/ijm.2022.1.3/48
https://doi.org/10.15446/recolma.v50n2.62207
https://doi.org/10.15446/recolma.v50n2.62207
https://doi.org/10.1016/j.chaos.2021.110938
https://doi.org/10.1142/S0218348X19501172
https://doi.org/10.1186/s13662-020-02637-6
https://doi.org/10.1090/proc/13488
https://doi.org/10.1155/2014/636751
https://doi.org/10.1142/S0218348X21500985
https://doi.org/10.1142/S0218348X20500218
https://doi.org/10.1186/s13662-020-02812-9
https://doi.org/10.1142/S0218348X19500713
https://doi.org/10.2989/16073606.2018.1509242
https://doi.org/10.1002/mma.6319
https://doi.org/10.1142/S0218348X21500067
https://doi.org/10.1016/j.cam.2018.12.030
https://doi.org/10.1002/mma.7081
https://doi.org/10.1142/S0218348X21502534

	1 Introduction
	2 Preliminaries
	3 Main results
	4 Examples
	5 Application to random variables
	6 Conclusion
	Acknowledgement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


