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1 Introduction

Problems regarding proximity points, where the closest distance between objects is of main interest, date
back to Euclid or even earlier. In modern computational geometry, closest-point problems, for instance,
seek estimation of the closest distance between any two points among the given n distinct points in
Euclidean plane, see, e.g., [1]. One may study similar problems in a more general framework, in metric
spaces, where distance is still meaningful. More precisely, given a mapping f: A — B, with A, B being
subsets of a metric space X, is it possible to find x* € A such that the distance between x* and fx* minimizes
the distance between A and B? This is known as a proximity point problem of mappings, and such a point x*
is called a best proximity point. For arbitrary nonempty disjoint subsets A, B of X, the answer to when a best
proximity point exists merely depends on the complexity of the mapping. For example, if f is a constant
mapping sending the whole A to a boundary point b € B, then there exists a best proximity point.

From a fixed-point theory perspective, one may view the above-mentioned proximity point problem as
a generalized existence problem of a fixed point. Some of very first articles on proximity point problems are
due to Sadiq Basha and Veeramani [2,3], in which the latter imposes conditions on function-valued map-
pings. Furthermore, another work of Sadiq Basha [4] proves existence theorems of best proximity points for
proximal contractions. As the field of fixed-point theory is rich and robust, many researchers tackle proxi-
mity point problems by various approaches producing an extensive number of publications. For instance,
Karapinar and Erhan [5] and Karapinar [6] proved the existence of best proximity points for cyclic map-
pings; another solo work by Karapinar [7] deals with the so-called y-Geraghty contractions named after
Geraghty [8] where the contractions are somehow controlled by a function 1; and a recent article by
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Karapinar and Khojasteh [9] proposed a way to study the existence and uniqueness of a best proximity
point via a simulation function. There are many more contributions in the literature, see, e.g., [10-14], to
mention but a few.

One may extend the notion of best proximity points as follows. Given two mappings f, g : A — B, with
A, B being subsets of a metric space (X, d), a point x* is a common best proximity point if both d(x*, fx*) and
d(x*, gx*) are exactly the distance between A and B. To the best of our knowledge, research on common best
proximity points started from a work by Shahzad et al. [15]. A lone research study by Sadiq Basha [16] came
out a year later dealing with some condition on subspaces A, B of X known as approximate compactness.
Kumam and Mongkolkeha [17] proved common best proximity point theorems for proximity commuting
mappings, improving results in [18]. Chen [19] introduced an idea of domination, where one mapping
dominates the other in a particular manner, and achieved the existence and uniqueness of a common
best proximity point for a pair of non-self-mappings. The reader may be referred to [20-25] for some other
relevant topics. Moreover, some recent publications concerning fixed-point and common fixed point pro-
blems, which serve as special cases of common best proximity point problems, can be found in [26-30].

This article mainly aims at establishing an existence and uniqueness result of common best proximity
points, Theorem 3.3, and illustrating a concrete application in fraction differential equations in Section 4.
Here, our approach slightly adjusts Chen’s domination of mappings in which two given mappings are made
intertwined with a function a, see, e.g., Definitions 2.3 and 2.5.

This article is outlined as follows. Section 2 comprises the relevant definitions concerning common best
proximity points as well as their related notions. Section 3 provides the main theorem and an example to
support the result in Euclidean space. Finally, Section 4 expresses how our main result applies to guarantee
that some fraction differential equations have a solution.

2 Preliminaries

Throughout Sections 2 and 3, unless otherwise stated, let (X, d) be a metric space and f,g: A — B be
mappings between nonempty subsets of X. Let us adopt the following notations:

d(A,B)=inf{d(x,y) : x € A,y € B};
Ag={x e A: dx,y) =d(A, B) forsome y € B};
Bo={y € B: d(x,y) = d(A, B) for some x € A}.

Obviously, Ay # @ if and only if By # &.

2.1 Common best proximity points

Definition 2.1. [17] An element x* € A is said to be a common best proximity point of the mappings f and g if
d(x*, fx*) = d(A, B) = d(x*, gx*).

Denote by CB(f, g) the set of common best proximity points of f and g.

If An B # &, thend(A, B) = 0; in this case, a common best proximity point becomes a common fixed point.
Denote by C(f, g) the set of common fixed points of f and g.

2.2 Commutativity of mappings

Definition 2.2. [18] Two mappings f and g proximally commute if
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d(v, fx) = d(A, B) = d(u, gx) implies fu = gv,
for all x, u, v € A.
If f and g proximally commute and d(u, fx) = d(A4, B) = d(u, gx) for some u € A, then f and g coincide at u;

such an element u is known as a coincidence point of f and g.
Leta : X x X — [0, co). Denote A(a, f,g) = {x € A : a(fx, gx) > 1}.

Definition 2.3. A mapping f is said to be ag-proximal if for any u, v € A and x € A(a, f, g),
@) a(fu, fu) > 1;

(ii) a(gu, gv) > 1 implies a(fu, fv) > 1;

(iii) d(u, fx) = d(A, B) = d(v, gx) implies a(u, v) > 1.

Definition 2.4. A mapping f is said to be ag-proximally commutative if f is ag-proximal and f, g proximally
commute.

2.3 Domination of mappings

Let us now consider a (nonempty) class of functions

B c{f:[0,00)— [0,1];1lim B(t,) =1 = lim ¢, = 0}.
n—oo n—oo

Definition 2.5. A function f: A — B is said to satisfy (ag, 8)-dominating property if for any x, X, u;, U, v,
v, € A with

d(uy, fx) = d(uy, fxo) = d(A, B) = d(v, gx1) = d(v2, %),

a(uy, v1) = 1and a(uy, v,) = 1, there exists € B such that
d(us, wp) < f(d(n, v2))d(ny, v2). 2.1

In the case B8 = {B} being a singleton, we may instead say f has (ag, f)-dominating property if (2.1)
holds.

It is also worth mentioning a special case where A = B = X, g is the identity mapping, a = 1, and
B = {B} with =k € [0, 1). In this case, a mapping satisfying Definition 2.5 is a contraction, and (2.1)
becomes

d(fX],sz) < kd(X1, Xz). (2.2)

This means we are dealing with a general situation, for which generalized results could possibly be
established.

3 Main results
Before we assert our main results, some facts need to be established.
Lemma 3.1. Let {u,} be a sequence in a metric space (X, d) such that

lim d(u,_1, u,) = 0.

n—oo
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If{u,} is not a Cauchy sequence, there exist subsequences {uy, } and {uy,} of {un} withmy. > ny > k forallk € N
such that

lim d(umk, unk) = lim d(umkH, unk”) =g,
k—o0

k—o0

for some € > 0.

Proof. Assume that {u,} is not a Cauchy sequence. Then, there exist subsequences {u,, } and {up,} of {u,}
with my > ny > k for all k € N such that

d(umk, unk) > &, (3.1)
for some € > 0. In addition, we choose the smallest ny satisfying (3.1) so that
d(umk, u,,k_l) < E. (3.2)
By using (3.1) and (3.2), we have that
€< d(umk, unk) < d(umk, unk_l) + d(u,,k_l, unk) <&+ d(u,,k_l, u,,k). (3.3)

Since limy,_, ood(uy,, Un,1) = 0, taking the limit as k — co in (3.3) implies

lim d(um, un,) = . (3.4)
It now remains to show that
Jim d(Ums1, Ungs1) = €. (3.5)

By the triangular inequality, we obtain
d(tmy> tn,) < A(tmes> Umgs1) + d(Umests Unger) + d(Uner, Uny)
and
d(Umy1 tneir) < d(Umgrs tmy) + (s Uny) + d(Unys Ungin).
As k — co, we obtain

lim d(uum,, ) = lim d(umor, tns1) = &,

k— o0

as required. O

Lemma 3.2. Suppose that f: A — B with f(A,) < By has (ag, B)-dominating property and is ag-proximally
commutative. If Ay N C(f, g) + D, then CB(f,g) + @.

Proof. Letu € Ay N C(f, g). Then, we have u € Ag and fu = gu. Since f(Ag) < By, there exists x* € Ay such
that

d(x*, fu) = d(A, B) = d(x*, gu). (3.6)
By the commutativity of f and g, we have

fx* = gx*.

Again, since x* € Ag and f(A4p) € By, there exists y* € Ay such that

a(ys, fx) = d(A, B) = d(y~, gx"). 3.7)
Hence, (3.6) and (3.7) become

dix, fu) = d(y*, fx*) = d(A, B) = d(x*, gu) = d(y*, gx"). 3.8)
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Since a(fu, gu) = a(fu, fu) > 1and a(fx*, gx*) = a(fx*, fx*) > 1, bothu and x* belong to A(a, f, g). Since f is
ag-proximal, (3.8) yields

a(x*,x*)>1 and a(y*,y*) = 1.
Next, we claim that x* = y*. Suppose that d(x*, y*) > 0. By the dominating property, we have
d(x*, y*) < Bd(x*, y)d(x*, y*) < d(x*, y*),
and hence,
1< B@d(x*, y*)) < 1.
The property of B gives d(x*, y*) = 0, which leads to a contradiction. Thus, x* = y*, and by (3.7), we obtain
d(x*, fx*) = d(A, B) = d(x*, gx*).
Therefore, CB(f, g) + @. |

Our main results are now ready to be stated.

Theorem 3.3. Let (X, d) be a complete metric space, let f : A — B with f(Ao) < By satisfying (ag, 8)-dom-
inating property and be ag-proximally commutative. Suppose also that the following hold:
(i) Ao is closed and Ag N A(a, f, g) + O;
(i) f(Ao) < 8(Ao);
(iii) either
(a) f and g are continuous; or
(b) for any sequences {x,} and {u,} in A such that

d(un’ fxn) = d(A’ B) = d(un—l’ an),

if {un} converges to u € A with a(uy, u,_1) > 1 for all n, then there exists a subsequence {x,,} of {x}
such that

d(u,fxnk) =d(A,B) = d(u,gxnk).
Then, CB(f, g) + &. Moreover, if CB(f, g) € A(a, f, g), then CB(f, g) has only one element.

The gist of the proof is to show, using Lemma 3.1, that a sequence constructed by iteration is Cauchy.
Proof. First, let xo € Ay N A(a, f, g). The assumptions (i) and (ii) inductively give rise to a sequence {x,} in
Ay satisfying

8Xn+1 = an and Xn € A((X,f, g), (39)
and a sequence {u,} in Aq satisfying
d(un, fxn) = d(A, B), (3.10)
for all n. Hence, (3.9) and (3.10) yield
d(A, B) = d(uy, fxn) = d(uy, an+1), vn > 0. (3.11)
Observe, for now, that if u,, = up,+1 for some ng, then (3.10) and (3.11) produce
d(A: B) = d(un0+19fxno+l) = d(unoy fxno) = d(unm an0+1)-

By the commutativity of f and g, we have f(upn,) = 8(tny+1) = 8(Un,), which then fulfills all hypotheses in
Lemma 3.2. Thus, CB(f, g) + @.
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Second, we show that

lim d(un—l’ un) =0,
n—oo

provided that u, # u,,; for all n. From (3.11), note that, for alln > 1
A(un, fxn) = d(Un1, fin1) = d(A, B) = d(un-1, 8xn) = d(un, 8Xns1). 3.12)
Since f is ag-proximal, (3.12) yields
alup, up_1) =21 and  a(uyq, up) =1, (3.13)
for all n. By the dominating property, there exists § € 8 such that
A(Un, Un.1) < B(d(Un-1, Un))d(Un-1, Un) < d(Un-1, Un), (3.14)

for all n. It is clear that lim,_,,,d(u,_1, U,) exists. By the property of S, if lim,_,,,d(u,_1, U,) were nonzero,
then lim,_, ,8(d(u,_1, u,)) would not be 1, which contradicts (3.14) as n — co.

Third, we claim that {u,} is a Cauchy sequence. Suppose, for a contradiction, that it is not the case.
By Lemma 3.1, there exist subsequences {uy,} and {uy,} of {u,}, with my > ny > k for all k € N such that

lim d(umk, u,,k) = lim d(umk+1, u,,k+1) =g,
k— o0 k— o0

for some € > 0. Since {uy,, } and {u,,} satisfy (3.12), we have

d(unk+1’ fxnkH) = d(A’ B) = d(unks gxnk+1)

(3.15)
d(umk+1’ fxmk+l) = d(A; B) = d(umka ngk+1),
for all k. It is not hard to see that the same procedure as above applies, so that we obtain
d(unk+1, umk+1) < B(d(unk, umk))d(unk, umk) < d(u,,k, umk). (3.16)

Taking k — oo in (3.16) yields
lim ﬁ(d(unk, umk)) =1,

n—oo
and hence,

€= lim d(unk, umk) =0,

n—oo

which is a contradiction.

Next, we prove the existence of a common proximity point of f and g by showing C(f, g) + @ and
applying Lemma 3.2. Since A, is a closed subspace of X, let lim,_,,u, = u € Ao. If f and g are continuous,
then

fu = lim fu, = lim gu,,, = gu,

n—oo n—oo

which implies that u € C(f, g). If assumption (iii)(b) is satisfied, then there exists a subsequence {x,, } of {x,,}
such that

d(u, fxn,) = d(A, B) = d(u, gxn,),

and hence, fu = gu by commutativity; that is, C(f, g) + 9.
Finally, assume CB(f, g) € A(a, f, g). We show the uniqueness of a common best proximity point. Let
x*, y* € CB(f, g). Then,

d(x*, fx*) = d(y*, fy*) = d(A, B) = d(x*, gx*) = d(y*, gy").
As above, since f is a,-proximal, we have

a(x*,x*)>21 and a(y*y*) > 1.



DE GRUYTER Common best proximity points = 7

By the dominating property, we again obtain
d(x*, y*) < pld(x*, y)d(x*, y*) < d(x*, y").

Suppose for a contradiction that x* # y*. Then, f(d(x*, y*)) = 1, implying d(x*, y*) = 0. This contradicts
X*=y* O
Example 3.4. Let X = R? be equipped with the standard Euclidean metric d. Also, let

A={x,1,2):0<x<2} and B={(x,-2,6):0<x<2}.
It is easy to see that Ay = A, By = B, and d(4, B) = 5. Define the continuous mappings f,g: A — B by
f(x,1,2) = (In(1 + x),-2,6) and g(x,1,2) =(x,-2,6),
for all (x, 1, 2) € A, and also define a : R3 x R3 — [0, 0c0) by

1;, x SYp X2 2Y X3 < )z}

a((x, X, X3), s V2o =
(04, 22, %), 05 V20 V3)) 0; otherwise.

Observe that f(4y) € g(Ao).

We show that f is ag-proximally commutative:
(1) For any u € A4, it is easy to see that a(fu, fu) > 1.
(2) Letu=(x,1,2) and v = (x, 1, 2) be such that

a(gu, gv) = a(g(x, 1, 2), g(x', 1, 2)) = a((x, -2, 6), (X', -2, 6)) > 1.
Then, we have x < x/, and hence, (In(1 + x)) < (In(1 + x")). Thus,
a(fu, fv) = a((n(1 + x), -2, 6), (In(1 + x'), -2, 6)) > 1.
(3) Letu=(x,1,2),v=(,1,2),and z = (x", 1, 2) be such that a(fz, gz) > 1 satisfying
d(u, fz) = d(A, B) = d(v, gz).

It follows by school algebra that x = In(1 + x") and x’ = x". Thus, a(u, v) > 1.
(4) Now it remains to show that f and g proximally commute. Let u = (x,1,2), v=(x',1,2), and
z = (x", 1, 2) satisfy

d(u, fz) = d(A, B) = d(v, gz).
Then, x = In(1 + x") and x’ = x". Thus,

fv=(1nQ + x"), -2, 6) = gu.

Next, let us define 8 : [0, c0) — [0, 1] by

1, t=0,
B(t) = arctant, £ 0.
arctant

Note that ‘1 - ‘ is close to zero only if t — 0. Here, 8 = {f}, and we may write f instead of 8 for
convenience. We show that f has the (a,, f)-dominating property. Let

zZ1= (21) 17 2)) Z = (22’ 1) 2))
u = (ﬁl, 15 2), U = (ﬁZy ]-7 2):
i = (]71) 17 2)) Vo = (1727 1, 2)’

satisfy
d(uy, fz1) = d(uy, fz) = d(A, B) = d(v, gz1) = d(v2, 82).
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Then,ﬁl = ln(l + 21), ﬁz = ln(l + 22),171 = 21,\72 = 22, andél, 22 € [0, 2] Since ln(l + 21) < 21 and 11’1(1 + 22) < 22,
we have

a(u,v) 21 and  a(uy, vo) > 1.
To obtain inequality (2.1), we first assume v; # v,. Then, d(v;, v») = |2; — 25| > 0. Hence,

d(uy, w) = [ty — Uy
=|In(1 + 2) - In(1 + )|
<In(1+ |2 - 2))
< arctan(|2; — 2,|)
_ ( arctaAn(|21A— 2 )|21 _s,
121 - 2|
= B(d(v1, v2))d(n, v2).

If vi = v, then u; = w,; inequality (2.1) clearly holds.
Theorem 3.3 now applies, which guarantees the existence of a common best proximity point of f and g.
Let x* € CB(f, g). Then,

d(x*, fx*) = d(A, B) = d(x", gx"),

which implies that fx* = gx*. Hence, a(fx*, gx*) > 1. That is, CB(f, g) < A(a, f, g). Therefore, x* is the only
common best proximity point of f and g. In fact, x* = (0, 1, 2).

As a consequence of our main theorem, the following corollary includes a fixed-point theorem as a
special case.

Corollary 3.5. Suppose that all assumptions in Theorem 3.3 hold, and also let B = {8}, where = k € [0, 1).
Then, CB(f, g) + &. Moreover, if CB(f, g) € A(a, f, g), then CB(f, g) has only one element. In particular,
if g is the identity on A = B = X and a = 1, then we obtain Banach fixed-point theorem.

Proof. The former part of the corollary is obvious. For the latter part, note that if A = B =X, then
Ao = By = X, which implies that all the assumptions of Theorem 3.3 are met. Moreover, if g is the identity
mapping, then the dominating property gives rise to a contraction satisfying (2.2). O

4 Applications to nonlinear fractional differential equations with
nonlocal boundary conditions

Fractional calculus has recently become of much interest as it can provide tools for solving real-world
problems, see, e.g., [31,32]. Solving fractional differential equations is generally not an easy task, and it is
worth investigating if they possess a solution. There appear a number of research studies devoted to such
investigation, see, e.g., [33-37]. Here, we employ a technique in fixed-point theory for the existence of a
solution.

For an integern > 2 and n — 1 < € < n, let us consider a fractional differential equation of the form

CDY)(®) = f(t, y(O)), (4.1)

where f: [0,1] x R — R is a continuous function. The so-called Caputo derivative D%u of u of fractional
order a is defined for all positive real numbers by

‘D% = [Tal-aplaly,
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where[-]is the ceiling function, and I¢ is the Riemann-Liouville integral operator of order w > 0 defined by
t
1
IYu(t =—j t — s)® lu(s)ds.
(®) ) (t = ) "Tu(s)
0

Recall also that T here denotes the gamma function. If £ = 0, I° is the identity operator. Observe that each I
is a bounded linear operator on the set of continuous functions C[0, 1] with respect to supremum norm.

We are particularly concerned with finding an (n - 2)-differentiable function y(t) satisfying (4.1)
together with boundary conditions

6
Y(0) =y'(0) ==y (0) =0 and y() = [y)ds, (4.2)
0

where § € [0, 1]. Equation (4.1) with conditions (4.2) may be referred to as a boundary value problem (BVP)
of Caputo fractional differential equations. The general solution of (4.1) is given by

y(t) = ao + @yt + -+ apot"t + I5f (L, y (D)),

and the boundary conditions yield ap = a; =---= a,_» = 0 and

§

ijf(s, y(s)ds - IEF(L, y()) .

0

n
- 6n

an-1 =

Thus, the solution y(t) to our BVP can be implicitly expressed as

nt

y(t) =

5

n-1

— Ilff(s,y(S))ds - IFf(1, y() | + If (8, y(1)). (4.3)
0

Let us now introduce an operator between the set of continuous mappings C[0, 1]. Define T : C[0, 1] —
C[0, 1] by

§

J‘Iff(s, u(s))ds — IS (1, u(V) | + I5F(t, u(t)).

(]

ntn—l
TQu)(t) =
W =
The dominated convergence theorem guarantees the continuity of the operator T. It also turns out that the
existence of a fixed point of T gives rise to a solution to the BVP (4.1)-(4.2).

Now let us take A = B = X = ([0, 1] with supremum norm, which is a Banach space.

Lemma 4.1. Suppose that there exists a function y : R2 — R such that
(C1) y(Tu(t), Tu(t)) = 0 for allu € C[0,1] and all t € [0, 1];
(C2) y(u(t), v(t)) = 0 implies y(Tu(t), Tu(t)) = 0

for all u,v e C[0,1] and t € [0, 1]. Then, there is a function a : C[O, 1] x C[0,1] — R such that T is
ao-proximal.

Proof. Define

a(u,v) = 11 if y(u(t), v(t)) >0 forall t € [0,1]
o otherwise,

for u, v € C[0, 1]. It is easy to verify that all conditions in Definition 2.3 are met. O
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Lemma 4.2. Suppose that there exists a function y : R> — R satisfying (C1) and (C2) as in Lemma 4.1, and
that
(C3) If(t, u(t)) - f(t,v(t)| < Ky In(1 + |u(t) — v(t)|) for allu,v € C[0, 1] and t € [0, 1],

where

(n-6MI¢+2)
YT e (D@2 - 60

Then, T satisfies (a0, B)-dominating property for some f : [0, co) — [0, 1].

Proof. First of all, let us compute for u, v € C[0, 1] using (C3)

nt"- 1[(1[(2

|Tu(t) - TV(t)l < m

In(1 + [u - V|w), (4.4)

where

t
8 Ia—sﬁ4®
n
0

§ s 1
K, = sup IJ(S - 1)5"drds + I(l - 5)5lds + n
00 0

te[0,1]

_ nés*! + (¢ + 1(2n - &)
ng(§+1)

Then, (4.4) becomes |Tu(t) — Tv(t)| < In(1 + [Ju - V|l ). Define B : [0, c0) — [0, 1] by

In(1 +t)

Bt) = t
0, ift=0.

, ift>0

Observe that if t is away from zero, so is ; that is, S satisfies the property lim,_,8(t,) =1 =

Inl+t)
— 1

lim,,_,t, = 0. For any u, v € C[0, 1] with a(Tu, u) > 1 and a(Tv, v) > 1, we then obtain
ITu - Tvlloo < B(lu = Viieo)llu = Vlleo-
It follows from Definition 2.5 that T has (a0, 8)-dominating property. O
Lemmas 4.1 and 4.2 thus give rise to a solution to our BVP.
Theorem 4.3. Suppose that there exists a function y satisfying (C1)—(C3) as in Lemmas 4.1 and 4.2. Addi-

tionally, assume that
(C4) There exists ug € C[0, 1] such that y(Tuy(t), ug(t)) = O for all t € [0, 1].

Then, CB(T, I®) + &. In other words, T has a fixed pointu* € C[0, 1], which is a solution to the BVP (4.1)-(4.2).
Proof. By (C1)-(C4), all assumptions in Theorem 3.3 are fully satisfied. O
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