

Research Article

Phakdi Charoensawan, Supreedee Dangskul*, and Pariwate Varnakovida

Common best proximity points for a pair of mappings with certain dominating property

<https://doi.org/10.1515/dema-2022-0215>

received September 28, 2022; accepted February 19, 2023

Abstract: This article introduces a type of dominating property, partially inherited from L. Chen's, and proves an existence and uniqueness theorem concerning common best proximity points. A certain kind of boundary value problem involving the so-called Caputo derivative can be formulated so that our result applies.

Keywords: common best proximity points, contractions, dominating property, fixed points, fractional differential equations

MSC 2020: 47H09, 47H10, 26A33

1 Introduction

Problems regarding proximity points, where the closest distance between objects is of main interest, date back to Euclid or even earlier. In modern computational geometry, closest-point problems, for instance, seek estimation of the closest distance between any two points among the given n distinct points in Euclidean plane, see, e.g., [1]. One may study similar problems in a more general framework, in metric spaces, where distance is still meaningful. More precisely, given a mapping $f: A \rightarrow B$, with A, B being subsets of a metric space X , is it possible to find $x^* \in A$ such that the distance between x^* and fx^* minimizes the distance between A and B ? This is known as a proximity point problem of mappings, and such a point x^* is called a *best proximity point*. For arbitrary nonempty disjoint subsets A, B of X , the answer to when a best proximity point exists merely depends on the complexity of the mapping. For example, if f is a constant mapping sending the whole A to a boundary point $b \in B$, then there exists a best proximity point.

From a fixed-point theory perspective, one may view the above-mentioned proximity point problem as a generalized existence problem of a fixed point. Some of very first articles on proximity point problems are due to Sadiq Basha and Veeramani [2,3], in which the latter imposes conditions on function-valued mappings. Furthermore, another work of Sadiq Basha [4] proves existence theorems of best proximity points for proximal contractions. As the field of fixed-point theory is rich and robust, many researchers tackle proximity point problems by various approaches producing an extensive number of publications. For instance, Karapinar and Erhan [5] and Karapinar [6] proved the existence of best proximity points for cyclic mappings; another solo work by Karapinar [7] deals with the so-called ψ -Geraghty contractions named after Geraghty [8] where the contractions are somehow controlled by a function ψ ; and a recent article by

* Corresponding author: Supreedee Dangskul, Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, e-mail: supreedee.dangskul@cmu.ac.th

Phakdi Charoensawan: Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand, e-mail: phakdi@hotmail.com

Pariwate Varnakovida: KMUTT Geospatial Engineering and Innovation Center, Faculty of Science, King Mongkut's University of Technology Thonburi, Thung Khru, Bangkok, 10140, Thailand, e-mail: pariwate.var@kmutt.ac.th

Karapinar and Khojasteh [9] proposed a way to study the existence and uniqueness of a best proximity point via a simulation function. There are many more contributions in the literature, see, e.g., [10–14], to mention but a few.

One may extend the notion of best proximity points as follows. Given two mappings $f, g : A \rightarrow B$, with A, B being subsets of a metric space (X, d) , a point x^* is a *common best proximity point* if both $d(x^*, fx^*)$ and $d(x^*, gx^*)$ are exactly the distance between A and B . To the best of our knowledge, research on common best proximity points started from a work by Shahzad et al. [15]. A lone research study by Sadiq Basha [16] came out a year later dealing with some condition on subspaces A, B of X known as approximate compactness. Kumam and Mongkolkeha [17] proved common best proximity point theorems for proximity commuting mappings, improving results in [18]. Chen [19] introduced an idea of domination, where one mapping dominates the other in a particular manner, and achieved the existence and uniqueness of a common best proximity point for a pair of non-self-mappings. The reader may be referred to [20–25] for some other relevant topics. Moreover, some recent publications concerning fixed-point and common fixed point problems, which serve as special cases of common best proximity point problems, can be found in [26–30].

This article mainly aims at establishing an existence and uniqueness result of common best proximity points, Theorem 3.3, and illustrating a concrete application in fraction differential equations in Section 4. Here, our approach slightly adjusts Chen's domination of mappings in which two given mappings are made intertwined with a function α , see, e.g., Definitions 2.3 and 2.5.

This article is outlined as follows. Section 2 comprises the relevant definitions concerning common best proximity points as well as their related notions. Section 3 provides the main theorem and an example to support the result in Euclidean space. Finally, Section 4 expresses how our main result applies to guarantee that some fraction differential equations have a solution.

2 Preliminaries

Throughout Sections 2 and 3, unless otherwise stated, let (X, d) be a metric space and $f, g : A \rightarrow B$ be mappings between nonempty subsets of X . Let us adopt the following notations:

$$\begin{aligned} d(A, B) &= \inf\{d(x, y) : x \in A, y \in B\}; \\ A_0 &= \{x \in A : d(x, y) = d(A, B) \text{ for some } y \in B\}; \\ B_0 &= \{y \in B : d(x, y) = d(A, B) \text{ for some } x \in A\}. \end{aligned}$$

Obviously, $A_0 \neq \emptyset$ if and only if $B_0 \neq \emptyset$.

2.1 Common best proximity points

Definition 2.1. [17] An element $x^* \in A$ is said to be a *common best proximity point* of the mappings f and g if

$$d(x^*, fx^*) = d(A, B) = d(x^*, gx^*).$$

Denote by $\mathcal{CB}(f, g)$ the set of common best proximity points of f and g .

If $A \cap B \neq \emptyset$, then $d(A, B) = 0$; in this case, a common best proximity point becomes a *common fixed point*. Denote by $\mathcal{C}(f, g)$ the set of common fixed points of f and g .

2.2 Commutativity of mappings

Definition 2.2. [18] Two mappings f and g *proximally commute* if

$$d(v, fx) = d(A, B) = d(u, gx) \quad \text{implies } fu = gv,$$

for all $x, u, v \in A$.

If f and g proximally commute and $d(u, fx) = d(A, B) = d(u, gx)$ for some $u \in A$, then f and g coincide at u ; such an element u is known as a *coincidence point* of f and g .

Let $\alpha : X \times X \rightarrow [0, \infty)$. Denote $A(\alpha, f, g) = \{x \in A : \alpha(fx, gx) \geq 1\}$.

Definition 2.3. A mapping f is said to be α_g -*proximal* if for any $u, v \in A$ and $x \in A(\alpha, f, g)$,

- (i) $\alpha(fu, fu) \geq 1$;
- (ii) $\alpha(gu, gv) \geq 1$ implies $\alpha(fu, fv) \geq 1$;
- (iii) $d(u, fx) = d(A, B) = d(v, gx)$ implies $\alpha(u, v) \geq 1$.

Definition 2.4. A mapping f is said to be α_g -*proximally commutative* if f is α_g -*proximal* and f, g proximally commute.

2.3 Domination of mappings

Let us now consider a (nonempty) class of functions

$$\mathcal{B} \subseteq \{\beta : [0, \infty) \rightarrow [0, 1]; \lim_{n \rightarrow \infty} \beta(t_n) = 1 \Rightarrow \lim_{n \rightarrow \infty} t_n = 0\}.$$

Definition 2.5. A function $f : A \rightarrow B$ is said to satisfy (α_g, \mathcal{B}) -*dominating property* if for any $x_1, x_2, u_1, u_2, v_1, v_2 \in A$ with

$$d(u_1, fx_1) = d(u_2, fx_2) = d(A, B) = d(v_1, gx_1) = d(v_2, gx_2),$$

$\alpha(u_1, v_1) \geq 1$ and $\alpha(u_2, v_2) \geq 1$, there exists $\beta \in \mathcal{B}$ such that

$$d(u_1, u_2) \leq \beta(d(v_1, v_2))d(v_1, v_2). \quad (2.1)$$

In the case $\mathcal{B} = \{\beta\}$ being a singleton, we may instead say f has (α_g, β) -dominating property if (2.1) holds.

It is also worth mentioning a special case where $A = B = X$, g is the identity mapping, $\alpha \equiv 1$, and $\mathcal{B} = \{\beta\}$ with $\beta \equiv k \in [0, 1)$. In this case, a mapping satisfying Definition 2.5 is a contraction, and (2.1) becomes

$$d(fx_1, fx_2) \leq kd(x_1, x_2). \quad (2.2)$$

This means we are dealing with a general situation, for which generalized results could possibly be established.

3 Main results

Before we assert our main results, some facts need to be established.

Lemma 3.1. Let $\{u_n\}$ be a sequence in a metric space (X, d) such that

$$\lim_{n \rightarrow \infty} d(u_{n-1}, u_n) = 0.$$

If $\{u_n\}$ is not a Cauchy sequence, there exist subsequences $\{u_{m_k}\}$ and $\{u_{n_k}\}$ of $\{u_n\}$ with $m_k > n_k > k$ for all $k \in \mathbb{N}$ such that

$$\lim_{k \rightarrow \infty} d(u_{m_k}, u_{n_k}) = \lim_{k \rightarrow \infty} d(u_{m_k+1}, u_{n_k+1}) = \varepsilon,$$

for some $\varepsilon > 0$.

Proof. Assume that $\{u_n\}$ is not a Cauchy sequence. Then, there exist subsequences $\{u_{m_k}\}$ and $\{u_{n_k}\}$ of $\{u_n\}$ with $m_k > n_k > k$ for all $k \in \mathbb{N}$ such that

$$d(u_{m_k}, u_{n_k}) \geq \varepsilon, \quad (3.1)$$

for some $\varepsilon > 0$. In addition, we choose the smallest n_k satisfying (3.1) so that

$$d(u_{m_k}, u_{n_{k-1}}) < \varepsilon. \quad (3.2)$$

By using (3.1) and (3.2), we have that

$$\varepsilon \leq d(u_{m_k}, u_{n_k}) \leq d(u_{m_k}, u_{n_{k-1}}) + d(u_{n_{k-1}}, u_{n_k}) < \varepsilon + d(u_{n_{k-1}}, u_{n_k}). \quad (3.3)$$

Since $\lim_{n \rightarrow \infty} d(u_n, u_{n+1}) = 0$, taking the limit as $k \rightarrow \infty$ in (3.3) implies

$$\lim_{k \rightarrow \infty} d(u_{m_k}, u_{n_k}) = \varepsilon. \quad (3.4)$$

It now remains to show that

$$\lim_{k \rightarrow \infty} d(u_{m_k+1}, u_{n_k+1}) = \varepsilon. \quad (3.5)$$

By the triangular inequality, we obtain

$$d(u_{m_k}, u_{n_k}) \leq d(u_{m_k}, u_{m_k+1}) + d(u_{m_k+1}, u_{n_k+1}) + d(u_{n_k+1}, u_{n_k})$$

and

$$d(u_{m_k+1}, u_{n_k+1}) \leq d(u_{m_k+1}, u_{m_k}) + d(u_{m_k}, u_{n_k}) + d(u_{n_k}, u_{n_k+1}).$$

As $k \rightarrow \infty$, we obtain

$$\lim_{k \rightarrow \infty} d(u_{m_k}, u_{n_k}) = \lim_{k \rightarrow \infty} d(u_{m_k+1}, u_{n_k+1}) = \varepsilon,$$

as required. \square

Lemma 3.2. Suppose that $f : A \rightarrow B$ with $f(A_0) \subseteq B_0$ has (α_g, \mathcal{B}) -dominating property and is α_g -proximally commutative. If $A_0 \cap C(f, g) \neq \emptyset$, then $C\mathcal{B}(f, g) \neq \emptyset$.

Proof. Let $u \in A_0 \cap C(f, g)$. Then, we have $u \in A_0$ and $fu = gu$. Since $f(A_0) \subseteq B_0$, there exists $x^* \in A_0$ such that

$$d(x^*, fu) = d(A, B) = d(x^*, gu). \quad (3.6)$$

By the commutativity of f and g , we have

$$fx^* = gx^*.$$

Again, since $x^* \in A_0$ and $f(A_0) \subseteq B_0$, there exists $y^* \in A_0$ such that

$$d(y^*, fx^*) = d(A, B) = d(y^*, gx^*). \quad (3.7)$$

Hence, (3.6) and (3.7) become

$$d(x^*, fu) = d(y^*, fx^*) = d(A, B) = d(x^*, gu) = d(y^*, gx^*). \quad (3.8)$$

Since $\alpha(fu, gu) = \alpha(fu, fu) \geq 1$ and $\alpha(fx^*, gx^*) = \alpha(fx^*, fx^*) \geq 1$, both u and x^* belong to $A(\alpha, f, g)$. Since f is α_g -proximal, (3.8) yields

$$\alpha(x^*, x^*) \geq 1 \quad \text{and} \quad \alpha(y^*, y^*) \geq 1.$$

Next, we claim that $x^* = y^*$. Suppose that $d(x^*, y^*) > 0$. By the dominating property, we have

$$d(x^*, y^*) \leq \beta(d(x^*, y^*))d(x^*, y^*) \leq d(x^*, y^*),$$

and hence,

$$1 \leq \beta(d(x^*, y^*)) \leq 1.$$

The property of β gives $d(x^*, y^*) = 0$, which leads to a contradiction. Thus, $x^* = y^*$, and by (3.7), we obtain

$$d(x^*, fx^*) = d(A, B) = d(x^*, gx^*).$$

Therefore, $CB(f, g) \neq \emptyset$. □

Our main results are now ready to be stated.

Theorem 3.3. *Let (X, d) be a complete metric space, let $f : A \rightarrow B$ with $f(A_0) \subseteq B_0$ satisfying (α_g, \mathcal{B}) -dominating property and be α_g -proximally commutative. Suppose also that the following hold:*

- (i) A_0 is closed and $A_0 \cap A(\alpha, f, g) \neq \emptyset$;
- (ii) $f(A_0) \subseteq g(A_0)$;
- (iii) either
 - (a) f and g are continuous; or
 - (b) for any sequences $\{x_n\}$ and $\{u_n\}$ in A such that

$$d(u_n, fx_n) = d(A, B) = d(u_{n-1}, gx_n),$$

if $\{u_n\}$ converges to $u \in A$ with $\alpha(u_n, u_{n-1}) \geq 1$ for all n , then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$d(u, fx_{n_k}) = d(A, B) = d(u, gx_{n_k}).$$

Then, $CB(f, g) \neq \emptyset$. Moreover, if $CB(f, g) \subseteq A(\alpha, f, g)$, then $CB(f, g)$ has only one element.

The gist of the proof is to show, using Lemma 3.1, that a sequence constructed by iteration is Cauchy.

Proof. First, let $x_0 \in A_0 \cap A(\alpha, f, g)$. The assumptions (i) and (ii) inductively give rise to a sequence $\{x_n\}$ in A_0 satisfying

$$gx_{n+1} = fx_n \quad \text{and} \quad x_n \in A(\alpha, f, g), \quad (3.9)$$

and a sequence $\{u_n\}$ in A_0 satisfying

$$d(u_n, fx_n) = d(A, B), \quad (3.10)$$

for all n . Hence, (3.9) and (3.10) yield

$$d(A, B) = d(u_n, fx_n) = d(u_n, gx_{n+1}), \quad \forall n \geq 0. \quad (3.11)$$

Observe, for now, that if $u_{n_0} = u_{n_0+1}$ for some n_0 , then (3.10) and (3.11) produce

$$d(A, B) = d(u_{n_0+1}, fx_{n_0+1}) = d(u_{n_0}, fx_{n_0}) = d(u_{n_0}, gx_{n_0+1}).$$

By the commutativity of f and g , we have $f(u_{n_0}) = g(u_{n_0+1}) = g(u_{n_0})$, which then fulfills all hypotheses in Lemma 3.2. Thus, $CB(f, g) \neq \emptyset$.

Second, we show that

$$\lim_{n \rightarrow \infty} d(u_{n-1}, u_n) = 0,$$

provided that $u_n \neq u_{n+1}$ for all n . From (3.11), note that, for all $n \geq 1$

$$d(u_n, fx_n) = d(u_{n+1}, fx_{n+1}) = d(A, B) = d(u_{n-1}, gx_n) = d(u_n, gx_{n+1}). \quad (3.12)$$

Since f is α_g -proximal, (3.12) yields

$$\alpha(u_n, u_{n-1}) \geq 1 \quad \text{and} \quad \alpha(u_{n+1}, u_n) \geq 1, \quad (3.13)$$

for all n . By the dominating property, there exists $\beta \in \mathcal{B}$ such that

$$d(u_n, u_{n+1}) \leq \beta(d(u_{n-1}, u_n))d(u_{n-1}, u_n) \leq d(u_{n-1}, u_n), \quad (3.14)$$

for all n . It is clear that $\lim_{n \rightarrow \infty} d(u_{n-1}, u_n)$ exists. By the property of β , if $\lim_{n \rightarrow \infty} d(u_{n-1}, u_n)$ were nonzero, then $\lim_{n \rightarrow \infty} \beta(d(u_{n-1}, u_n))$ would not be 1, which contradicts (3.14) as $n \rightarrow \infty$.

Third, we claim that $\{u_n\}$ is a Cauchy sequence. Suppose, for a contradiction, that it is not the case. By Lemma 3.1, there exist subsequences $\{u_{m_k}\}$ and $\{u_{n_k}\}$ of $\{u_n\}$, with $m_k > n_k > k$ for all $k \in \mathbb{N}$ such that

$$\lim_{k \rightarrow \infty} d(u_{m_k}, u_{n_k}) = \lim_{k \rightarrow \infty} d(u_{m_k+1}, u_{n_k+1}) = \varepsilon,$$

for some $\varepsilon > 0$. Since $\{u_{m_k}\}$ and $\{u_{n_k}\}$ satisfy (3.12), we have

$$\begin{aligned} d(u_{n_k+1}, fx_{n_k+1}) &= d(A, B) = d(u_{n_k}, gx_{n_k+1}) \\ d(u_{m_k+1}, fx_{m_k+1}) &= d(A, B) = d(u_{m_k}, gx_{m_k+1}), \end{aligned} \quad (3.15)$$

for all k . It is not hard to see that the same procedure as above applies, so that we obtain

$$d(u_{n_k+1}, u_{m_k+1}) \leq \beta(d(u_{n_k}, u_{m_k}))d(u_{n_k}, u_{m_k}) \leq d(u_{n_k}, u_{m_k}). \quad (3.16)$$

Taking $k \rightarrow \infty$ in (3.16) yields

$$\lim_{n \rightarrow \infty} \beta(d(u_{n_k}, u_{m_k})) = 1,$$

and hence,

$$\varepsilon = \lim_{n \rightarrow \infty} d(u_{n_k}, u_{m_k}) = 0,$$

which is a contradiction.

Next, we prove the existence of a common proximity point of f and g by showing $C(f, g) \neq \emptyset$ and applying Lemma 3.2. Since A_0 is a closed subspace of X , let $\lim_{n \rightarrow \infty} u_n = u \in A_0$. If f and g are continuous, then

$$fu = \lim_{n \rightarrow \infty} fu_n = \lim_{n \rightarrow \infty} gu_{n+1} = gu,$$

which implies that $u \in C(f, g)$. If assumption (iii)(b) is satisfied, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that

$$d(u, fx_{n_k}) = d(A, B) = d(u, gx_{n_k}),$$

and hence, $fu = gu$ by commutativity; that is, $C(f, g) \neq \emptyset$.

Finally, assume $C\mathcal{B}(f, g) \subseteq A(\alpha, f, g)$. We show the uniqueness of a common best proximity point. Let $x^*, y^* \in C\mathcal{B}(f, g)$. Then,

$$d(x^*, fx^*) = d(y^*, fy^*) = d(A, B) = d(x^*, gx^*) = d(y^*, gy^*).$$

As above, since f is α_g -proximal, we have

$$\alpha(x^*, x^*) \geq 1 \quad \text{and} \quad \alpha(y^*, y^*) \geq 1.$$

By the dominating property, we again obtain

$$d(x^*, y^*) \leq \beta(d(x^*, y^*))d(x^*, y^*) \leq d(x^*, y^*).$$

Suppose for a contradiction that $x^* \neq y^*$. Then, $\beta(d(x^*, y^*)) = 1$, implying $d(x^*, y^*) = 0$. This contradicts $x^* = y^*$. \square

Example 3.4. Let $X = \mathbb{R}^3$ be equipped with the standard Euclidean metric d . Also, let

$$A = \{(x, 1, 2) : 0 \leq x \leq 2\} \quad \text{and} \quad B = \{(x, -2, 6) : 0 \leq x \leq 2\}.$$

It is easy to see that $A_0 = A$, $B_0 = B$, and $d(A, B) = 5$. Define the continuous mappings $f, g : A \rightarrow B$ by

$$f(x, 1, 2) = (\ln(1 + x), -2, 6) \quad \text{and} \quad g(x, 1, 2) = (x, -2, 6),$$

for all $(x, 1, 2) \in A$, and also define $\alpha : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow [0, \infty)$ by

$$\alpha((x_1, x_2, x_3), (y_1, y_2, y_3)) = \begin{cases} 1; & x_1 \leq y_1, x_2 \geq y_2, x_3 \leq y_3 \\ 0; & \text{otherwise.} \end{cases}$$

Observe that $f(A_0) \subseteq g(A_0)$.

We show that f is α_g -proximally commutative:

- (1) For any $u \in A$, it is easy to see that $\alpha(fu, fu) \geq 1$.
- (2) Let $u = (x, 1, 2)$ and $v = (x', 1, 2)$ be such that

$$\alpha(gu, gv) = \alpha(g(x, 1, 2), g(x', 1, 2)) = \alpha((x, -2, 6), (x', -2, 6)) \geq 1.$$

Then, we have $x \leq x'$, and hence, $(\ln(1 + x)) \leq (\ln(1 + x'))$. Thus,

$$\alpha(fu, fv) = \alpha((\ln(1 + x), -2, 6), (\ln(1 + x'), -2, 6)) \geq 1.$$

- (3) Let $u = (x, 1, 2)$, $v = (x', 1, 2)$, and $z = (x'', 1, 2)$ be such that $\alpha(fz, gz) \geq 1$ satisfying

$$d(u, fz) = d(A, B) = d(v, gz).$$

It follows by school algebra that $x = \ln(1 + x'')$ and $x' = x''$. Thus, $\alpha(u, v) \geq 1$.

- (4) Now it remains to show that f and g proximally commute. Let $u = (x, 1, 2)$, $v = (x', 1, 2)$, and $z = (x'', 1, 2)$ satisfy

$$d(u, fz) = d(A, B) = d(v, gz).$$

Then, $x = \ln(1 + x'')$ and $x' = x''$. Thus,

$$fv = (\ln(1 + x''), -2, 6) = gu.$$

Next, let us define $\beta : [0, \infty) \rightarrow [0, 1]$ by

$$\beta(t) = \begin{cases} 1, & t = 0, \\ \frac{\arctant}{t}, & t > 0. \end{cases}$$

Note that $\left|1 - \frac{\arctant}{t}\right|$ is close to zero only if $t \rightarrow 0$. Here, $\mathcal{B} = \{\beta\}$, and we may write β instead of \mathcal{B} for convenience. We show that f has the (α_g, β) -dominating property. Let

$$\begin{aligned} z_1 &= (\hat{z}_1, 1, 2), & z_2 &= (\hat{z}_2, 1, 2), \\ u_1 &= (\hat{u}_1, 1, 2), & u_2 &= (\hat{u}_2, 1, 2), \\ v_1 &= (\hat{v}_1, 1, 2), & v_2 &= (\hat{v}_2, 1, 2), \end{aligned}$$

satisfy

$$d(u_1, fz_1) = d(u_2, fz_2) = d(A, B) = d(v_1, gz_1) = d(v_2, gz_2).$$

Then, $\hat{u}_1 = \ln(1 + \hat{z}_1)$, $\hat{u}_2 = \ln(1 + \hat{z}_2)$, $\hat{v}_1 = \hat{z}_1$, $\hat{v}_2 = \hat{z}_2$, and $\hat{z}_1, \hat{z}_2 \in [0, 2]$. Since $\ln(1 + \hat{z}_1) \leq \hat{z}_1$ and $\ln(1 + \hat{z}_2) \leq \hat{z}_2$, we have

$$\alpha(u_1, v_1) \geq 1 \quad \text{and} \quad \alpha(u_2, v_2) \geq 1.$$

To obtain inequality (2.1), we first assume $v_1 \neq v_2$. Then, $d(v_1, v_2) = |\hat{z}_1 - \hat{z}_2| > 0$. Hence,

$$\begin{aligned} d(u_1, u_2) &= |\hat{u}_1 - \hat{u}_2| \\ &= |\ln(1 + \hat{z}_1) - \ln(1 + \hat{z}_2)| \\ &\leq \ln(1 + |\hat{z}_1 - \hat{z}_2|) \\ &\leq \arctan(|\hat{z}_1 - \hat{z}_2|) \\ &= \left(\frac{\arctan(|\hat{z}_1 - \hat{z}_2|)}{|\hat{z}_1 - \hat{z}_2|} \right) |\hat{z}_1 - \hat{z}_2| \\ &= \beta(d(v_1, v_2))d(v_1, v_2). \end{aligned}$$

If $v_1 = v_2$, then $u_1 = u_2$; inequality (2.1) clearly holds.

Theorem 3.3 now applies, which guarantees the existence of a common best proximity point of f and g . Let $x^* \in \mathcal{CB}(f, g)$. Then,

$$d(x^*, fx^*) = d(A, B) = d(x^*, gx^*),$$

which implies that $fx^* = gx^*$. Hence, $\alpha(fx^*, gx^*) \geq 1$. That is, $\mathcal{CB}(f, g) \subseteq A(\alpha, f, g)$. Therefore, x^* is the only common best proximity point of f and g . In fact, $x^* = (0, 1, 2)$.

As a consequence of our main theorem, the following corollary includes a fixed-point theorem as a special case.

Corollary 3.5. *Suppose that all assumptions in Theorem 3.3 hold, and also let $\mathcal{B} = \{\beta\}$, where $\beta \equiv k \in [0, 1]$. Then, $\mathcal{CB}(f, g) \neq \emptyset$. Moreover, if $\mathcal{CB}(f, g) \subseteq A(\alpha, f, g)$, then $\mathcal{CB}(f, g)$ has only one element. In particular, if g is the identity on $A = B = X$ and $\alpha \equiv 1$, then we obtain Banach fixed-point theorem.*

Proof. The former part of the corollary is obvious. For the latter part, note that if $A = B = X$, then $A_0 = B_0 = X$, which implies that all the assumptions of Theorem 3.3 are met. Moreover, if g is the identity mapping, then the dominating property gives rise to a contraction satisfying (2.2). \square

4 Applications to nonlinear fractional differential equations with nonlocal boundary conditions

Fractional calculus has recently become of much interest as it can provide tools for solving real-world problems, see, e.g., [31,32]. Solving fractional differential equations is generally not an easy task, and it is worth investigating if they possess a solution. There appear a number of research studies devoted to such investigation, see, e.g., [33–37]. Here, we employ a technique in fixed-point theory for the existence of a solution.

For an integer $n \geq 2$ and $n - 1 < \xi \leq n$, let us consider a fractional differential equation of the form

$$({}^C D^\xi y)(t) = f(t, y(t)), \quad (4.1)$$

where $f : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. The so-called Caputo derivative ${}^C D^\alpha u$ of u of fractional order α is defined for all positive real numbers by

$${}^C D^\alpha u = I^{[\alpha]-\alpha} D^{[\alpha]} u,$$

where $\lceil \cdot \rceil$ is the ceiling function, and I^ω is the Riemann-Liouville integral operator of order $\omega > 0$ defined by

$$I^\omega u(t) = \frac{1}{\Gamma(\omega)} \int_0^t (t-s)^{\omega-1} u(s) ds.$$

Recall also that Γ here denotes the gamma function. If $\xi = 0$, I^0 is the identity operator. Observe that each I^ω is a bounded linear operator on the set of continuous functions $C[0, 1]$ with respect to supremum norm.

We are particularly concerned with finding an $(n-2)$ -differentiable function $y(t)$ satisfying (4.1) together with boundary conditions

$$y(0) = y'(0) = \dots = y^{(n-2)}(0) = 0 \quad \text{and} \quad y(1) = \int_0^\delta y(s) ds, \quad (4.2)$$

where $\delta \in [0, 1]$. Equation (4.1) with conditions (4.2) may be referred to as a boundary value problem (BVP) of Caputo fractional differential equations. The general solution of (4.1) is given by

$$y(t) = a_0 + a_1 t + \dots + a_{n-1} t^{n-1} + I^\xi f(t, y(t)),$$

and the boundary conditions yield $a_0 = a_1 = \dots = a_{n-2} = 0$ and

$$a_{n-1} = \frac{n}{n - \delta^n} \left(\int_0^\delta I^\xi f(s, y(s)) ds - I^\xi f(1, y(1)) \right).$$

Thus, the solution $y(t)$ to our BVP can be implicitly expressed as

$$y(t) = \frac{nt^{n-1}}{n - \delta^n} \left(\int_0^\delta I^\xi f(s, y(s)) ds - I^\xi f(1, y(1)) \right) + I^\xi f(t, y(t)). \quad (4.3)$$

Let us now introduce an operator between the set of continuous mappings $C[0, 1]$. Define $T : C[0, 1] \rightarrow C[0, 1]$ by

$$T(u)(t) = \frac{nt^{n-1}}{n - \delta^n} \left(\int_0^\delta I^\xi f(s, u(s)) ds - I^\xi f(1, u(1)) \right) + I^\xi f(t, u(t)).$$

The dominated convergence theorem guarantees the continuity of the operator T . It also turns out that the existence of a fixed point of T gives rise to a solution to the BVP (4.1)–(4.2).

Now let us take $A = B = X = C[0, 1]$ with supremum norm, which is a Banach space.

Lemma 4.1. *Suppose that there exists a function $\gamma : \mathbb{R}^2 \rightarrow \mathbb{R}$ such that*

- (C1) $\gamma(Tu(t), Tu(t)) \geq 0$ for all $u \in C[0, 1]$ and all $t \in [0, 1]$;
- (C2) $\gamma(u(t), v(t)) \geq 0$ implies $\gamma(Tu(t), Tu(t)) \geq 0$

for all $u, v \in C[0, 1]$ and $t \in [0, 1]$. Then, there is a function $\alpha : C[0, 1] \times C[0, 1] \rightarrow \mathbb{R}$ such that T is α_{I^0} -proximal.

Proof. Define

$$\alpha(u, v) = \begin{cases} 1 & \text{if } \gamma(u(t), v(t)) \geq 0 \text{ for all } t \in [0, 1] \\ 0 & \text{otherwise,} \end{cases}$$

for $u, v \in C[0, 1]$. It is easy to verify that all conditions in Definition 2.3 are met. □

Lemma 4.2. Suppose that there exists a function $\gamma : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfying (C1) and (C2) as in Lemma 4.1, and that

(C3) $|f(t, u(t)) - f(t, v(t))| \leq K_1 \ln(1 + |u(t) - v(t)|)$ for all $u, v \in C[0, 1]$ and $t \in [0, 1]$,

where

$$K_1 \leq \frac{(n - \delta^n)\Gamma(\xi + 2)}{n\delta^{\xi+1} + (\xi + 1)(2n - \delta^n)}.$$

Then, T satisfies (α_{I^0}, β) -dominating property for some $\beta : [0, \infty) \rightarrow [0, 1]$.

Proof. First of all, let us compute for $u, v \in C[0, 1]$ using (C3)

$$|Tu(t) - Tv(t)| \leq \frac{nt^{n-1}K_1K_2}{(n - \delta^n)\Gamma(\xi)} \ln(1 + \|u - v\|_\infty), \quad (4.4)$$

where

$$\begin{aligned} K_2 &= \sup_{t \in [0, 1]} \left(\int_0^\delta \int_0^s (s - \tau)^{\xi-1} d\tau ds + \int_0^1 (1 - s)^{\xi-1} ds + \frac{n - \delta^n}{n} \int_0^t (t - s)^{\xi-1} ds \right) \\ &= \frac{n\delta^{\xi+1} + (\xi + 1)(2n - \delta^n)}{n\xi(\xi + 1)}. \end{aligned}$$

Then, (4.4) becomes $|Tu(t) - Tv(t)| \leq \ln(1 + \|u - v\|_\infty)$. Define $\beta : [0, \infty) \rightarrow [0, 1]$ by

$$\beta(t) = \begin{cases} \frac{\ln(1+t)}{t}, & \text{if } t > 0 \\ 0, & \text{if } t = 0. \end{cases}$$

Observe that if t is away from zero, so is $\left| \frac{\ln(1+t)}{t} - 1 \right|$; that is, β satisfies the property $\lim_{n \rightarrow \infty} \beta(t_n) = 1 \Rightarrow \lim_{n \rightarrow \infty} t_n = 0$. For any $u, v \in C[0, 1]$ with $\alpha(Tu, u) > 1$ and $\alpha(Tv, v) > 1$, we then obtain

$$\|Tu - Tv\|_\infty \leq \beta(\|u - v\|_\infty)\|u - v\|_\infty.$$

It follows from Definition 2.5 that T has (α_{I^0}, β) -dominating property. \square

Lemmas 4.1 and 4.2 thus give rise to a solution to our BVP.

Theorem 4.3. Suppose that there exists a function γ satisfying (C1)–(C3) as in Lemmas 4.1 and 4.2. Additionally, assume that

(C4) There exists $u_0 \in C[0, 1]$ such that $\gamma(Tu_0(t), u_0(t)) \geq 0$ for all $t \in [0, 1]$.

Then, $C\mathcal{B}(T, I^0) \neq \emptyset$. In other words, T has a fixed point $u^* \in C[0, 1]$, which is a solution to the BVP (4.1)–(4.2).

Proof. By (C1)–(C4), all assumptions in Theorem 3.3 are fully satisfied. \square

Acknowledgments: This research was financially supported by Faculty of Science, Chiang Mai University; and King Mongkut's University of Technology Thonburi.

Conflict of interest: Authors state no conflict of interest.

References

- [1] M. I. Shamos and D. Hoey, *Closest-point problems*, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), 1975, pp. 151–162, DOI: <https://doi.org/10.1109/SFCS.1975.8>.
- [2] S. Sadiq Basha and P. Veeramani, *Best approximations and best proximity pairs*, *Acta Sci. Math. (Szeged)* **63** (1997), 289–300.
- [3] S. Sadiq Basha and P. Veeramani, *Best proximity pair theorems for multifunctions with open fibres*, *J. Approx. Theory* **103** (2000), no. 1, 119–129.
- [4] S. Sadiq Basha, *Best proximity point theorems*, *J. Approx. Theory* **163** (2011), no. 11, 1772–1781, DOI: <https://doi.org/10.1016/j.jat.2011.06.012>.
- [5] E. Karapınar and I. M. Erhan, *Best proximity point on different type contractions*, *Appl. Math. Inf. Sci.* **3** (2011), no. 3, 342–353.
- [6] E. Karapınar, *Best proximity points of cyclic mappings*, *Appl. Math. Lett.* **25** (2012), no. 11, 1761–1766.
- [7] E. Karapınar, *On best proximity point of ψ -Geraghty contractions*, *Fixed Point Theory Appl.* **1** (2013), 1–9.
- [8] M. A. Geraghty, *On contractive mappings*, *Proc. Amer. Math. Soc.* **40** (1973), no. 2, 604–608, DOI: <https://doi.org/10.2307/2039421>.
- [9] E. Karapınar and F. Khojasteh, *An approach to best proximity points results via simulation functions*, *J. Fixed Point Theory Appl.* **19** (2017), no. 3, 1983–1995.
- [10] A. A. Eldred and P. Veeramani, *Existence and convergence of best proximity points*, *J. Math. Anal. Appl.* **323** (2006), no. 2, 1001–1006.
- [11] C. Mongkolkeha, Y. J. Cho, and P. Kumam, *Best proximity points for Geraghty's proximal contraction mappings*, *Fixed Point Theory Appl.* **180** (2013).
- [12] M. I. Ayari, *A best proximity point theorem for α -proximal Geraghty non-self mappings*, *Fixed Point Theory Appl.* **10** (2019), DOI: <https://doi.org/10.1186/s13663-019-0661-8>.
- [13] A. Kostić, E. Karapınar, and V. Rakočević, *Best proximity points and fixed points with R -functions in the framework of w -distances*, *Bulletin Australian Math. Soc.* **99** (2019), no. 3, 497–507, DOI: <https://doi.org/10.1017/S0004972718001193>.
- [14] P. Magaddevan, S. Karpagam, and E. Karapınar, *Existence of fixed point and best proximity point of p -cyclic orbital ϕ -contraction map*, *Nonlinear Anal. Modell. Control.* **27** (2022), 91–101, DOI: <https://doi.org/10.15388/namc.2022.27.25188>.
- [15] N. Shahzad, S. Sadiq Basha, and R. Jeyaraj, *Common best proximity points: global optimal solutions*, *J. Optimiz. Theory Appl.* **148** (2011), no. 1, 69–78.
- [16] S. Sadiq Basha, *Common best proximity points: global minimal solutions*, *TOP* **21** (2013), no. 1, 182–188.
- [17] P. Kumam and C. Mongkolkeha, *Common best proximity points for proximity commuting mapping with Geraghty's functions*, *Carpath. J. Math.* **31** (2015), no. 3, 359–364.
- [18] S. Sadiq Basha, N. Shahzad, and R. Jeyaraj, *Common best proximity points: global optimization of multi-objective functions*, *Appl. Math. Lett.* **24** (2011), 883–886.
- [19] L. Chen, *Common best proximity points theorems*, *JMRA* **39** (2019), no. 3, 289–294.
- [20] M. Asadi, *Fixed points and common fixed points of mappings on CAT(0) spaces*, *Fixed Point Theory* **14** (2013), 29–38.
- [21] C. Mongkolkeha and P. Kumam, *Some common best proximity points for proximity commuting mappings*, *Optimization Letters* **7** (2013), no. 8, 1825–1836.
- [22] C. Vetro, S. Chauhan, E. Karapınar, and W. Shatanawi, *Fixed points of weakly compatible mappings satisfying generalized ϕ -weak contractions*, *Bull. Malays. Math. Sci. Soc.* **38** (2015), 1085–1105, DOI: <https://doi.org/10.1007/s40840-014-0074-0>.
- [23] M. Asadi and P. Salimi, *Some fixed point and common fixed point theorems on G -metric spaces*, *Nonlinear Funct. Anal. Appl.* **2** (2016), no. 1, 523–530.
- [24] H. Aydi, A. Felhi, and E. Karapınar, *On common best proximity points for generalized $\alpha - \psi$ -proximal contractions*, *J. Nonlinear Sci. Appl.* **9** (2016), no. 5, 2658–70.
- [25] A. Khemphet, P. Chanthorn, and N. Phudolsitthiphat, *Common best proximity coincidence point theorem for dominating proximal generalized Geraghty in complete metric spaces*, *J. Funct. Spaces* **2020** (2020).
- [26] M. Asadi, M. Gabeleh, and C. Vetro, *A New Approach to the generalization of Darbo's fixed point problem by using simulation functions with application to integral equations*, *Results Math.* **74** (2019), DOI: <https://doi.org/10.1007/s00025-019-1010-2>.
- [27] F. Nikbakhtsarvestani, S. Vaezpour, and M. Asadi, *Common fixed point theorems for weakly compatible mapping by (CLR) property on partial metric space*, *Iranian J. Math. Sci. Informatics.* **14** (2019), 19–32.
- [28] H. Monfared, M. Asadi, and A. Farajzadeh, *New generalization of Darbo's fixed point theorem via alpha-admissible simulation functions with application*, *Sahand Commun. Math. Anal.* **17** (2020), 161–171, DOI: <https://doi.org/10.22130/scma.2018.84950.427>.

- [29] C. S. Chuang and C. C. Hong, *New self-adaptive algorithms and inertial self-adaptive algorithms for the split variational inclusion problems in Hilbert space*, Numer. Funct. Anal. Optimiz. **43** (2022), no. 9, 1050–1068.
- [30] T. Mouktonglang and R. Suparatulatorn, *Inertial hybrid projection methods with section techniques for split common fixed point problems in Hilbert spaces*, UPB Scientif. Bulletin Ser. A Appl. Math. Phys. **84** (2022), no. 2, 47–54.
- [31] S. Noeiaghdam and D. Sidorov, *Caputo-Fabrizio fractional derivative to solve the fractional model of energy supply-demand system*, Math. Model. Eng. Probl. **7** (2020), no. 3, 359–367.
- [32] J. Singh, D. Kumar, Z. Hammouch, and A. Atangana, *A fractional epidemiological model for computer viruses pertaining to a new derivative*, Appl. Math. Comput. **316** (2018), 504–515, DOI: <http://dx.doi.org/10.1016/j.amc.2017.08.048>.
- [33] Z. Bouazza, M. S. Souid, and H. Günerhan, *Multiterm boundary value problem of Caputo fractional differential equations of variable order*, Adv. Differential Equation **400** (2021), DOI: <https://doi.org/10.1186/s13662-021-03553-z>.
- [34] B. Wongsaiajai, P. Charoensawan, T. Suebcharoen, and W. Atiponrat, *Common fixed point theorems for auxiliary functions with applications in fractional differential equation*, Adv. Differential Equation **503** (2021), DOI: <https://doi.org/10.1186/s13662-021-03660-x>.
- [35] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, *On the solution of a boundary value problem associated with a fractional differential equation*, Math. Methods Appl. Sci. (2020), 1–12, DOI: <https://doi.org/10.1002/mma.6652>.
- [36] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, *On the solutions of fractional differential equations via Geraghty type hybrid contractions*, Int. J. Appl. Comput. Math. **20** (2021), no. 2, 313–333.
- [37] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, *Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions*, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. **155** (2021), DOI: <https://doi.org/10.1007/s13398-021-01095-3>.