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1 Introduction

Problems regarding proximity points, where the closest distance between objects is of main interest, date
back to Euclid or even earlier. In modern computational geometry, closest-point problems, for instance,
seek estimation of the closest distance between any two points among the given n distinct points in
Euclidean plane, see, e.g., [1]. One may study similar problems in a more general framework, in metric
spaces, where distance is still meaningful. More precisely, given a mapping f A B: → , with A B, being
subsets of a metric space X , is it possible to find x A∈

∗ such that the distance between x∗ and fx∗ minimizes
the distance between A and B? This is known as a proximity point problem of mappings, and such a point x∗

is called a best proximity point. For arbitrary nonempty disjoint subsets A B, of X , the answer to when a best
proximity point exists merely depends on the complexity of the mapping. For example, if f is a constant
mapping sending the whole A to a boundary point b B∈ , then there exists a best proximity point.

From a fixed-point theory perspective, one may view the above-mentioned proximity point problem as
a generalized existence problem of a fixed point. Some of very first articles on proximity point problems are
due to Sadiq Basha and Veeramani [2,3], in which the latter imposes conditions on function-valued map-
pings. Furthermore, another work of Sadiq Basha [4] proves existence theorems of best proximity points for
proximal contractions. As the field of fixed-point theory is rich and robust, many researchers tackle proxi-
mity point problems by various approaches producing an extensive number of publications. For instance,
Karapınar and Erhan [5] and Karapınar [6] proved the existence of best proximity points for cyclic map-
pings; another solo work by Karapınar [7] deals with the so-called ψ-Geraghty contractions named after
Geraghty [8] where the contractions are somehow controlled by a function ψ; and a recent article by
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Karapınar and Khojasteh [9] proposed a way to study the existence and uniqueness of a best proximity
point via a simulation function. There are many more contributions in the literature, see, e.g., [10–14], to
mention but a few.

One may extend the notion of best proximity points as follows. Given two mappings f g A B, : → , with
A B, being subsets of a metric space X d,( ), a point x∗ is a common best proximity point if both d x fx,( )∗ ∗ and
d x gx,( )∗ ∗ are exactly the distance between A and B. To the best of our knowledge, research on common best
proximity points started from a work by Shahzad et al. [15]. A lone research study by Sadiq Basha [16] came
out a year later dealing with some condition on subspaces A B, of X known as approximate compactness.
Kumam and Mongkolkeha [17] proved common best proximity point theorems for proximity commuting
mappings, improving results in [18]. Chen [19] introduced an idea of domination, where one mapping
dominates the other in a particular manner, and achieved the existence and uniqueness of a common
best proximity point for a pair of non-self-mappings. The reader may be referred to [20–25] for some other
relevant topics. Moreover, some recent publications concerning fixed-point and common fixed point pro-
blems, which serve as special cases of common best proximity point problems, can be found in [26–30].

This article mainly aims at establishing an existence and uniqueness result of common best proximity
points, Theorem 3.3, and illustrating a concrete application in fraction differential equations in Section 4.
Here, our approach slightly adjusts Chen’s domination of mappings in which two given mappings are made
intertwined with a function α, see, e.g., Definitions 2.3 and 2.5.

This article is outlined as follows. Section 2 comprises the relevant definitions concerning common best
proximity points as well as their related notions. Section 3 provides the main theorem and an example to
support the result in Euclidean space. Finally, Section 4 expresses how our main result applies to guarantee
that some fraction differential equations have a solution.

2 Preliminaries

Throughout Sections 2 and 3, unless otherwise stated, let X d,( ) be a metric space and f g A B, : → be
mappings between nonempty subsets of X . Let us adopt the following notations:

d A B d x y x A y B
A x A d x y d A B y B
B y B d x y d A B x A

, inf , : , ;
: , , for some ;
: , , for some .

0

0

( ) { ( ) }

{ ( ) ( ) }

{ ( ) ( ) }

= ∈ ∈

= ∈ = ∈

= ∈ = ∈

Obviously, A0 ≠ ∅ if and only if B0 ≠ ∅.

2.1 Common best proximity points

Definition 2.1. [17] An element x A∈
∗ is said to be a common best proximity point of the mappings f and g if

d x fx d A B d x gx, , , .( ) ( ) ( )= =
∗ ∗ ∗ ∗

Denote by f g,( )�� the set of common best proximity points of f and g .

If A B∩ ≠ ∅, then d A B, 0( ) = ; in this case, a common best proximity point becomes a common fixed point.
Denote by f g,( )� the set of common fixed points of f and g .

2.2 Commutativity of mappings

Definition 2.2. [18] Two mappings f and g proximally commute if
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d v fx d A B d u gx fu gv, , , implies ,( ) ( ) ( )= = =

for all x u v A, , ∈ .

If f and g proximally commute and d u fx d A B d u gx, , ,( ) ( ) ( )= = for some u A∈ , then f and g coincide at u;
such an element u is known as a coincidence point of f and g .

Let α X X: 0,[ )× → ∞ . Denote A α f g x A α fx gx, , : , 1( ) { ( ) }= ∈ ≥ .

Definition 2.3. A mapping f is said to be αg-proximal if for any u v A, ∈ and x A α f g, ,( )∈ ,
(i) α fu fu, 1( ) ≥ ;
(ii) α gu gv, 1( ) ≥ implies α fu fv, 1( ) ≥ ;
(iii) d u fx d A B d v gx, , ,( ) ( ) ( )= = implies α u v, 1( ) ≥ .

Definition 2.4. A mapping f is said to be αg-proximally commutative if f is αg-proximal and f g, proximally
commute.

2.3 Domination of mappings

Let us now consider a (nonempty) class of functions

β β t t: 0, 0, 1 ; lim 1 lim 0 .
n

n
n

n{ [ ) [ ] ( ) }⊆ ∞ → = ⇒ =

→∞ →∞

�

Definition 2.5. A function f A B: → is said to satisfy α ,g( )� -dominating property if for any x x u u v, , , , ,1 2 1 2 1
v A2 ∈ with

d u fx d u fx d A B d v gx d v gx, , , , , ,1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )= = = =

α u v, 11 1( ) ≥ and α u v, 12 2( ) ≥ , there exists β ∈ � such that

d u u β d v v d v v, , , .1 2 1 2 1 2( ) ( ( )) ( )≤ (2.1)

In the case β{ }=� being a singleton, we may instead say f has α β,g( )-dominating property if (2.1)
holds.

It is also worth mentioning a special case where A B X= = , g is the identity mapping, α 1≡ , and
β{ }=� with β k 0, 1[ )≡ ∈ . In this case, a mapping satisfying Definition 2.5 is a contraction, and (2.1)

becomes

d fx fx kd x x, , .1 2 1 2( ) ( )≤ (2.2)

This means we are dealing with a general situation, for which generalized results could possibly be
established.

3 Main results

Before we assert our main results, some facts need to be established.

Lemma 3.1. Let un{ } be a sequence in a metric space X d,( ) such that

d u ulim , 0.
n

n n1( ) =

→∞

−
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If un{ } is not a Cauchy sequence, there exist subsequences umk{ } and unk{ } of un{ } with m n kk k> > for all k �∈

such that

d u u d u u εlim , lim , ,
k

m n
k

m n1 1k k k k( ) ( )= =

→∞ →∞

+ +

for some ε 0> .

Proof. Assume that un{ } is not a Cauchy sequence. Then, there exist subsequences umk{ } and unk{ } of un{ }

with m n kk k> > for all k �∈ such that

d u u ε, ,m nk k( ) ≥ (3.1)

for some ε 0> . In addition, we choose the smallest nk satisfying (3.1) so that

d u u ε, .m n 1k k( ) <
−

(3.2)

By using (3.1) and (3.2), we have that

ε d u u d u u d u u ε d u u, , , , .m n m n n n n n1 1 1k k k k k k k k( ) ( ) ( ) ( )≤ ≤ + < +
− − −

(3.3)

Since d u ulim , 0n n n 1( ) =
→∞ +

, taking the limit as k → ∞ in (3.3) implies

d u u εlim , .
k

m nk k( ) =

→∞

(3.4)

It now remains to show that

d u u εlim , .
k

m n1 1k k( ) =

→∞

+ + (3.5)

By the triangular inequality, we obtain

d u u d u u d u u d u u, , , ,m n m m m n n n1 1 1 1k k k k k k k k( ) ( ) ( ) ( )≤ + +
+ + + +

and

d u u d u u d u u d u u, , , , .m n m m m n n n1 1 1 1k k k k k k k k( ) ( ) ( ) ( )≤ + +
+ + + +

As k → ∞, we obtain

d u u d u u εlim , lim , ,
k

m n
k

m n1 1k k k k( ) ( )= =

→∞ →∞

+ +

as required. □

Lemma 3.2. Suppose that f A B: → with f A B0 0( ) ⊆ has α ,g( )� -dominating property and is αg-proximally
commutative. If A f g,0 ( )∩ ≠ ∅� , then f g,( ) ≠ ∅�� .

Proof. Let u A f g,0 ( )∈ ∩ � . Then, we have u A0∈ and fu gu= . Since f A B0 0( ) ⊆ , there exists x A0∈
∗ such

that

d x fu d A B d x gu, , , .( ) ( ) ( )= =
∗ ∗ (3.6)

By the commutativity of f and g , we have

fx gx .=
∗ ∗

Again, since x A0∈
∗ and f A B0 0( ) ⊆ , there exists y A0∈

∗ such that

d y fx d A B d y gx, , , .( ) ( ) ( )= =
∗ ∗ ∗ ∗ (3.7)

Hence, (3.6) and (3.7) become

d x fu d y fx d A B d x gu d y gx, , , , , .( ) ( ) ( ) ( ) ( )= = = =
∗ ∗ ∗ ∗ ∗ ∗ (3.8)
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Since α fu gu α fu fu, , 1( ) ( )= ≥ and α fx gx α fx fx, , 1( ) ( )= ≥
∗ ∗ ∗ ∗ , both u and x∗ belong to A α f g, ,( ). Since f is

αg-proximal, (3.8) yields

α x x α y y, 1 and , 1.( ) ( )≥ ≥
∗ ∗ ∗ ∗

Next, we claim that x y=
∗ ∗. Suppose that d x y, 0( ) >

∗ ∗ . By the dominating property, we have

d x y β d x y d x y d x y, , , , ,( ) ( ( )) ( ) ( )≤ ≤
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

and hence,

β d x y1 , 1.( ( ))≤ ≤
∗ ∗

The property of β gives d x y, 0( ) =
∗ ∗ , which leads to a contradiction. Thus, x y=

∗ ∗, and by (3.7), we obtain

d x fx d A B d x gx, , , .( ) ( ) ( )= =
∗ ∗ ∗ ∗

Therefore, f g,( ) ≠ ∅�� . □

Our main results are now ready to be stated.

Theorem 3.3. Let X d,( ) be a complete metric space, let f A B: → with f A B0 0( ) ⊆ satisfying α ,g( )� -dom-
inating property and be αg-proximally commutative. Suppose also that the following hold:
(i) A0 is closed and A A α f g, ,0 ( )∩ ≠ ∅;
(ii) f A g A0 0( ) ( )⊆ ;
(iii) either

(a) f and g are continuous; or
(b) for any sequences xn{ } and un{ } in A such that

d u fx d A B d u gx, , , ,n n n n1( ) ( ) ( )= =
−

if un{ } converges to u A∈ with α u u, 1n n 1( ) ≥
−

for all n, then there exists a subsequence xnk{ } of xn{ }

such that

d u fx d A B d u gx, , , .n nk k( )( ) ( )= =

Then, f g,( ) ≠ ∅�� . Moreover, if f g A α f g, , ,( ) ( )⊆�� , then f g,( )�� has only one element.

The gist of the proof is to show, using Lemma 3.1, that a sequence constructed by iteration is Cauchy.

Proof. First, let x A A α f g, ,0 0 ( )∈ ∩ . The assumptions (i) and (ii) inductively give rise to a sequence xn{ } in
A0 satisfying

gx fx x A α f gand , , ,n n n1 ( )= ∈
+

(3.9)

and a sequence un{ } in A0 satisfying

d u fx d A B, , ,n n( ) ( )= (3.10)

for all n. Hence, (3.9) and (3.10) yield

d A B d u fx d u gx n, , , , 0.n n n n 1( ) ( ) ( )= = ∀ ≥
+

(3.11)

Observe, for now, that if u un n 10 0=
+

for some n0, then (3.10) and (3.11) produce

d A B d u fx d u fx d u gx, , , , .n n n n n n1 1 10 0 0 0 0 0( ) ( ) ( ) ( )= = =
+ + +

By the commutativity of f and g , we have f u g u g un n n10 0 0( ) ( ) ( )= =
+

, which then fulfills all hypotheses in
Lemma 3.2. Thus, f g,( ) ≠ ∅�� .
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Second, we show that

d u ulim , 0,
n

n n1( ) =

→∞

−

provided that u un n 1≠
+

for all n. From (3.11), note that, for all n 1≥

d u fx d u fx d A B d u gx d u gx, , , , , .n n n n n n n n1 1 1 1( ) ( ) ( ) ( ) ( )= = = =
+ + − +

(3.12)

Since f is αg-proximal, (3.12) yields

α u u α u u, 1 and , 1,n n n n1 1( ) ( )≥ ≥
− +

(3.13)

for all n. By the dominating property, there exists β ∈ � such that

d u u β d u u d u u d u u, , , , ,n n n n n n n n1 1 1 1( ) ( ( )) ( ) ( )≤ ≤
+ − − −

(3.14)

for all n. It is clear that d u ulim ,n n n1( )
→∞ −

exists. By the property of β, if d u ulim ,n n n1( )
→∞ −

were nonzero,
then β d u ulim ,n n n1( ( ))

→∞ −
would not be 1, which contradicts (3.14) as n → ∞.

Third, we claim that un{ } is a Cauchy sequence. Suppose, for a contradiction, that it is not the case.
By Lemma 3.1, there exist subsequences umk{ } and unk{ } of un{ }, with m n kk k> > for all k �∈ such that

d u u d u u εlim , lim , ,
k

m n
k

m n1 1k k k k( ) ( )= =

→∞ →∞

+ +

for some ε 0> . Since umk{ } and unk{ } satisfy (3.12), we have

d u fx d A B d u gx

d u fx d A B d u gx

, , ,

, , , ,

n n n n

m m m m

1 1 1

1 1 1

k k k k

k k k k

( )

( )

( ) ( )

( ) ( )

= =

= =

+ + +

+ + +

(3.15)

for all k. It is not hard to see that the same procedure as above applies, so that we obtain

d u u β d u u d u u d u u, , , , .n m n m n m n m1 1k k k k k k k k( ) ( ( )) ( ) ( )≤ ≤
+ +

(3.16)

Taking k → ∞ in (3.16) yields

β d u ulim , 1,
n

n mk k( ( )) =

→∞

and hence,

ε d u ulim , 0,
n

n mk k( )= =

→∞

which is a contradiction.
Next, we prove the existence of a common proximity point of f and g by showing f g,( ) ≠ ∅� and

applying Lemma 3.2. Since A0 is a closed subspace of X , let u u Alimn n 0= ∈
→∞

. If f and g are continuous,
then

fu fu gu gulim lim ,
n

n
n

n 1= = =

→∞ →∞

+

which implies that u f g,( )∈ � . If assumption (iii)(b) is satisfied, then there exists a subsequence xnk{ } of xn{ }

such that

d u fx d A B d u gx, , , ,n nk k( )( ) ( )= =

and hence, fu gu= by commutativity; that is, f g,( ) ≠ ∅� .
Finally, assume f g A α f g, , ,( ) ( )⊆�� . We show the uniqueness of a common best proximity point. Let

x y f g, ,( )∈
∗ ∗ �� . Then,

d x fx d y fy d A B d x gx d y gy, , , , , .( ) ( ) ( ) ( ) ( )= = = =
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

As above, since f is αg-proximal, we have

α x x α y y, 1 and , 1.( ) ( )≥ ≥
∗ ∗ ∗ ∗
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By the dominating property, we again obtain

d x y β d x y d x y d x y, , , , .( ) ( ( )) ( ) ( )≤ ≤
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Suppose for a contradiction that x y≠
∗ ∗. Then, β d x y, 1( ( )) =

∗ ∗ , implying d x y, 0( ) =
∗ ∗ . This contradicts

x y=
∗ ∗. □

Example 3.4. Let X 3�= be equipped with the standard Euclidean metric d. Also, let

A x x B x x, 1, 2 : 0 2 and , 2, 6 : 0 2 .{( ) } {( ) }= ≤ ≤ = − ≤ ≤

It is easy to see that A A0 = , B B0 = , and d A B, 5( ) = . Define the continuous mappings f g A B, : → by

f x x g x x, 1, 2 ln 1 , 2, 6 and , 1, 2 , 2, 6 ,( ) ( ( ) ) ( ) ( )= + − = −

for all x A, 1, 2( ) ∈ , and also define α : 0,3 3� � [ )× → ∞ by

α x x x y y y
x y x y x y

, , , , ,
1; , ,

0; otherwise .1 2 3 1 2 3

1 1 2 2 3 3
(( ) ( ))

⎧

⎨
⎩

=

≤ ≥ ≤

Observe that f A g A0 0( ) ( )⊆ .
We show that f is αg-proximally commutative:

(1) For any u A∈ , it is easy to see that α fu fu, 1( ) ≥ .
(2) Let u x, 1, 2( )= and v x , 1, 2( )= ′ be such that

α gu gv α g x g x α x x, , 1, 2 , , 1, 2 , 2, 6 , , 2, 6 1.( ) ( ( ) ( )) (( ) ( ))= ′ = − ′ − ≥

Then, we have x x≤ ′, and hence, x xln 1 ln 1( ( )) ( ( ))+ ≤ + ′ . Thus,

α fu fv α x x, ln 1 , 2, 6 , ln 1 , 2, 6 1.( ) (( ( ) ) ( ( ) ))= + − + ′ − ≥

(3) Let u x, 1, 2( )= , v x , 1, 2( )= ′ , and z x , 1, 2( )= ″ be such that α fz gz, 1( ) ≥ satisfying

d u fz d A B d v gz, , , .( ) ( ) ( )= =

It follows by school algebra that x xln 1( )= + ″ and x x′ = ″. Thus, α u v, 1( ) ≥ .
(4) Now it remains to show that f and g proximally commute. Let u x, 1, 2( )= , v x , 1, 2( )= ′ , and

z x , 1, 2( )= ″ satisfy

d u fz d A B d v gz, , , .( ) ( ) ( )= =

Then, x xln 1( )= + ″ and x x′ = ″. Thus,

fv x guln 1 , 2, 6 .( ( ) )= + ″ − =

Next, let us define β : 0, 0, 1[ ) [ ]∞ → by

β t
t

t
t

t

1, 0,
arctan , 0.( )

⎧

⎨
⎩

=

=

>

Note that 1 t
t

arctan
− is close to zero only if t 0→ . Here, β{ }=� , and we may write β instead of � for

convenience. We show that f has the α β,g( )-dominating property. Let

z z z z
u u u u
v v v v

ˆ , 1, 2 , ˆ , 1, 2 ,
ˆ , 1, 2 , ˆ , 1, 2 ,
ˆ , 1, 2 , ˆ , 1, 2 ,

1 1 2 2

1 1 2 2

1 1 2 2

( ) ( )

( ) ( )

( ) ( )

= =

= =

= =

satisfy

d u fz d u fz d A B d v gz d v gz, , , , , .1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )= = = =
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Then,u zˆ ln 1 ˆ1 1( )= + ,u zˆ ln 1 ˆ2 2( )= + , v zˆ ˆ1 1= , v zˆ ˆ2 2= , and z zˆ , ˆ 0, 21 2 [ ]∈ . Since z zln 1 ˆ ˆ1 1( )+ ≤ and z zln 1 ˆ ˆ2 2( )+ ≤ ,
we have

α u v α u v, 1 and , 1.1 1 2 2( ) ( )≥ ≥

To obtain inequality (2.1), we first assume v v1 2≠ . Then, d v v z z, ˆ ˆ 01 2 1 2( ) ∣ ∣= − > . Hence,

d u u u u
z z
z z
z z

z z
z z

z z

β d v v d v v

, ˆ ˆ
ln 1 ˆ ln 1 ˆ
ln 1 ˆ ˆ
arctan ˆ ˆ

arctan ˆ ˆ
ˆ ˆ

ˆ ˆ

, , .

1 2 1 2

1 2

1 2

1 2

1 2

1 2
1 2

1 2 1 2

⎜ ⎟

( ) ∣ ∣

∣ ( ) ( )∣

( ∣ ∣)

(∣ ∣)

⎛

⎝

(∣ ∣)

∣ ∣
⎞

⎠
∣ ∣

( ( )) ( )

= −

= + − +

≤ + −

≤ −

=

−

−

−

=

If v v1 2= , then u u1 2= ; inequality (2.1) clearly holds.
Theorem 3.3 now applies, which guarantees the existence of a common best proximity point of f and g .

Let x f g,( )∈
∗ �� . Then,

d x fx d A B d x gx, , , ,( ) ( ) ( )= =
∗ ∗ ∗ ∗

which implies that fx gx=
∗ ∗. Hence, α fx gx, 1( ) ≥

∗ ∗ . That is, f g A α f g, , ,( ) ( )⊆�� . Therefore, x∗ is the only
common best proximity point of f and g . In fact, x 0, 1, 2( )=

∗ .

As a consequence of our main theorem, the following corollary includes a fixed-point theorem as a
special case.

Corollary 3.5. Suppose that all assumptions in Theorem 3.3 hold, and also let β{ }=� , where β k 0, 1[ )≡ ∈ .
Then, f g,( ) ≠ ∅�� . Moreover, if f g A α f g, , ,( ) ( )⊆�� , then f g,( )�� has only one element. In particular,
if g is the identity on A B X= = and α 1≡ , then we obtain Banach fixed-point theorem.

Proof. The former part of the corollary is obvious. For the latter part, note that if A B X= = , then
A B X0 0= = , which implies that all the assumptions of Theorem 3.3 are met. Moreover, if g is the identity
mapping, then the dominating property gives rise to a contraction satisfying (2.2). □

4 Applications to nonlinear fractional differential equations with
nonlocal boundary conditions

Fractional calculus has recently become of much interest as it can provide tools for solving real-world
problems, see, e.g., [31,32]. Solving fractional differential equations is generally not an easy task, and it is
worth investigating if they possess a solution. There appear a number of research studies devoted to such
investigation, see, e.g., [33–37]. Here, we employ a technique in fixed-point theory for the existence of a
solution.

For an integer n 2≥ and n ξ n1− < ≤ , let us consider a fractional differential equation of the form

D y t f t y t, ,ξc( )( ) ( ( ))= (4.1)

where f : 0, 1 � �[ ] × → is a continuous function. The so-called Caputo derivative D uαc of u of fractional
order α is defined for all positive real numbers by

D u I D u,αc α α α
=

⌈ ⌉− ⌈ ⌉
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where⌈⋅⌉ is the ceiling function, and Iω is the Riemann-Liouville integral operator of order ω 0> defined by

I u t
ω

t s u s s1
Γ

d .ω

t

ω

0

1( )
( )

( ) ( )∫= −
−

Recall also that Γ here denotes the gamma function. If ξ 0= , I 0 is the identity operator. Observe that each Iω

is a bounded linear operator on the set of continuous functions C 0, 1[ ] with respect to supremum norm.
We are particularly concerned with finding an n 2( )− -differentiable function y t( ) satisfying (4.1)

together with boundary conditions

y y y y y s s0 0 0 0 and 1 d ,n

δ

2

0

( ) ( ) ( ) ( ) ( )( )
∫= ′ = ⋯= = =

− (4.2)

where δ 0, 1[ ]∈ . Equation (4.1) with conditions (4.2)may be referred to as a boundary value problem (BVP)
of Caputo fractional differential equations. The general solution of (4.1) is given by

y t a a t a t I f t y t, ,n
n ξ

0 1 1
1( ) ( ( ))= + + ⋯+ +

−

−

and the boundary conditions yield a a a 0n0 1 2= = ⋯= =
−

and

a n
n δ

I f s y s s I f y, d 1, 1 .n n

δ

ξ ξ
1

0

⎛

⎝

⎜
⎜

( ( )) ( ( ))
⎞

⎠

⎟
⎟

∫=

−

−
−

Thus, the solution y t( ) to our BVP can be implicitly expressed as

y t nt
n δ

I f s y s s I f y I f t y t, d 1, 1 , .
n

n

δ

ξ ξ ξ
1

0

( )
⎛

⎝

⎜
⎜

( ( )) ( ( ))
⎞

⎠

⎟
⎟

( ( ))∫=

−

− +

−

(4.3)

Let us now introduce an operator between the set of continuous mappings C 0, 1[ ]. Define T C: 0, 1[ ] →

C 0, 1[ ] by

T u t nt
n δ

I f s u s s I f u I f t u t, d 1, 1 , .
n

n

δ

ξ ξ ξ
1

0

( )( )
⎛

⎝

⎜
⎜

( ( )) ( ( ))
⎞

⎠

⎟
⎟

( ( ))∫=

−

− +

−

The dominated convergence theorem guarantees the continuity of the operator T . It also turns out that the
existence of a fixed point of T gives rise to a solution to the BVP (4.1)–(4.2).

Now let us take A B X C 0, 1[ ]= = = with supremum norm, which is a Banach space.

Lemma 4.1. Suppose that there exists a function γ : 2� �→ such that
(C1) γ Tu t Tu t, 0( ( ) ( )) ≥ for all u C 0, 1[ ]∈ and all t 0, 1[ ]∈ ;
(C2) γ u t v t, 0( ( ) ( )) ≥ implies γ Tu t Tu t, 0( ( ) ( )) ≥

for all u v C, 0, 1[ ]∈ and t 0, 1[ ]∈ . Then, there is a function α C C: 0, 1 0, 1 �[ ] [ ]× → such that T is
αI 0-proximal.

Proof. Define

α u v γ u t v t t, 1 if , 0 for all 0, 1
0 otherwise ,

( )
⎧

⎨
⎩

( ( ) ( )) [ ]
=

≥ ∈

for u v C, 0, 1[ ]∈ . It is easy to verify that all conditions in Definition 2.3 are met. □
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Lemma 4.2. Suppose that there exists a function γ : 2� �→ satisfying (C1) and (C2) as in Lemma 4.1, and
that
(C3) f t u t f t v t K u t v t, , ln 11∣ ( ( )) ( ( ))∣ ( ∣ ( ) ( )∣)− ≤ + − for all u v C, 0, 1[ ]∈ and t 0, 1 ,[ ]∈

where

K n δ ξ
nδ ξ n δ

Γ 2
1 2

.
n

ξ n1 1
( ) ( )

( )( )
≤

− +

+ + −
+

Then, T satisfies α β,I 0( )-dominating property for some β : 0, 0, 1[ ) [ ]∞ → .

Proof. First of all, let us compute for u v C, 0, 1[ ]∈ using (C3)

Tu t Tv t nt K K
n δ ξ

u v
Γ

ln 1 ,
n

n

1
1 2

∣ ( ) ( )∣
( ) ( )

( )− ≤

−

+ ‖ − ‖

−

∞ (4.4)

where

K s τ τ s s ds n δ
n

t s s

nδ ξ n δ
nξ ξ

sup d d 1 d

1 2
1

.

t

δ s

ξ ξ
n

t

ξ

ξ n

2
0,1

0 0

1

0

1

1

0

1

1

⎛

⎝

⎜
⎜

( ) ( ) ( )
⎞

⎠

⎟
⎟

( )( )

( )

[ ]
∫∫ ∫ ∫= − + − +

−

−

=

+ + −

+

∈

− − −

+

Then, (4.4) becomes Tu t Tv t u vln 1∣ ( ) ( )∣ ( )− ≤ + ‖ − ‖
∞

. Define β : 0, 0, 1[ ) [ ]∞ → by

β t
t

t
t

t

ln 1 , if 0

0, if 0.
( )

⎧

⎨

⎩

( )

=

+

>

=

Observe that if t is away from zero, so is 1t
t

ln 1( )
−

+ ; that is, β satisfies the property β tlim 1n n( ) = ⇒
→∞

tlim 0n n =
→∞

. For any u v C, 0, 1[ ]∈ with α Tu u, 1( ) > and α Tv v, 1( ) > , we then obtain

Tu Tv β u v u v .( )‖ − ‖ ≤ ‖ − ‖ ‖ − ‖
∞ ∞ ∞

It follows from Definition 2.5 that T has α β,I 0( )-dominating property. □

Lemmas 4.1 and 4.2 thus give rise to a solution to our BVP.

Theorem 4.3. Suppose that there exists a function γ satisfying (C1)–(C3) as in Lemmas 4.1 and 4.2. Addi-
tionally, assume that
(C4) There exists u C 0, 10 [ ]∈ such that γ Tu t u t, 00 0( ( ) ( )) ≥ for all t 0, 1[ ]∈ .

Then, T I, 0( ) ≠ ∅�� . In other words,T has a fixed point u C 0, 1[ ]∈
∗ ,which is a solution to the BVP (4.1)–(4.2).

Proof. By (C1)–(C4), all assumptions in Theorem 3.3 are fully satisfied. □
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