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Abstract: The fundamental objective of this article is to investigate about the boundary value problem with
the uses of a generalized conformable fractional derivative introduced by Zarikaya et al. (On generalized the
conformable calculus, TWMS J. App. Eng. Math. 9 (2019), no. 4, 792-799, http://jaem.isikun.edu.tr/web/images/
articles/vol.9.no.4/11.pdf). In the development of the this article, by using classical methods of fractional
calculus, we find a definition of the generalized fractional Wronskian according to the fractional differential
operator defined by Zarikaya, a fractional version of the Sturm-Picone theorem, and in addition, the stability
criterion given by the Hyers-Ulam theorem is studied with the use of the aforementioned fractional derivatives.
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1 Introduction

In 1965, L’Hopital gave the preliminary definition of the idea of fractional derivative. Since then, several
related new definitions have been proposed. The most common ones are the Riemann-Liouville and Caputo
definitions. For more information about the most known fractional definitions, we refer to [1-3].

The so-called fractional calculus has had a wide expansion, both from the theoretical and the applied
point of view. In either case, the classical (global) fractional derivative has been used in differential
equations, but in the case of local fractional derivatives, this type of research is very limited.

It is known that from 1960, certain differential operators have appeared which are called local fractional
derivatives. It is not until 2014 that Khalil et al. introduced in [4] a local derivative (conformable)

Taf(t) = lim f(t + gtlia) - f(t)

-0 &

and in 2015 Abdeljawad [5] introduced a slight modification
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In 2018, Napoles Valdés et al. [6] introduced a definition of a nonconformable fractional derivative, denoted
by Ng, with very good properties, and defined by

NEF(E) = llf(l) flt+ eF(t;a)) - f(t)’

where F(t, a) is an absolutely continuous function depending on t > 0 and a € (0, 1]. Also in 2019, Abreu-
Blaya et al. [7] introduced a generalized conformable fractional derivative

G2 - tim S o T e - ke
Tf()—hllT(l)szzo(—) P (t- (t, a)),

and in 2020, Fleitas et al. [8] gave a note on this generalized conformable derivative. These definitions have
properties suitable to that of the classical Riemman derivative with a better behavior than the classical
fractional derivatives when used in different fields of application. To solve a given fractional problem, the
question arises as to what type of fractional operator should be considered, since there are several different
definitions of fractional derivative in the literature and the choice depends on the problem under
consideration.

It can be seen from those articles that use the Riemann-Liouville or Caputo fractional derivative and the
corresponding definitions of the conformable derivatives that there is a quantitative and qualitative differ-
ence between the two types of operators, local and global [9]. Conformable fractional derivatives are new
tools that have demonstrated their usefulness and potential in the modeling of different processes and
phenomena.

As a result, several important elements of the mathematical analysis of functions of a real variable have
been formulated, such as chain rule, fractional power series expansion and fractional integration by parts
formulas, Rolle’s theorem, and mean value theorem [10]. The conformable partial derivative of the order
a € (0, 1] of the real-valued functions of several variables and conformable gradient vector are also defined.
In addition, a conformable version of Clairaut’s theorem for partial derivative is investigated in [11]. In [12],
the conformable version of Euler’s theorem on homogeneous equations is introduced. Furthermore, in a
short time, various research studies have been conducted on the theory and applications of fractional
differential equations and fractional integral inequalities in the context of this newly introduced fractional
derivative [13-28].

In the literature, some problems related to the classical and fractional differential equations and
stability criteria have been published [29-34].

With the motivation given by the aforementioned works, in this research article, we focus on the
boundary value problems using a new definition of conformable fractional derivative. We have organized
our present document in a subsection of preliminary knowledge, a section of main results where we define
the Wronskian from the perspective of the conformable derivative defined in the preliminaries, some basic
properties, and we proceed to deal with a conformable version of the conformable Sturm-Picone second-
order conformable identity, establish generalized conformable Sturm-Liouville comparison and separation
theorems, construct the Green’s function and study its properties, and then prove the generalized Hyers-
Ulam stability of conformable nonhomogeneous linear differential equations with homogeneous boundary
conditions. Also we include conclusions respect to the obtained results.

1.1 Preliminaries

In [35, Definition 2.1], a generalized conformable fractional derivative was defined, and some properties are
given.
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Definition 1.1. Let f : [a, b] — R be a function and O < a < b. Then the (a, a)-conformable derivative of f
of order a is defined by
f(t +et™(t —a)) - f(t)

DO = lim S B 0

forallt > a, a € (0, 1). If this limit exists, then it will be said that the function f is (a, a)-differentiable at the
point t.

Remark 1.1. Note that ifa = 0, then this generalized conformable derivative coincides with that proposed in

(4], i.e., Dg(f)t) = T f(D).

Theorem 1.1. Let a € (0, 1] and h, g be a-differentiable at a point t > a. Then,
(1) DS(uh + vg)(t) = uDZh(t) + vDSg(t) for allu,v € R,
(2) Dg(hg)(t) = h(t)Dzg(t) + g(t)DFh(D),

af b _ h®©)bzg(t) - g(H)Dh(®)
(3) Da (g)(t) - gz([) ’

(4) DX(c) = O for all constant functions h(t) = c,
(5) DX(h - g)(t) = W' (g(t))Dig(t), if h is differentibale at g(t).
(6) If, in addition, h is differentiable then DIh(t) = tiah’(t), fort* + a.

to

Also some (a, a)-fractional conformable derivatives for several classic functions are established.

Theorem 1.2. Let « € (0, 1], t > a, t* + a, and c, n € R. Then we have the following results:
(1) DXt™) = L1,

t*—a

arcty — CE-a) et
(2) Di(e™) = —— e,

(3) DX(sin(ct)) = Ct(i:g) cos(ct),

(4) D2(cos(ct)) = _iit__:) sin(ct).

In the recently cited work, some important results for the calculation were also established for
(a, a)-conformable differentiable functions: the continuity of a function at a point from its conformable
differentiability in it, Rolle’s theorem, and the mean value and extended mean value theorems.

Also it was introduced a definition of (a, a)-conformable fractional integral and some properties
related.

Definition 1.2. Let a € (0,1) and 0 < a < b. A function f: [a, b] — R is (a, a)-conformable fractional
integrable on [a, b] if the integral
b

jf(X)d&’ - [Z=2ro0ax @

X
a

exists and is finite. The set of all (a, a)-conformable fractional integrable functions is denoted by
L(la,a)([a, b]). The (a, a)-conformable fractional integral operator is defined by

t

t
T@af(f) = jf(X)df = _[X — ; f0dx,

X
a

where the integral is the usual Riemann improper integral. When the lower bound of the integral is any
number ¢ > a then we use the notation
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t

t
eap© = [foodex = [E=2foax.

It was observed [35, Theorem 3.1 and 3.2] that

DT @O )(t) = f(¢)
and

T@XDIFNE) = £(8) - f(a).

Theorem 1.3. Let a € (0,1] and 0 < a < b. Let f, g : [a, b] —» R be continuous functions. Then
(1) T@IQf + yg)(t) = AT @Df (t) + yI@g(t) for A,y € R,

(2 7@ (a) = 0,

(3) if f(t) = O for allt € [a, b], then T @Df(b) > 0,

(@) I@9f(b) = T@Of(c) + IE&“f (b) for any ¢ € (a, b),

5) [, F00dix = ~T@f (b),

(6) |17@2f(b)| < T @DIf|(b) for x* > a.

2 Main results
Next, we give the following definition of an (a, a)-Wronskian and (a, a)-conformable partial derivative.

Definition 2.1. Let f, g be two (@, a)-differentiable functions on [a, b] with a € (0, 1]. Then we set the
function:

Wa(f, 8)(®) = f(6)Dz8(t) — g(t)Daf (0).
Definition 2.2. Let f: D cR" > R be a real valued function defined on an open set D c R" and
c=(q, - ,cn) € D. If the following limit exists

lim fla, - ¢ + i — @), -+ ,¢a) — f@, - ,Cn)
£—0 e(l - aic!™)

’

then it is denoted by

a(a,a)f
ot®

(©

and is called the (a, a)-conformable fractional partial derivative of f at c.

2.1 Generalized fractional conformable Sturm-Picone’s theorem

We will focus on the following second-order fractional differential equation given by
DF(Dzf () + p(ODGf () + q(Of (t) = 0, 3

where p and g are continuous functions, a € (0, 1]. Let us remember that two functions ¢, and ¢, are
linearly dependent if there exists g, ¢; € R with |g| + || > 0 such that q@, + @, = 0; otherwise, they are
linearly independent.
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Lemma 2.1. Let ¢, and ¢, be two solutions of the fractional differential equation (3) in the interval I and
Wi(p,, @,) is a differentiable function on I. Then the fractional (a, a)-Wronskian of ¢,, ¢, of order a € (0, 1]
has the form

[ p(s)dls
Wz (@, 9,)(0) = e Ifo Wz (g;, ¢,)(to)
forallty € I.
Proof. Let ¢, and ¢, be two solutions of (3), and some ¢, € [a, b]. Then, by an application of the operator D
to Wi(g,, ,), we obtain

Dz (W5 (@, 9))(8) = Dg(,()D7p,(t) — 9,()D7py (1))
= Dy, (ODF,(t) + @, (D7 (D7 p5(8)) — Dip,()DF () — ,()D7(Dzepy(1))
= ,(ODF(DFp,(1)) — @,()DF (D7 py(1)).
By using (3), we have

Di(D7ey(t)) = -p()DFe,(t) — q(t)ep;(t)

and
Di(Dze, (1)) = —p(O)Dgp,(8) = q()p, (D).
Therefore,
Di(Wg (@, 9))(t) = @i(O)(=p(O)DFpy(8) = q(O)(1)) = p()(—p(O)DZ () — q(O)py (1))
==@,(Op(ODFpy(t) + @y(Op(E)Dgp,(t)
=-p(OWz (@1, 9,)(0),
i.e.,
DI(WZXe,, t
e
By using the fact of Dif(t) = [ta__‘; f'(t), then we have
t—-a (W)

———W (@, ,)(t) = —p(D),
a0 P
therefore,

t

ln( Wiy 9O ) N ECEEN
Wy, 9,)(to) s—a

0

! -ap(s)

S WX, 9,)O) =e o T W@y, 9,)(to)

t
- (s)dg
= WXq, @,)(t) = e Jpe W@y, 9)(to)0 O

The following equivalent condition of linear independence can be obtained from Lemma 2.1 using the
classical method.

Theorem 2.1. Two solutions @, and @, of the fractional differential equation (3) defined on an interval I are
linearly independent if and only if W (¢@,, ¢,)(t) # O for all t € I.

To continue this study, we introduce the following self-adjoint fractional differential equation of Sturm-
Liouville-type:



6 —— Miguel Vivas-Cortez et al. DE GRUYTER

-Di[p1()DFx ()] + po(H)x(t) = O, 4)
-Di[qi()Dy ()] + qo(t)y(t) = 0, (5)

where p1, Po, 91, o, Dix, and DSy are continuous functions on some closed interval I ¢ [0, +00), and p; and
¢, are positive on 1.

Theorem 2.2. If x, y, and p1(t)Dix(t), qi(t)DSy(t) are DS -differentiable fort € I and y(t) + O, then we obtain

8 (POVODX(E) — GOXEODEY (D)
2
= XODP{ODX(D) - ((f))D%ql(t)D“y(t)) + (i) - GO DX(OY + qla)(D“x(t) - E? D“y(t))
Proof. After a straightforward D -differentiation, it follows the desired result. O

Theorem 2.3. Let a and b with O < a < b be two consecutive zeroes of a nontrivial solution @(t) of (4).
Suppose that

@) O0<aq) <pi®) and (i) qo(t) < po(t)

for allt € [a, b]. Then, every solution x(t) of (5) has at least one zero in [a, b].

Proof. If ¢(t) and x(t) are solutions of (4) and (5), respectively, and x(t) # O for all. Then by substitution of
these solutions and an applications of the algebraic properties of DY, we have the Picone’s identity

D"[ a )(pl(t)X(t)Dg(p(t) - q(O)e(t)D, X(t))] (Po(®) = go(NX(D))* + (p1() - q(O)(Dgp(1))?

X t ©
; q1<t>(D;‘<p<t> - )D:x(o)
X
Then, by taking the (a, a)-integrating over [a, b], we have

b

J[(po(t) = qo())(@(®)* + (pa(t) — qu(O))(DFp(t))* + ql(t)(Dé’ o) - Eg aX(t)) ld(?t

a , (7)
- “’8(p1<t)x<t)nago<t) - GOPODX(E)

Since ¢p(a) = @(b) = 0 and x(t) # O in [a, b], then the right-hand side side of 7 equals to zero. Also, since
q.(t) > 0, then the third term in the integral is nonnegative, so we must have either

@ Do) - 2O paye) =
0
or
a a 2() a a a
(i) j [ ODEPODE0®) - L ODEGOD®) + (pi©) - a(O)DER(OF |dit <.

In case (ii), we have contradiction because q;(t) < p;(t) and go(t) < po(t). From case (i), we observe that

Dig(t) - % X (t) =

implies that
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x(ODZo(t) - p(t)D(t) = 0.

This means that ¢(t) = ky(t) for some k # O on [a, b], which implies that y(a) = y(b) = 0; thus,
obtaining a contradiction. O

Theorem 2.4. Let O < a < b be two consecutive zeros of a nontrivial solution ¢(t) of equation (4). Let x(t) be
any other solution of equation (4), which is linearly independent of ¢(t). Then, x(t) has exactly one zero in the
interval (a, b). In other words, the zeros of any two linearly independent solutions of (4) are interlaced.

Proof. Suppose that x(t) # O for all t € (a, b). Since ¢ and x are linearly independent, we have that
x(a) # 0, and otherwise, we would have

W, x)(t) = p(t)Dgx(t) — x(t)DFep(t) = 0,

and therefore, ¢ and y would be linearly dependent, contrary to our supposition. For the same
reason, y(d) # O.
If gi(t) = p1(t) and go(t) = po(t) from (6), we have

b 2 b
jm(t)(Da“qv(t) - @szm) a2t = 29 G eon©ODER(O) - aOeODXD)] - ®)
) x(®) x@®

a

Since a and b are zeroes of @, x(a) # 0, and x(b) # 0, then the right-hand side of (8) evaluates to zero. Also
we have that p;(t) > 0 and the kernel (¢* — a)/(t — a) > 0, then it must be that

a o(t) 4
DEp(t) - —=D2x(t) = 0
o(t) N0 X(®)

for all t € [a, b], from which we obtain that
WX, x)(t) =0 forall ¢ € [a, b].

Hence, ¢ and y are be linearly dependent on (a, b) contrary to the supposition. O

2.2 Green’s function study

In this section, we consider the conformable Sturm-Liouville system

Di(p(ODf () + (Ap(t) = q(O))f () = 0
B.f(@) + B,D;f(a) = 0 ©)
Wf(b) + y,Daf (b) = 0,

with [B,| + IB,] # O, Iyl + Iysl # O, p, q, and p continuous functions on [a, b], where O < a < b, such that
p(t), p(t) > 0 for all t € [a, b].

Definition 2.3. Let Q denote the square [a, b] x [a, b] in the te-plane. A function G%(t, €) defined in Q is
called a conformable Green’s function of the Sturm-Liouville system given by (9), if it has the following
properties:
(1) The function G%(t, €) is continuous in Q.
(2) Let € € (a, b) be fixed. Then G%(t, €) has continuous (a, a)-conformable partial derivatives of first and
second order with respect to the variable x, if t # €, and it satisfies
d@a d@a) 1

G*(et, — G%*(e, = -
ot (%) ot € ¢) p(e)
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(3) Let € € (a, b) be fixed. Then G%(t, €) have left and right conformable partial derivatives:
olaa)
ot*
(4) Let € € (a, b) be fixed. Then G%(t, €) satisfies the initial conditions in (9).

(P(ODFG(t, €)) + (Ap(t) — q(0)GA(t, €) = 0.

Lemma 2.2. Let ¢, and @, be two solutions of (9) that verify the first initial condition. Then, ¢, and ¢, are
linearly dependent.

Proof. Since || + |B,| # 0, we have
Bpy(@) + B,Digy(a) = O,
By (@) + B,Dip,(a) = O,
and therefore, Wi (¢,, ¢,) = 0. O

Lemma 2.3. Let ¢, and @, be two solutions of (9) that verify the second condition. Then, ¢, and ¢, are linearly
dependent.

Proof. Similar to the proof of Lemma 2.2. O
Theorem 2.5. The system given by (9) has no Green’s function if A is an eigenvalue.

Proof. Let ¢, an eigenfunction of the system given by (9). Let ¢, be a solution of the fractional differential
equation linearly independent of ¢,. From Lemmas 2.2 and 2.3 we have that ¢, does not satisfy the initial
conditions in the system.

We know that G%(¢, ) satisfy the fractional differential equation in (9) over the intervals|a, €) and (¢, b],
and so, it has the form

Ga(t, €) = A(&)p,(t) + A(e)p,(t), tela,e)
€)= B1(€)(P1(t) + Bz(s)goz(t)’ t e (g, b,

and also the function G%(t, €) fulfills the condition 4 in Definition 2.3, so

Bi(Ai(&)p,(a) + A (e)p,(a)) + By(Ai(e)Dip,(a) + A (e)Dgp,(a)) = 0
Y(Bi(€)p,(b) + By()p,(b)) + y,(Bi(€)Die,(b) + Bx(€)De,(b)) = 0.

Since ¢, fulfill the initial conditions, then

A (e)(B,p,(a) + B,Dip,(a)) =0
By(e)(yp,(b) + y,Dip,(b)) = 0.

On the contrary, if

Bip(a) + B,Dip,(a) # 0
Y10,(b) + v,D79,(b) # 0,

so Ay(¢) = 0 in[a, €) and B,(¢) = 0 in (g, b]. From here, we can write

a _JA©e ), tela,e)
e {31(8)<P1(t), t € (e, b].

Since G“(t, €) is a continuous function, we have

lim G%(t, €) = Ai(e)p,(€) = lim G(t, €) = By(e)p,(e),
t—e” t—et
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which implies that A;(¢) = By(¢) in (c, d); therefore,

2 brte ) - Lo e, )= 0
—GY%et, e) - £,)=0,
ot ot

which contradicts condition 2 in Definition 2.3. O
Theorem 2.6. System given by (9) has one and only one Green’s Function if A is not an eigenvalue.

Proof. Let ¢, and ¢, be two solutions of the considered system such that
(Pl(a) = ﬁz’ D(?(Pl(a) = _ﬁp (pz(b) = Yz, Dg‘pz(b) = _yl-

Since |B,| + B, # O, [yl + Iysl # 0, ,(¢), and ¢,(t) are no null, they also satisfy the initial conditions,
respectively.
These solutions are linearly independent, since otherwise it would be

@,(t) = 6¢,(t), forsome § + 0.
Therefore, we have
Yi#1(b) + v.DEp(b) = 6(yipy(b) + y.DFpy(D)) = 0,

which would imply that ¢, fulfills the initial conditions, but this is not possible because ¢, is not an
eigenfunction.
Reasoning as in the proof of Theorem 2.5, we have that

Ga(t £) = Al(g)(pl(t) + Az(S)gDz(t), te [a, 8)
» &) = Bi(e)p,(t) + Ba(e)p,(t), t e (g, b],

and knowing that G%(t, €) fulfill the condition 4 in Definition 2.3, it follows that

Bi(A(&)p (a) + A (e)py(a)) + B,(Ai(e)Dip,(a) + Ay(e)Dip,(a)) =0,
Yi(Bi(&)@,(b) + By(e)p,(h)) + y,(Bi(e)DFe,(b) + By(e)Dip,(h)) = 0,

and it can be reduced to

Ay (E)(Bip,(a) + B,DFg(a)) =0,
Bi(&)(ypy(b) + y:Di¢y(b)) = 0,

and since ¢, and @, are not eigenfunctions, we have that

Bip,(a) + B,Dipy(a) # 0,
¥iy(b) + y,Dap,(b) # 0,

and then A,(¢) = 0 and By(¢) = 0 in (a, b).
By conditions 1 and 2 in Definition 2.3, we have

A9, + Ba)p(e) = 0,
A(E)DEp(€) + Bo(&)Dip,(e) = ——

p(e)’
which allows us to calculate the following:
-.(
Ae)- e®
p(£)[¢1(€)Da (pz(g) - (pz(S)Da (PI(E)]
Bye) = @)

PE)[p,()DSP,(8) - p,(E)Df P (e)]
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Note that the expression ¢,(e)D;p,(g) — @,(e)Dip,(€) is the a-Wronskian of two linearly independent solu-
tions of (9), so it is not zero.
Now, given the following

D (p(ODF¢y(1)) + (Ap(t) - q())ep () = O,
D (p(ODzpy(1)) + (Ap(t) — q(t))e,(t) = O,

by multiplying the first equation by ¢,, the second by ¢,, and subtracting, we have
@,(OD; (p(ODF¢y(1)) — (DD (P()D (1)) = 0. (10)
Note that
@,(OD; (p(ODF (1)) + (P(O)Dz D5t — (P(OD Dz Pt — (DD ((ODF (1)) + (p(t)D7 p,) D7 it
- (P(OD;p,)D; st = O,
it follows that
Di(p(®)p, Dz (O)g,(D)) — DF(p(O)e, Dz (D), (1)) = 0,
S0,
Di(p(O)p, D (1)e,(8) = p()p, Dz (O)p,(1)) = 0,

and hence, p(e)[@,(e)D;,(€) — ¢,(e)D7p,(e)]is a constant K that does not depend on ¢. Then we can define

1
I—<<P1(t)<Pz(£), a<t<e
Ga(X, y) =

1
I—<<P1(8)<P2(t), e<t<h.

This conformable Green’s function satisfies the conditions 1-4 in Definition 2.3. The uniqueness of this
function is easily deduced from the method that we have followed to determine G*(x, y). O

2.3 The applicability of conformable Green’s function

In this section, we consider the system

Di(p(ODFf (1)) - q(t)f () = O
ﬁlf(a) + ﬁzDgf(a) =0 (11)
nf(b) + y,Dif(b) =0

obtained from (9) for A = 0. We now propose to solve the nonhomogeneous system:

Dz (p(O)Df (1)) — q(t)f (t) = —h(t)
Blf(a) + ﬁzDgf(a) =0 12)
Wwf () + yDgf (b) = 0,

where h(t) is a real continuous function in the interval [a, b] for some O < a < b.

Theorem 2.7. If the given homogeneous system (11) has the identically null function as its only solution, then
the system given by (12) has only one solution, which is given by

b
£(6) = Taa(G(t, YD) = j%ea(a h(e)de,

where G%(t, €) is the conformable Green’s function of (11).
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Proof. Since the homogeneous system (11) has the identically null function as its only solution, then A = 0
is not an eigenvalue of (9); therefore, there exists the conformable Green’s function of (11).

Let ¢, and ¢, be two linearly independent solutions of (11) that verify the initial conditions, respectively.
Let us apply the generalized conformable version of the method of variation of the parameters to solve the
fractional differential equation in (11). Then, with

f(O) = A (t) + B(O)p,(1),
we have
Dz (p(OD(AD),(t) + B, (1)) — q(O)(AD)@,(t) + B(O)@,(1)) = —h(D),

and by applying the internal fractional operator, we obtain

Di(p(®Ole()DFA(D) + At)Dzpy(t) + @,DaB(t) + B(OODFp,(D)]) — q(t)(A)ep,(t) + B(H)p, (1)) = —h(?),
now, by using the linearity property of the fractional differential operator, we obtain

Dz(p()l @, ()DZA(E) + @, DgB(1)]) + Da(p(H)A()DZ,(8)) + DZ(B(E)DF,()) — q(t)AD)y(t) + B(t)(t))

= -h(®),

and if we apply the fractional differential’s product rule to the second and third term, we obtain

D (p(®O)p()DZA(E) + @, D B()]) + AOD; (p()D7 (1)) + p(O)DFpy()DZA(L) + B(OD; (p(t)D; p(1))
+ P(ODFP,(ODFB(E) — q(t)AM@(t) + B(t)py () = —h(t),

that is, to say

A(t)(D (p()DF (1)) = q()ep (1)) + B(E)(D (p(H)D7 py(1)) — q(t)py(1))
+ p(ODzAODF () + DaB(ODF9,(1)) + D (p(t)((ODZA(L) + @,(£)D7 B(t))) = —h(t).

Since ¢, and ¢, are two linearly independent solutions of (11), it follows that

p(ODFAOD¢,(t) + DaB(ODF9,(1)) + D (p(t)((ODZA(L) + @)Dz B(¢))) = —h(t).

From
@,(ODZA() + @, (O)DFB(¢) = 0,
we have
p(O)(D7AW)D 9, (8) + DzB(t)Dgp,()) = —h(d),

SO

DEA(E) = —,(t)h(t)

pOle,(ODp,(t) — ¢,()DFp,(1)]
DEB(t) —@,(Hh(t)

" pOlp(ODEP,() — 9, (D (D)]°

We know, from the proof of Theorem 2.6, that p(t)[¢,(t)Dip,(t) — @,(t)Dip,(t)] is a constant, and it is equal
to K.
Also, by using the initial conditions, we have

B.f(a) + B,D7f (a) = B,(A(@)¢p,(a) + B(a)p,(a)) + B,(¢,(c)DFA(a) + ¢,(a)DyB(a) + A(c)D;p,(a)
+ B(a)Dgp(a))

= A(a)(B,p,(a) + B,Dzp,(@)) + B(a)(B,p,(a) + B,D7p,(a))
= B(a)(ﬁl(pz(a) + BzDg(Pz(a)) =0,

and since ¢, is not an eigenfunction of (11), it turns out that
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Bl(pz(a) + ﬁzng’z(a) +0,

it follows that B(a) =
Similarly, if y, f (b) + y,D&f (b) = 0, then we obtain that A(b) = 0
So we have

t
[ (€= @) 9h(e)
AD = .[ E-a K de

a

and since A(b) = 0, then

(ga o PONE) | [ (€= a) BOME) | [ ("= @) )
K £E—-a K - £E—-a K

a t

A(t) =

Analogously

B(O) - J‘ (e - a) ¢1(81)<h<s)

Thus, we obtain that
£(®)= AOP® + B,
[ -0 e@RONE) | [~ @) 9RO
) £-a K ) £E-a K

= a+(Ga(ta S)f)(b),

where the Green’s function is

Kfpl(s)coz(t) ase<t
G%(t, ¢) =

Efpl(t)fpz(f), t<e<h. 0

Finally, we investigate the generalized Hyers-Ulam stability of the conformable linear nonhomoge-
neous differential equation of second order (12) in the class of twice continuously Df-differentiable
functions.

Theorem 2.8. Let p, q : [a, b] — R be continuous functions and let p be DF-differentiable function on [a, b].
Assume that the conformable homogeneous differential equation in (11) has the only null solution. If a twice
continuously Df-differentiable function f : [a, b] — R satisfies the inequality

IDz(p()DZf (1) — q(OFf () + f(O)] < g(8) (13)

foralit € [a, b], where g : [a, b] — [0, co) is given such that of the following integrals exists, then there exists
a solution fy : [a, b] — R of (12) such that

t
(e - a) |, (e )Ig( ) (€% - a) lp,(e)lg(e)
PG >|j : e+ lpy (o) [ DI g,

If(®) - fo(Ol < — X

IK |
where K is a nonzero constant and @,(t) and @,(t) are two linearly independent solutions of (11) (Theorem 2.7)

Proof. If we define a continuous function s : [a, b] — R by

s(t) = D (p(ODf (1)) — q(t)f () (14)
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for allt € [a, b], then from (13), it follows that
Is() + f(B)] < g(®). (15)

for allt € [a, b].
From Theorems 13 and 14, we have

b t
a _ t a _ t
16 = 136 ) = [ POPOE) | [ =@ HESORO o
£E-a K £-a K
t a
where K is a nonzero constant and ¢,(t) and ¢,(t) are two linearly independent solutions of (11) .
We now define a function fy : [a, b] — R by
b t
a _ t a _ t
£ = ,[ (e* — a) P(E)py(Of (€) des [E-@ P (E)f (E),(t) de a”)
£-a K £E-a K
t a

for all ¢t € [a, b]. According to Theorem 2.7, it is obvious that f; is a solution of the system (12). Moreover, it
follows from (15)-(17) that

IF&) - fo()] < - - -~

t a

b
J‘ (e:_— ;) L) O + F)E) o t (& - a) p(&)s + N)E)P,O) o

b ¢
1 (& - a) lp,(e)lg(e) (€% - a) lp,(e)lg(e)
X |<P1(t)lj e-a K de + |<P2(t)|j £-a K de
t a

for all t € [a, b]. O

3 Conclusion

In the development of the present article, fractional versions of the Sturm-Picone Theorem and the study of
the problem of boundary value determined with the use of a generalization of fractional derivatives intro-
duced by Zarikaya et al. in [35] were established. In addition, the stability criterion given by the Hyers-Ulam
Theorem was studied with the use of the aforementioned fractional derivatives.
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