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Abstract: The goal of this study is to analyse the eigenvalues and weak eigenfunctions of a new type of
multi-interval Sturm-Liouville problem (MISLP) which differs from the standard Sturm-Liouville problems
(SLPs) in that the Strum-Liouville equation is defined on a finite number of non-intersecting subintervals
and the boundary conditions are set not only at the endpoints but also at finite number internal points of
interaction. For the self-adjoint treatment of the considered MISLP, we introduced some self-adjoint linear
operators in such a way that the considered multi-interval SLPs can be interpreted as operator-pencil
equation. First, we defined a concept of weak solutions (eigenfunctions) for MISLPs with interface condi-
tions at the common ends of the subintervals. Then, we found some important properties of eigenvalues
and corresponding weak eigenfunctions. In particular, we proved that the spectrum is discrete and the
system of weak eigenfunctions forms a Riesz basis in appropriate Hilbert space.

Keywords: multi-interval Sturm-Liouville problems, boundary and interface conditions, weak eigenfunc-
tions, completeness
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1 Introduction

One of the main sources of inspiration for differential operators and their important branch, the Sturm-
Liouville theory, is boundary value problems (BVPs) for two-order ordinary differential equations that arise
in various types of mathematical physics problems. The foundations of this theory were laid down by Sturm
and Liouville in the mid-nineteenth century while studying heat conduction problems. The Sturm-Liouville
theory, initially applied to heat conduction problems, was later found to be applicable to many concrete
problems appearing in physics, biology, engineering, finance etc. and has maintained its usefulness until
today. As it is known, BVPs which consist of second-order ordinary linear differential equations and self-
adjoint boundary conditions are generally known as Sturm-Liouville problems (SLPs). In the classical SLPs,
the boundary conditions do not depend on the eigenvalue parameter. For detailed information about
classical SLPs, [1] can be consulted. Many mathematicians have studied some spectral properties (such
as the basis properties, orthogonality and eigenfunction expansions) of the eigenfunctions of the classical
SLPs involving spectral parameter not only in its equation but also in boundary conditions (e.g. [2,3] and
references cited therein).

Some problems in different fields of applied sciences arise as singular BVPs of the Sturm-Liouville type,
which include interface conditions at the internal singular points. Such problems are called boundary value
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interface problems (BVIPs) of the Sturm-Liouville type. Adding interface conditions to classical SLPs pre-
sents some difficulties. The first of these difficulties is that it is not clear how to extend the classical methods
to a problem with additional interface conditions. Another major difficulty lies in the completeness of the
eigenfunctions, since SLPs with interface conditions may not have infinitely many eigenvalues [4–6]. SLPs
under complementary interface conditions at some internal points arise as the mathematical modelling of
some systems and processes in the fields of physics, engineering, chemistry, biology, quantum computing,
mathematical finance, aerodynamics, electrodynamics of electrical circuits, fluid dynamics, diffusion,
string theory and magnetism, etc. as a result of using the method of separation of variables (see [7–10]).

In recent years, there has also been a remarkable revival of interest in investigating the properties of
SLPs with interface conditions (see e.g. [11–18] and references cited therein). In 2015, Zhang et al. inves-
tigated an SLP with interface conditions and obtained that the eigenvalues depend not only continuously
but also smoothly on the coefficient functions, boundary conditions and interface conditions [19].

In this work, we shall study the weak eigenfunctions of a new type of SLP defined on finite number of
non-intersecting intervals with eigenparameter-dependent boundary conditions and additional interface
conditions at the common ends of these intervals. The concept of weak eigenfunctions allows us to reduce
the eigenvalue problem to an operator-pencil equation (see [20,21]). The famous work of Keldysh [22]
contains the first important results in the spectral theory of operator pencils in which the concepts of
multiplicity of an eigenvalue-associated vectors and multiple completeness of the root vectors (i.e., eigen-
and associated vectors) were introduced. In the article published in 2019, Olǧar [16] proved that this
operator pencil is self-adjoint and positive definite for sufficiently large negative values of the eigenpara-
meter. Olǧar et al. [23] have investigated weak eigenfunctions of a new type of many-interval BVP con-
sisting of a two-interval Sturm-Liouville equation together with interface conditions and with eigenvalue
parameter depending on boundary conditions. In these studies, they defined a new concept of the so-called
weak (generalized) eigenfunction for the considered problem and proved that the spectrum is discrete and
the set of weak eigenfunctions forms a Riesz basis of the suitable Hilbert space.

Let us consider the following MISL equation:

( ) ( ( ) ( )) ( ) ( )″ + − = ∈ ∪
= +

z k μj k h k z k k t t0, ,s
m s s1 1 (1)

with the eigenparameter-dependent boundary conditions, given by

( ) ( ) [ ) ( ) ( )+ ′ = ∈ − ′ =
+ +

θz t θz t θ π c z t μc z tcos sin 0, 0, , 0,m m1 1 1 1 2 1 (2)

and with the interface conditions at the points of interaction ( )= …t s m2, 3, ,s given by

( ) ( ) ( ) ( )− − + = ′ + − ′ − = = …
−

z t z t z t z t δ s m0 0 0, 0 0 , 2, 3, , .s s s s s 1 (3)

We will assume that the following assumptions are fulfilled.

Assumption 1.1.
i. The real-valued functions ( )h k and ( )j k are measurable and bounded on ( )∪

= +
t t,s

m s s1 1 ,
ii. The function ( )j k is positively definite,
iii. The function ( )h k is continuous in the intervals ( )

+
t t,s s 1 , = …s m1, 2, 3, , and has finite limit values

( ) ( ) ( )+ ± = …h t h t s m0 , 0 2, 3, ,s1 and ( )−
+

h t 0m 1 ,
iv. �∈μ is an eigenvalue parameter,
v. ( )= … −δ s m1, 2, , 1s are real numbers and >δ 0s for each = … −s m1, 2, , 1.

Note that the sign of the parameters ( )= … −δ s m1, 2, , 1s plays an essential role since the case
( )> = … −δ s m0 1, 2, , 1s allows us to interpret the considered problem (1)–(3) as a spectral problem for

a self-adjoint operator in a suitable Hilbert space.
The main goal of this work is to provide an operator-pencil realization of MISLP (1)–(3) to show that the

system of weak eigenfunctions of the considered problem forms a Riesz basis in a suitable Hilbert space.
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Remark 1.2. Note that MISLPs of type (1)–(3) are of interest not only for pure mathematics but also for
applied mathematics as well as for physics and engineering. MISLPs arise as a rule in solving many physical
transfer problems by the separation of variable method. To show this, consider the non-homogeneous
Laplace’s equation

( ) ( )− = ∈ ⊕ ≔ ⋃

=

U x f x xΔ , Ω Ω
i

i
1

3
(4)

together with boundary condition of Dirichlet type

( ) ( )= ∂ ⊕U x 0 on Ω (5)

and additional interface conditions

( ) = ≔ ∩ =
+

I U C k0, across Ω Ω , 1, 2,k k k k 1 (6)

⎛
⎝

⎞
⎠

( )−

∂

∂

= =I U
n

a U C kΔ on , 1, 2,k t k k0 (7)

where ( )= −iΩ 1 3i are bounded regular domains in �3, ( ) = −
+

I U U Uk k k 1 denotes the jump of the function

( )U x across the section Ck, ( )
∂

∂

Ik
U
n denotes the jump of the normal derivatives across the section >C a, 0k 0 is

a constant and ( )Δt k denotes the tangential Laplacian on Ck. Such type of BVPs with additional interface
conditions arises often from the problems of hydraulic fracturing and from some problems of electrostatics
and magnetostatics (for other BVPs with interface conditions we refer to [24–26] and corresponding refer-
ences cited therein). It is easy to see that the method of separation of variables applied to problem (4)–(7)
leads to spectral problem of type (1)–(3).

2 Preliminaries

Let us present briefly the main definitions and results that will be used in what follows.

Definition 2.1. [27] The linear space consisting of all functions of the space ( )L a b,2 having generalized
derivatives ( )( )

′ ″ … ∈f f f L a b, , , ,s
2 and equipped with an inner product

( ) ( )( )
( ) ( )

∫∑⟨ ⟩ ≔

=

z w z k w k k, dW a b
s

m

a

b

s s
,

0

m
2

and with the corresponding norm
( ) ( )‖ ‖ = ⟨ ⟩z z z,W a b W a b,

2 ,m m
2 2 is denoted by ( )W a b,m

2 and is called the Sobolev
space.

Here, as usual by ( )L a b,2 we mean the classical Lebesgue space which consists of all square-integrable
functions defined on the interval [ ]a b, and equipped with the inner product ( ) ( )( ) ∫⟨ ⟩ ≔z w z k w k k, dL a b a

b
,2

and norm ( ) ( )‖ ‖ = ⟨ ⟩z z z,L a b L a b,
2

,2 2 .

Definition 2.2. [28] A system of elements { }zm in a Hilbert space � with the property that for an arbitrary
�∈z there is a unique sequence of scalars { }d ,s such that

�

∑− → → ∞

=

z d z m0 as
s

m

s s
1

is called a basis (or Schauder basis) for � .

On completeness of weak eigenfunctions for MISL equations with BICs  3



A basis { }zm in � is said to be an orthogonal basis if �⟨ ⟩ =z z, 0m k for ≠m k and orthonormal basis if

�⟨ ⟩ =z z δ,m k mk, where δmk is the Kronecker delta, i.e.
⎧

⎨
⎩

=

=

≠

δ m k
m k

1, for
0, formk .

Definition 2.3. [29] A basis { }zm in a Hilbert space � is called the Riesz basis of this space if the series
∑

=

∞ d zm m m0 is convergent when and only when ∑ < ∞
=

∞ dm m0
2 .

Obviously, any orthonormal basis forms a Riesz basis.
For investigation of the MISLPs (1)–(3), we use the direct sum space ( )⊕ ≔ ⊕

= +
L L t t,s

n s s2 1 2 1 with the inner
product

( ) ( )∫∑⟨ ⟩ ≔

=

+

−
+

z w z k w k k, d .
s

m

t

t

0
1 0

0

s

s 1

We will use the new Hilbert space ⊕W2
0,1 corresponding to our problem (1)–(3), which is defined as follows.

The linear space consisting of all elements ( )∈ ⊕
= +

z W t t,s
m s s1 2

1
1 satisfying the interface conditions

( ) ( )− = + = …z t z t s m0 0 , 2, 3, ,s s (8)

and equipped with the inner product

( ( ) ( ) ( ) ( ))∫∑⟨ ⟩ ≔ ′ ′
+

=

+

−
+

z w z k w k z k w k k, d
s

m

t

t

1
1 0

0

s

s 1

and corresponding norm ‖ ‖ = ⟨ ⟩z z z,1
2

1 is denoted by ⊕W2
0,1.

Taking in view Assumption 1.1 in the Hilbert space ⊕W2
0,1 we can introduce a new, but equivalent inner

product by

{ ( ) ( ) ( ) ( ) ( )}∫∑⟨ ⟩ ≔ ′ ′
+

=

+

−
+

z w z k w k h k z k w k k, dh
s

m

t

t

1,
1 0

0

s

s 1

with the corresponding norm ‖ ‖ = ⟨ ⟩z z z,h h1,
2

1, . Obviously,

⟨ ⟩ ≔ ⟨ ⟩ + ⟨ ′ ′⟩z w z hw z w, , , .h1, 0 0

It is easy to see that there are constants >K 01 and >K 0,2 such that

‖ ‖ < ‖ ‖ < ‖ ‖K z z K zh1 1 1, 2 1

for all ∈ ⊕z W2
0,1.

By using the well-known embedding theorems (see e.g. [21]) it is easy to show that for any >ε 0, small
enough, the inequalities

∣ ( )∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣ ( )∣ ∣∣ ∣∣ ∣∣ ∣∣+ ≤ ′ + ± ≤ ′ + = …z t ε z
ε

z z t ε z
ε

z s m0 2 , 0 2 , 2, 3, ,s1
2

0
2

0
2 2

0
2

0
2 (9)

and

∣ ( )∣ ∣∣ ∣∣ ∣∣ ∣∣− ≤ ′ +
+

z t ε z
ε

z0 2
m 1

2
0
2

0
2

and

∣ ( )∣ ( ) ∣∣ ∣∣≤z ξ D ξ z 1 (10)

hold for all ∈ ⊕z W2
0,1, where ( ) ( )∈ ∪

= +
ξ t t D ξ, ,s

m s s1 1 is the constant independent of the function z and
dependent only on ξ .

We will also use the Hilbert space H �≔ ⊕ ⊕W2
0,1 equipped with the scalar product
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H⟨ ⟩ ≔ ⟨ ⟩ +Z W z w z w, , 1 1 1

for H⎜ ⎟
⎛

⎝

( )⎞

⎠

⎛

⎝

( )⎞

⎠
= = ∈Z

z k
z W w k

w,
1 1

, where �( ) ( ) ∈ ⊕ ∈z k w k W z w, , ,2
0,1

1 1 .

3 Operator-polynomial realization of the MISLP (1)–(3)
Let us introduce to the consideration the concept of a weak eigenfunction which is fundamental to this
work. Let ∈ ⊕ν W2

0,1 be an arbitrary function. Multiply equation (1) by ν and then integrate by parts over
( ) ( )= …

+
t t s m, 1, 2, ,s s 1 we find that

( ) ( ) ( ) { ( ) ( ) ( )} ( )

{ ( ) ( ) ( ) ( ) ( )} ( ) ( )

( ) ( ) [ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

∫ ∫

∫

∑ ∑

∑

= − ″ +

= ′ ′ + + ′

− ′ + ′ + + − ′ − −

+ ′ + + − ′ − − + …

+ ′ + + − ′ − −

+ ′ + + − ′ − −

=

−

=

−

=

−

+ +

− − − −

+

+

+

+

+

+

μ j k z k ν k k z k h k z k ν k k

z k ν k h k z k ν k k z t ν t

z t ν t z t ν t z t ν t
z t ν t z t ν t

z t ν t z t ν t
z t ν t z t ν t

d d

d

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 .

s

m

t

t

s

m

t

t

s

m

t

t

m m

m m m m

m m m m

1

0

1

0

1

0

1 1

1 1 2 2 2 2

3 3 3 3

1 1 1 1

s

s

s

s

s

s

0

1

0

1

0

1

Since for functions belonging to the space ⊕W2
0,1 the normal derivative is generally not defined, it should be

excluded from this identity. To this end, we will assume that the function ( )ν k satisfies the conditions (8).
Recalling that ( )z k satisfies all boundary-interface conditions (2) and (3), we obtain

( ) ( ) ( ) ( ) ( )∑⟨ ⟩ − + + = ⟨ ⟩

=

− +
z ν θz t ν t δ z t ν t κ

c
ν t μ jz ν, cot , ,h

s

m

s s s m1, 1 1
2

1
2

1 0 (11)

( )
=

+
z t

c
μ κ

ρ
,m 1

2
(12)

where ( )≔ − ′
+

κ c z tm2 1 .
Thus, the MISLP (1)–(3) is transformed into the system of equalities (11)–(12) for all terms of which are

defined for the ∈ ⊕z ν W, 2
0,1.

Based on the above transformations, we will define the concept of weak eigenfunction for the con-
sidered MISLP (1)–(3).

Definition 3.1. The vector-function ⎛
⎝

( )⎞
⎠

= ∈ ⊕Z z k
κ

W2
0,1 is said to be a weak (or generalized) eigenfunction

of the MISLP (1)–(3) if the relations (11)–(12) are satisfied for any ( ) ∈ ⊕ν k W2
0,1.

Now we shall introduce to the consideration the following functionals:

( ) ( ) ( ) ( ) ( )∑≔ − +

=

−
τ z ν θz t ν t δ z t ν t, cot ,

s

m

s s s0 1 1
2

1 (13)

( ) ( ) ( ) ( ) ( ) ( ) ( )∫∑≔ ⟨ ⟩ ≔

=

+

−
+

τ z ν j k z k ν k j k z k ν k k, , d ,
s

m

t

t

1 0
1 0

0

s

s 1

(14)

( ) ( )≔
+

τ κ ν κ
c

ν t, ,m2
2

1 (15)

where �( ) ( )∈ ⊕ ∈z k W κ k,2
0,1 .
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The reduction of relations (11)–(12) to an operator-polynomial is based on the following theorem.

Theorem 3.2. There are linear bounded operators ⊕ → ⊕B B W W, :0 1 2
0,1

2
0,1 and � → ⊕B W:2 2

0,1 such that

( ) = ⟨ ⟩ =τ z ν B z ν i, , , 0, 1,i i h1, (16)

( ) = ⟨ ⟩τ κ ν B κ ν, , h2 2 1,

for all ( ) ( ) ∈ ⊕z k ν k W, 2
0,1 and �( ) ∈κ k .

Proof. Let ( ) ∈ ⊕z k W2
0,1 be any function. From (13) to (15), it follows immediately that

∣ ( )∣
⎧

⎨
⎩

∣ ( )∣∣ ( )∣ ∣ ( )∣∣ ( )∣
⎫

⎬
⎭

∑≤ +

=

τ z ν M z t ν t z t ν t, ,
s

m

s s0 1 1 1
2

∣ ( )∣ ≤ ‖ ‖ ‖ ‖τ z ν M z ν, ,1 2 0 0

∣ ( )∣ ∣ ∣∣ ( )∣≤
+

τ κ ν M κ ν t, .m2 3 1

Here and below, the symbols ( )= …M j m1, 2, ,j are used to denote different constants whose exact values
are not important for the proof.

By using the interpolation inequalities (9) and (10), we have the following inequalities:

∣ ( )∣ ∣∣ ∣∣ ( )‖ ‖ ≤ ‖ ‖ ≤ ∈ ∪
= +

z M z z ξ M z ξ t t, for any , .h h s
m s s4 1, 5 1, 1 1

Hence, the functionals ( )=τ i 0, 1, 2i allow the following estimates

∣ ( )∣ ≤ ‖ ‖ ‖ ‖ ≤ ‖ ‖ ‖ ‖ ≤ ‖ ‖ ‖ ‖τ z ν M z ν M M z ν M M z ν, ,h h h0 6 0 0 6 1 1, 0 6 1
2

1, 1,

∣ ( )∣ ≤ ‖ ‖ ‖ ‖ ≤ ‖ ‖ ‖ ‖ ≤ ‖ ‖ ‖ ‖τ z ν M z ν M M z ν M M z ν, ,h h h1 7 0 0 7 2 0 1, 7 2
2

1, 1,

∣ ( )∣ ∣ ∣∣ ( )∣ ∣ ∣≤ ≤ ‖ ‖
+

τ κ ν M κ ν t M κ ν, .m h2 8 1 9 1,

So the linear forms ( )⊕ → ⊕ =τ W W i: 0, 1i 2
0,1

2
0,1 and � → ⊕τ W:2 2

0,1 are continuous with respect to the
second argument. The proof is complete. □

Theorem 3.3. The operators ⊕ → ⊕B B W W, :0 1 2
0,1

2
0,1 are self-adjoint and the operator ⊕ → ⊕B W W:1 2

0,1
2
0,1 is

positive.

Proof. Let ( ) ( ) ∈ ⊕z k ν k W, 2
0,1 be arbitrary functions. By (13) and (16) we have that

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑

⟨ ⟩ = ⟨ ⟩ =

= − + + + …+

= − + + + …+

= − +

= ⟨ ⟩ = ⟨ ⟩

−

−

=

−

z B ν B ν z τ ν z

θν t z t δ ν t z t δ ν t z t δ ν t z t
θz t ν t δ z t ν t δ z t ν t δ z t ν t

θz t ν t δ z t ν t

τ z ν B z ν

, , ,

cot
cot

cot

, , .

h h

m m m

m m m

s

m

s s s

h h

0 1, 0 1, 0

1 1 1 2 2 2 3 3 1

1 1 1 2 2 2 3 3 1

1 1
2

1

0 1, 0 1,

Consequently, the linear operator B0 is self-adjoint in the Hilbert space ⊕W2
0,1. Similarly, we can show that

the linear operator B1 is also self-adjoint in the same Hilbert space ⊕W2
0,1.

To show the positivity of B1, let ( ) ∈ ⊕z k W2
0,1 be arbitrary function. Then, by (14) and (16) we have

( ) ( ) ( ) ( )∣ ( )∣∫ ∫∑ ∑⟨ ⟩ = ⟨ ⟩ ≔ =

=

+

−

=

+

−
+ +

B z z jz z j k z k z k k j k z k k, , d d .h
s

m

t

t

s

m

t

t

1 1, 0
1 0

0

1 0

0

2

s

s

s

s1 1

(17)

Since the function ( )j k is positive definitely, the right hand side of (17) is greater than zero. Consequently,
the operator B1 is positive. □
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Theorem 3.4. The operators �( )⊕ → ⊕ = → ⊕B W W i B W: 0, 1 , :i 2
0,1

2
0,1

2 2
0,1 and �⊕ →

∗B W:2 2
0,1 are com-

pact, where ∗B2 is the adjoint of B2.

Proof. The compactness of the linear operators B0 and B1 follows immediately from the well-known
embedding theorems (see e.g. [21]). Let us prove the compactness of the linear operators B2 and ∗B2 .

It is obvious that the adjoint operator of B2 is defined on whole ⊕W2
0,1 with equality ( )=

∗

+
B z z tc m2

1
1

2
. By

applying the well-known embedding theorems (see e.g. [21]), we have that the adjoint operator for ∗B2 from

⊕W2
0,1 to � is bounded, i.e. there exists >M 010 such that ∀ ∈ ⊕z W2

0,1

∣ ∣ ≤ ‖ ‖
∗B z M z .h2 10 1,

Moreover, since the range of ∗B2 is the finite-dimensional inner product space, it follows immediately that ∗B2
is compact. Therefore, the linear operator B2 is also compact (see e.g. [30]). □

4 Riesz basis property of the weak eigenfunctions

It is easy to show that the MISLP (1)–(3) can be reduced as the operator-polynomial equation in the space H

as follows:

� � � �( ) ( )= = −μ Z μ μ0, .1 2

Here the linear operators �1 and �2 are defined by the equalities

� � ⎜ ⎟( ) ( ) ( ) ⎛

⎝

⎞

⎠
= + + =

∗z κ z B z B κ B z z κ B z κ
ρ

, , , , , ,1 0 2 2 2 1 (18)

respectively.
Thus, we have the following result.

Lemma 4.1. If ( ) ⎛
⎝

( )⎞
⎠

͠
≔Z k μ z k μ

κ
, , is the weak eigenelement of the MISLP (1)–(3), then the operator-poly-

nomial equation �( ) ( )͠
− =μ Z μ., 0 is hold in the Hilbert space H.

By applying the well-known polar identity (see e.g. [31]), we have the following lemma.

Lemma 4.2. ( )∫± ≥ −‖ ‖ − ‖ ‖zν x z ν2Re d 2 2.

Proof. By using the well-known Hölder’s integral inequality, we have

⎛
⎝

⎞
⎠

⎛
⎝

∣ ∣ ⎞
⎠

⎛
⎝

∣ ∣ ⎞
⎠

⎛
⎝

∣ ∣ ∣ ∣ ⎞
⎠

( )

∫ ∫ ∫ ∫

∫ ∫

≤ ≤

≤ + = ‖ ‖ + ‖ ‖

zν x zν x z x ν x

z x ν x z ν

Re d d d d

1
2

d d 1
2

.

2 2

2 2 2 2

1
2

1
2

Consequently,

⎛
⎝

⎞
⎠

∫± ≥ −‖ ‖ − ‖ ‖zν x z ν2Re d .2 2

The proof is complete. □

The last lemma is used below to show that an operator �( )−μ0 is positive for sufficiently large μ0.
By using this lemma and applying [16, Theorem 4.2], we have the next result.
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Theorem 4.3. There is >α 0 such that for all >μ α the operator polynomial �( )−μ is positive definite.

Corollary 4.4. The eigenvalues of the operator-polynomial �( )−μ are positive for sufficiently large positive μ.

Theorem 4.5. The operator-polynomial � � �( )− = +μ μ1 2 is self-adjoint and compact for any real number μ.

Proof. Since the operators B B B, ,0 1 2, and ∗B2 in the Hilbert space ⊕W2
0,1 are compact and self-adjoint, the

operators �1 and �2 in H defined by (18) are compact and self-adjoint. Therefore, the operator-polynomial
� � �( )− = +μ μ1 2 in H, which is the linear combination of the operators �1 and �2, is also self-adjoint and
compact. □

Since the linear operator � �( )+ μ1 0 2 is self-adjoint and positive definite for sufficiently large >μ 00 ,

we can consider the transformation � �( )+ ≔μ Z W1 0 2
1
2 , where � �( )+ μ1 0 2

1
2 is the positive square root of

the operator � �( )+ μ1 0 2 . Since � �( )+ μ1 0 2 is positive defined, the operator � �( )+ μ1 0 2
1
2 is invertible.

Therefore, the operator-polynomial

� � � � �( ) ( ) ( )⋁ ≔ + +
− −μ μ μ0 1 0 2 2 1 0 2

1
2

1
2

is well-defined in the Hilbert space H.

Theorem 4.6. The operator-polynomial ∨ ( )μ0 is positive, self-adjoint and compact in the Hilbert space H for
sufficiently large >μ 00 .

Proof. From self-adjointness of B1 in ⊕W2
0,1 follows easily the self-adjointness of �2 in H. From Assumption

1.1 ii. and the representations (14), (16), and (18), we have

H� ∣ ∣ ( )∣ ( )∣ ∣ ∣∫∑⟨ ⟩ = ⟨ ⟩ + = + ≥

=

+

−
+

Z Z B z z
ρ

κ j k z k k
ρ

κ, , 1 d 1 0h
s

m

t

t

2 1 1,
2

1 0

0

2 2

s

s 1

for all H( ( ) )= ∈Z z k κ, , so �2 is positive in H.

Moreover, since the operator � �( )+ μ1 0 2 is positive defined and self-adjoint, the operator � �( )+
−μ1 0 2

1
2

is positive, self-adjoint and bounded. Consequently, by well-known theorems of functional analysis, the
operator ( )∨ μ0 is positive, self-adjoint and compact operator in the Hilbert space H. □

It is evident that if ( )μ Z,m m is any eigenpair of the MISLP (1)–(3), then μm is the eigenvalue of the

operator ( )∨ μ0 with corresponding eigenelement � �( )= +W μ Z ,m m1 0 2
1
2 i.e. the functions ( )Wm satisfy the

operator equation

( )− ∨ =W μ μ W 0.m m m0

It is easy to see that the operator

� � � � �( ) ( ) ( )⋁ = + +
− −μ μ μ0 1 0 2 2 1 0 2

1
2

1
2 (19)

for sufficiently large μ0 is positive, self-adjoint and compact operator in the Hilbert space H.

Corollary 4.7. There is >α 0, such that for all >μ α0 the operator ( )∨ μ0 has denumerable many real
eigenvalues { }

=

∞ηm m 1 with →η 0m as → ∞m and the corresponding system of eigenfunctions { }Wm forms an
orthonormal basis of the Hilbert space H.

Theorem 4.8. There exists infinitely many real eigenvalues of the MISLP (1)–(3) ≤ ≤…λ λ1 2 , with → ∞λm
and the corresponding orthonormal system of eigenfunctions forms a basis of the Hilbert space H.
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Theorem 4.9. Every invertible linear bounded operator transforms any orthonormal basis of a Hilbert spaceH

into another basis of H, a so-called Riesz basis (see e.g., [28]).

Taking in view this theorem, Theorem 4.5, Corollary 4.7 and equality (19), we have the needed impor-
tant result:

Theorem 4.10. The system of the weak eigenfunctions of the MISLP (1)–(3) forms a Riesz basis of H, and the
corresponding eigenfunction expansion converges in the H-norm.

5 Conclusion

In this article, we study a new type of MISLP that differs from classical SLPs in that it is defined on finite
number non-intersecting intervals with points of interaction. Furthermore, the finite number additional
conditions are given at these points of interaction, the so-called interface conditions. Spectral analysis of
such type of SLP is much more complicated to analyse than classical SLPs, because it is not clear how to
apply the classical methods to the many-interval BVPs. Developing a new technique, we have defined some
self-adjoint linear operators in such a way that the BVIP under consideration can be formulated in the form
of an operator-polynomial equation. Then, using the spectral theory of operator-polynomials, we have
proved that spectrum is discrete and the system of weak (generalized) eigenfunctions forms a Riesz basis.
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