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1 Introduction

Let N € N\{1} and put [1, N]z = [1, N] n Z. Consider the anisotropic discrete Kirchhoff-type problem

~M(pu)A(P,,_py(Bu(n - 1)) = Af (n, u(n)) + pg(n, u(n)), n e [1, Nz, a1
U =uN+1=0 ’

where ¢, \(t) = [t]P™W2t, (n, t) € [1, N]z x R, A, u > O are two parameters, A is the usual forward differ-
ence operator (defined by Au(n) = u(n + 1) — u(n)), f,g: [1, N]lz x R - R are continuous functions, g is
nonnegative throughout this article, p : R — [0, co) is a functional defined by

N+1

Au(n — D[p-D
p(u) = z%’
p(n-1)
p :[0,N]z — [2, 00) is a function with

p~ = min p(n) < max p(n) = p*,
ne[O,N]z ne[O,N]z

and M : R* —» R* is a continuous function that satisfies
(Mp) there exist mg, m; > 0 with mg < M(t) < m; for all t > 0.

The difference equation in (1.1) can be considered a discrete analogue of Kirchhoff’s equation

L

o%u pO EJ‘

[P, E U _o, 1.2

Pap o0 (1.2)
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which Kirchhoff studied in 1883 (see [1]) and which extends d’Alembert’s wave equation, by considering the
effect during vibrations when the length of the string is varied. In (1.2), the parameter L denotes string
length, h stands for the cross-sectional area, E is the material’s Young modulus, p is the mass density, and
P, is the initial tension. A special feature of the Kirchhoff equation is that (1.2) contains the nonlocal
coefficient

ou [?

dxs
ox

L
h

E
2L

O C—

Lyay 12 2
depending on the average %J‘O dx of kinetic energy % g—i on [0, L], and therefore (1.2) is not a

pointwise identity. On the other hand, the stationary analogue of (1.2) is given as follows:

u
ox

a+b Iqulzdx Au=f(x,u) in Q,
Q

u=0 on 0Q,

which was studied extensively only after Lions [2] initiated an abstract setting for this problem. Some
related, interesting, and important results can be seen, e.g., in [3-7].

Difference equations are generally understood as the first theory to appear with the systematic growth
of mathematics, and they can be found in biological neural networks, economy, signal processing, com-
puter engineering, genetics, medicine, ecology, and digital control. In the last decades, many researchers
around the globe have used variational methods and critical point theory to study the existence and
multiplicity of solutions for discrete boundary value problems, as referenced in [8—12]. We also refer the

reader to [13-16], where discrete Kirchhoff-type equations were studied. However, as to the problem (1.1), it
N+1| Au(n 1) [P(-D
n=1" p(n-1)
there are some studies [17-23], that discuss the existence of solutions for some discrete boundary value
problems of p(k)-Kirchhoff-type using variational methods and critical point theory.

Inspired by the above results, in this article, we investigate the existence of three solutions for (1.1). In
this case, we apply suitable conditions and create intervals for the two parameters A and u. We also give
Example 3.3 to show the use of our proven theorems.

contains the Kirchhoff term ) , which makes it much more complicated to work with, and

2 Preliminaries and basic notation

In this article, X denotes a finite-dimensional real Banach space and I} : X — R is a functional satisfying
the following structure hypothesis:

L(u) = ®) - A¥(u) for all u € X, where ®, ¥ : X — R are two functions of class C! on X such that @ is coercive, i.e.,
limyy - @) = 00, and A is a positive real parameter.

In this framework, a finite-dimensional variant of [24, Theorem 3.3] (see also [24, Corollary 3.1 and
Remark 3.9]) is as follows.
For allr, r, and , with , > r, and r, > infy®, and all r; > 0, we define
su oo P (V) — Y(u
o= inf Preari(coo,) P(V) — P(1)
ue®(-co,r) r — ®(u)
B(n, 1) = inf w,
ue‘bfl(‘oo”l)vetb’l[rl,rz) CD(V) - q)(u)
Supue@'l(—oo,rzﬂg)\lj(u)
£} ’
a(n, n, 13) = max{p(n), e(r), y(r, 1)}

>

Y(rZ’ r3) =
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Theorem 2.1. (See [24, Theorem 3.3]) Assume that
(ay) @ is convex and infy® = ®(0) = ¥(0) = 0,
(ay) for every uj, u, € X such that ¥(u,) > 0 and ¥(u,) > 0, one has

inf W(su; + (1 - s)up) > 0.
se[0,1]

Assume that there are three positive constants n, r,, and r; with r, < r, such that

(as) () < B(n, n),

(ay) @(r) < B(n, r),

(as) y(n, 13) < B(n, 1).

Then, for each A € (; ;), the functional ® — AY admits three distinct critical points uy, U, and us

B, 1)’ an,m,13)

such that
u € dH(-00,n), wedln,n), uzed-co,n+n).

For an application of Theorem 2.1 to the discrete case, see [18]. Furthermore, we refer the reader to
[25-28] for situations of successful employment of results such as Theorem 2.1 in order to prove the
existence of solutions for various boundary value problems. We introduce the N-dimensional Hilbert space

X={u:[0,b,N+1] >R :u(0)=u(N+1) =0}

endowed with the norm

1

N+1 2
lull = [Z |Au(n - 1)|2] :

n=1

Lemma 2.2. Ifu € X, then

N+1 2 B
Y Au(n - DIPOD > (N + )72 [ullP .
n=1
Proof. This inequality is a consequence of [29, (A.6)], as in our setting p : [1, N]z — [2, o). O

Definition 2.3. We say that u € X solves (1.1) provided

N+1
M(p(w)) )’ |Au(n - DIPC=D2Au(n - DAv(n - 1)
Vo N
= ) f(n, u(m)v(n) + u Y gn, u(m)v(n) forall v e X.
n=1 n=1
Set
_ N u
O = M(p0), ¥ = Y (Fon,utm) + X 6n,umy),
n=1

where, fort € R and n € [1, Nz,

t t t
M) = IM(f)dé,’, Fn, t) = J fn, s)ds,  G(n, t) = j g(n, 5)ds.
(0] 0 0

3 Main results

In this section, we formulate our main results based on the existence of at least three solutions for the
problem (1.1). Set
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N
G%:= ) maxG(n, t) for 6> 0

= 1tl<0

and

N
Gy= ) inf]G(n, t) for n > 0.

noitelon

Theorem 3.1. Assume there exist constants 6., 0,, 65 > 0, n > 1, and ny € [1, N|z with

0, <n2YP N + 1, (3.1
/P
0, > (2”1119 ) (N + Dt gplv, (3.2)
mop-
N
F(no,n) > ) F(n, 6y) (3.3)
n=1

and 6, < 65 such that
(A)) f(n,t) = 0 for each (n, t) € [1, N]z x [-63, 65],
(A,) the inequality

o B F O 00 B F(, 0) XL FM,609) | mop (N + DI
er ' eF T or -of 2mp*nP*

N
F(no,n) - Y F(n, el))

n=1
holds.
Then, for every
2my o p4 _ _ _ _ _
> moWN + ' [ 6f 67 6y - 07
Ae 5 s n min N s TN [—s
F(no,n) - X,,_,F(n, 6) p YniF(n, 01) Y, F(n,0,) Y, F(n,6)
and for all

m o, p+ N
e~ A(Fno, m) - Yo F(n, 6))

U €| 0, min Gr, —h

1)

- N — N
%(N + DIPOP Ay F(n, 6) %(N + DIPOF Ay F(n,6))

min
GY G%

TN+ )P OF - 07) =AY F(n, 05)
G

the problem (1.1) has at least three nonnegative solutions u;, u,, and us satisfying

max |u(n)] < 6, max [ux(n)] <68,, max |us(n)| < 6s.
ne[1,N]z ne[1,N]z ne[1,N|z

Proof. Our aim is to apply Theorem 2.1 to the problem. We consider the auxiliary problem

{4mwm%mﬂm—mhvmmm+wmwm ne 1N, o)

u(0)=u(N+1) =0,
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where f : [1, N]z x R — R is a continuous function defined by

f(n! _63) if é’ < _039
f(n, &) =1f(n, %) if -6;<4§<86s,
f(n, 63) if &> 65.
If (3.4) has a solution u satisfying —65 < u(n) < 65 for all n € [1, N], then u is a solution of (1.1). This

estimate is obtained at the end of this proof. Therefore, for our goal, it is enough to show that our conclusion
holds for (3.4). Let the functions @ and ¥, for every u € X, be defined as follows:

N

) = F(p), ¥ = Y | Fln, ut) + 560, utm) |

n=1

Furthermore, let us denote by Iy the energy functional associated with problem (1.1), i.e., i(u) =
D(u) - A¥(u) for every u € X. By standard arguments, @ is a continuously Gateaux differentiable and
sequentially weakly lower semicontinuous functional whose Gateaux derivative admits a continuous
inverse. On the other hand, ¥ is well defined, continuously Gateaux differentiable and with compact
derivative. More precisely, one has

N
Wy = Y [f(n, uwn + Xgn, u(n))v(n)]
n=1

and

N+1
' (Wyv = M(p(w)) z |[Au(n — DP@-D-2Au(n - DAv(n - 1)

n=1
for every u, v € X. By the definition of ® and thanks to Lemma 2.2, we have
m 2p -
D) = —2(N + 1)l (3.5)
b
so @ is coercive. Therefore, the assumptions on @ and ¥, as requested in Theorem 2.1, are verified. We know

the critical points of the function @ — A¥ are the solutions to the problem (1.1). Let w(ng) = n for a fixed
integer ny € [1, N]z and w(n) = 0 for n € [1, Nz \{no}. Clearly w € X. Since |w| = /2 > 1, (3.5) shows

Mo (4 1)) 2 < d(w) < %ql’ﬂ (3.6)

We set

"= %(N +DPOP, 1= %(N FDPOP, 1= %(N + )PP - 0P).

From (3.1), (3.2), and (3.6), we deduce
n<ow) < n.

By first using the Cauchy-Schwarz inequality, then (3.5), and then the estimate ®(u) < r, we obtain

P < NV + D5 ulP < 2V + P ow) < 2+ )P =07
Mo mo

From the definition of r;, we obtain
Ol (~co,n)={ueX: du)<n}ci{ueX: |u <06}

By using the assumption (4;), one has

N N N
sup Y F(n,u(n)) < El |Itr|§19)1(F(n’ t) < ) F(n, 6y).

ued(-oo,n) p=1 n=1
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In a similar way, we obtain
N

N
sup Y F(n,u(n)) < ) F(n, 6;)
n=1

ued(-00,n) p=1

and

N N
sup Y F(n,u(n)) < Y F(n, 6).
ued(~co,n+1) =1 n=1

Therefore, since 0 € ®(-co0, 1) and ®(0) = ¥(0) = 0, one has
Supve(l)’l(—oo,rl)\lj(v) - \Il(u)

n)=  inf
o) ued(~co,n) n — ®)
Supue@’l(—oo,n)\y(u)
< "
N K
SUP e -oom) Yor_y | FR () + 56, u(n) |
- -
N
< - max|t|<91[F(n, t) + XG(n, t)]
< -
ZN max <o F(n, t) + £G4
Qo Mo, ) +
TN+ ) 67
In addition,
- N
(P(rz) < SUPy o I(—co,1) (u)
n
N
SUPcar ooy Yomy | P U(M) + 4G(n, u(n) |

n

N
< Y. MaXpeaF(n, ) + £GP
%(N + DI AP

and

Supue@’l(—oo,rﬁr;)\y(u)

€]
N y
SUP e oo mem) Yoy | PR () + 56, u(n) |
13
N

) > maxyo| Fn, ) + XG(n, 0)]
< -

ZN max<g,F(n, t) + £G%
_ &n=1 =U3 ’ A

%(N + DIP(OP - 6F)

y(r, 13)

Now, for u € @ (-c0, 1), we have

F(no, 1) — Y F(n, ) + 1[G, ~ G]

ﬁ(rl’ rZ) 2 q)(W) _ CD(u)
_ Flno,m) — 3 FOu, 60) + 516, - 67
> _ .
1),lp+

e
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Due to the condition (4,), we obtain
a(n, 1, 13) < B(n, 1).

Therefore, the assumptions (as), (a,), and (as) of Theorem 2.1 are verified. Since f and g are nonnegative,
the solutions of the problem (1.1) are nonnegative. Indeed, let u, be a nontrivial solution of the problem (1.1).
Then, u, is nonnegative. Arguing by contradiction, assume that the discrete interval A := {n € [1, N]z:
u.(n) < 0} # @. Put 7(n) = min{u.(n), 0} for n € [1, N]z. Clearly, v € X, and one has

N+1 N

N
M) Y |Au.(n - DPC-D-2Au,(n - DAV(n - 1) = A Y f (n, u(m)v(n) + p Y g(n, u(m)v(n).
n=1 n=1 n=1

By choosing vV = u,, we have

N+1
0 < mo(N + D'P 2|l < M(p(w.)) Y [Au.(n - PV < 0,

n=1
i.e.,
lu.ll < 0.

Thus, u, = 0 in A, which is absurd. Hence, u, is nonnegative. Now, we show that the functional I, satisfies
the assumption (a,) of Theorem 2.1. Let u; and u, be two local minima for I, (see [24, proof of Theorem 3.3]).
Then u; and u; are critical points for I, and so, they are nonnegative solutions to the problem (1.1). Then, we
have uy, u, > 0. Thus, it follows that

sup+ (1 -su, >0 forall s € [0,1].
Therefore, ( f+ %g)(n, su; + (1 — s)up) = 0 for all s € [0, 1]. Consequently,
Y(suy + (1 - s)up) >0 forall s € [0, 1].

Hence, Theorem 2.1 implies that for every A in the interval given in the statement and for every y in the
interval given in the statement, the functional I; has three critical points uy, u,, us € X with ®(w) < n,
O(w,) < 1, and O(u3) < 1, + 13, i.e.,

max |u(n)| < 6, max [ux(n)] <6, max |us(n)| < 6s.
ne[1,N]z ne[1,N]z ne[l,N]z

This completes the proof. O

Remark 3.2. Note that (3.3) is satisfied with large 7 if, for example, f is positive and then F is increasing
with respect to the second variable.

We now present the following example to illustrate Theorem 3.1.

Example 3.3. Consider the problem

{—(2 + sin(p(U))A(P,, 1y (Bu(n — 1)) = Af (n, u(n)) + pg(n, u(m)), ne|l, 4]z,

(3.7)
u(0) = us) =0,

which is in the form (1.1) with

N=4, phn)-= % +2, M(&) =2+ siné.

Here,

Let
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to for t < 10,
n,t)= 70
f(n. 0 107 for t > 101
for all n € [1, 4]z. Thus, we have
t7
= for t < 10'°,

F(n,t) =
1070(lnt + % -10 ln(lo)) for t > 10'°
for alln € [1, 4]z. Let now
6, =10, 6,=101, @;=1020, 5 =100,
Then
0<6<10%, 07>0F>45-10%

and f(n, t) > 0 for each (n, t) € [1, 4]z x R. Taking into account

4 4 100 4 200
. anlF(n, 10) anlF(n, 10100) anlF(n, 10200)

ma 102 ’ 10200 10400 _ 10200

1)

107 70 1 70 1
429 410 (901n(10)+;) 410 (1901n(10)+;) 4
7 ’

102 ’ 10200 ’ 10400 _ 10200

so (4) of Theorem 3.1 is verified. Note

4
2105 <« ————
7 45 103

. 1030
B O S5 (L SR
10° — 4 - 107" 60
and for every nonnegative continuous function g : [1, 4] x R — R, there exists § such that, for each
u € [0, 6), the problem (3.7) has at least three nonnegative solutions u, u,, and u3 satisfying

7 7

1 (1070 _ 4-107)

Then, for every

max |uy(n)| <10, max |u(n)| < 101%°,  max |uz(n)| < 10299,
nell,4]z ne(l,4]z ne[l,4]z

Remark 3.4. If either f(n, t) + O for somen € [1, N]z or g(n, t) + O for somen € [1, N]z, or both hold true,
then the solutions from Theorem 3.1 are not trivial.

We now deduce the following consequence of Theorem 3.1.

Theorem 3.5. Assume there exist constants 0y, 8, > 0, n > 1, and ng € [1, N|z with
67 < min{n?*, 2(N + 1)P /2n¥’}
and
4my

— — + _
6f > max{n?, —p(N + 1P Ipp+
Mmop~

such that
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(AS) f(na t) >0 for each (n, t) € [1’ N]Z X [_94’ 64],
(Ag) the inequality

ma Zn F(n, 6;) ZZn Fn, 64) . mop (N + DIP F(no, )
or o 2mpt + mep (N + D'P P

holds.

Then, for every

Ae|npt

mop (N + )7~ " ) - - -

2 t b mop (N + D'P min 01 6;

F(no, n) ’ 2 YN F(n,6) 2¥N F(n, 6,)
and for all

Zunpr - (F (no,m) - Y_Fn, 91))
Gy - G% ’

u €| 0, min

g(N +DIP QP - Aanle(n, 0, %(N +DIP6p - ZAZn : ( n, 5 f)

0 ’ 6y ’
G ZGPZE

min

mo —p~ B N
BN+ DTGP - 24 F(n, 6,)
2GY% ’

the problem (1.1) has at least three nonnegative solutions w, u,, and us satisfying

max |u(n)| < 6;, max [ux(n)| < _0—4, max |lus(n)| < 6.
ne[1,N1z ne[1,Nlz 2J2 ne[LN]
Proof. Choose 0, = J_ and 65 = 6,. So from (A¢), we obtain
N
Y F(n,6)) ZZn 1 ("’ pf)
6y or
N
J22, F 8 (3.8)
S 7
mop N+ D"P  F(no, )
2mip* + mop~(N + D)7 net
and
TaaF(,05) 2%, F0L0)  mep(N+D'"™P  Flno,m) (3.9)
67 - 0f 64 2m1p+ + mop (N + DIP° net

From (4) and taking into account 6, < np , we have

mop (N + DI-P N
2m; p*nP* (F(no’ m - ZF(I’I, 61

n=1

mop (N + DI-P m N+ )i Y
> P WADTE iy Mol N DTE LF.6)
2myptn Pt 2mypt0f
mop~(N + 1)I-P° m N+111’2
> MF(HO, n - (mop™( _) ) i F(no, n)
2mpnP* 2mp*2myp* + mop~(N + D7 )n P+

_ mop (N + DI
@myp* + mop (N + D'"P )nP+

F(nO’ )’l)
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Hence, from (3.8), (3.9), and (A¢), the assumption (A4¢) of Theorem 3.1 is satisfied, and it follows the
conclusion. O

Here, we present a simple consequence of Theorem 3.5 in the case when f does not depend upon n.

Theorem 3.6. Assume that there exist constants 6y, 6, > 0, and n > 1 with
67 < min{n?*, 2(N + 1)? /2nP}
and
_ — + —
0f > max{n?, 4m_1p(N + 1P Ipp+
mop-

such that
(A7) f(t) =0 foreacht € [-0,, 6],
(Ag) the inequality

o FOD 2660  mop N+ D' F)
6r ° oF 2myp* + mop~ (N + DI7P° P+
holds.
Then, for every
- 1-p~ p+ - 1-p~ P p
Ae (m()p (N+1) p +m1p+)r[ , mop (N+ 1) p min 94 ) 04
2 F(n) 2 F(6,)" 2F(64)
and for all
[ - AE@) - F©)
U €| 0, min ,

G, - G

p*
Gel > ]

e 0P - AF(B) RN+ DY) - ZAF(%&)
min )
2G*2

%(N + DIPOF - 2AF(6,)
2Go ’

the problem (1.1) has at least three nonnegative solutions w;, u,, and us satisfying

max |u(n)| < 6, max |u(n)| <
ne[1,N]z

max |us(n)| < 6,.
ne[1,N]z ne[L,N]

VA

o
p;/E ’

Finally, we provide the following simple consequence of Theorem 3.5 when u = 0.

Theorem 3.7. Let f: [1,N]z x R — R be continuous with tf(n,t) > 0 for all (n, t) € [1, N]z x (R\{0}).
Assume that
(Ag) we have

f(n, t) _

lim fin, O _ =0.

> = lim 2
t—0 |t|p -1 t—o0 |t|p -1
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Then, for every A > A, where

- - 1-p~ p+ pr Y —_n)p+
1= (M + m1p+)max inff " inf T inf ) , inf ) ,
2 n=1 F(l’lo, r]) 0<n<1 F(no, I’I) -1<n<0 F(Tlo, I’l) n<-1 F(no, T’[)

the problem (1.1), in the case u = 0, possesses at least four distinct nontrivial solutions.

Proof. Put
fn = [Fm 0 (L0 € [Nz x [0, c0),
’ 0 otherwise
and
- f(n’ _t) lf (n’ t) € [1’ N]Z X [O’ OO),
,t) =
L, 0 {0 otherwise,

and define

t
F(n,t) = If(n, &)dé  forevery (n,t) € [1, N]z x R.
0

Fix A > A, and let > 1 be such that
- 1-p~ p+
A> (—mop W+ m p+)7’7 )
2 Fl(”O) YI)
From

tim A6 0 A O
t—0 |tP 1 oo [P T

’

there is 6; > 0 such that
6f < min{nP*, 2(N + 1)P /2pP’}
and

YN F(n, 6) _ Mop (N + '
0F 2 ’

and there is 6, > 0 such that
+ _
max{n?, 4m—lp(N + )P Ipper < 6F
Mop~

and

YoiFi(n, 6) . Mop (N + )'¥
o 21 '

Then the condition (A¢) in Theorem 3.5 is satisfied, and

p+ - 1-p~ ) P
+ mlp*\ n ,mop (N+DP min{— 0 ,— 0} .
)Fl(nO) )’l) 2 anlFl(n, 61) anlFl(n, 64)

de (( mop (N + 1!
2
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Hence, the problem (1.1), in the case u = 0, admits two positive solutions u; and u,, which are positive
solutions. Next, arguing in the same way, from

lim 2060 _ i O g
t—0 |t|p -1 t—o00 |t|p -1

>

we ensure the existence of two positive solutions u; and u, for the problem (1.1), in the case y = 0. Clearly,
—u3 and -u, are negative solutions to the problem (1.1), in the case y =0, and the conclusion is
achieved. O

Remark 3.8. As is customary, difference schemes are used to approximate the solutions of differential
equations. The idea is to take N sufficiently large. But here, because of the term (N + 1)I"P, the intervals
that contain A and u then become smaller, obscuring the importance of our results. Example 3.3 for N = 4 is
an illustration of this fact.
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