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Abstract: In this article, a queueing inventory system with finite sources of demands, retrial demands,
service time, lead time, ( )s S, replenishment policy, and demands search from the orbit was studied. When
the lead time is exponentially distributed (resp. lead time is generally distributed), generalized stochastic
Petri net (GSPN) (resp. Markov regenerative stochastic Petri net [MRSPN]) is proposed for this inventory
system. The quantitative analysis of this stochastic Petri net model was obtained by continuous time
Markov chain for the GSPN model (resp. the supplementary variable method for the MRSPN model). The
probability distributions are obtained, witch allowed us to compute performance measures and the
expected cost rate of the studied system.
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1 Introduction

Stochastic management inventory systems have many practical applications and have been studied exten-
sively in the literature (see [1–4]). These systems play an important role in real-life situations (in manu-
facture, warehouse, supply chains, etc.). The complexity of stochastic inventory systems depends on
various characteristics:
• Single product inventory and multi-product inventory
• Sources (finite, infinite)
• Arrival demand (batch arrival, generally distributed, etc.)
• Service time and lead time (positive/instantaneous exponential/non-exponential, etc.)
• Ordering policies: ( )s S, , ( )s Q, , etc.
• Retrial, vacation, breakdown, etc.

The study of queueing inventory systems with retrial was initiated by Artalejo et al. [5]. The authors have
assumed Poisson demand, exponential retrial time, and exponential lead time. Retrial queueing inventory
models are characterized by the feature that a customer finding the level stock equal to zero is obliged to
join the orbit and to repeat his demand after some random periods of time [6]. In most of the works on retrial
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queueing systems, the authors assume that after completion of each service, the server will remain unoc-
cupied until the arrival of the next primary or secondary customer. In order to reduce the idle time of the
server, Neuts introduced the notion of search for customers, at a service completion epoch, in the queueing
systems [7]. Thus, the / /M G 1 queue with retrials and search for orbital customers was introduced by
Artalejo [8]. Other works in this area of research have been done in addition to the work of Artalejo (the
readers can refer to [9] and references therein). Krishnamoorthy et al. have studied an infinite inventory
system with retrial and orbital search [10]. Recently, continuous review infinite queueing inventory system
with customer search from the orbit and registration has been investigated by Gui and Wang [11].

In most works on the inventory systems, the authors assume that the population of demands is very
large. However, in several practical situations, the number of demands who access the system is finite
[2,12–15]. Thus, when a source is free at time moment t, it may generate primary demands during interval
( )+t t h, with probability ( )+λh h0 . In [2], a continuous review ( )s S, inventory system with retrial, service
facility, and finite sources of demands is analyzed.

Several research articles have dealt with the inventory systems with positive or zero service time/lead
time. Artalejo et al. studied the retrial inventory systems with immediate service [5]. The notion of inventory
model with positive service time was initiated by Sigman and Simchi-Levi [16]. Shajin and Krishnamoorthy
obtained the product-form solution for / /M M 1 retrial queueing inventory system with positive service time
[17]. An extensive survey on inventory systems with positive service time could be found in [18].

The lead time may actually be uncertain in duration due to variability in shipping times, material
availability, and supplier processing times. The inventory systems with instantaneous lead time were studied
by Liu and Yang [19], Berman and Sapna [20], etc. The previous works have extended to include exponential
lead time (see [5,21,22]). The inventory models with positive lead time are complex to analyze. Still more
complex are the models in which the lead time has a general distribution [23–25], the reason for which is that
there have not been significant studies on retrial inventory systems with arbitrary distributed lead time.

The applicability of Petri nets for stochastic analysis of inventory queueing system has received few
attention [15,26]. In [15], the authors have analyzed priority multi-server retrial inventory queues with Mar-
kovian arrival process generated by single or dual sources and exponential service times where both queueing
and orbit spaces are assumed finite using the generalized stochastic Petri net (GSPN) formalism. In [26], Chen
et al. studied a finite source inventory system using the batch deterministic and stochastic Petri nets (SPNs).

The dynamic [27] evolution of inventory systems proceeds from one discrete state to another at arbitrary
moments in time. The steady-state of stochastic inventory systems can be obtained either by discrete event
simulation or by stochastic process theory. Most works on quantitative evaluation of these systems have
addressed models with exponentially distributed durations, which always satisfy the Markov property. In
this case, the underlying stochastic process of the model is a continuous time Markov chain (CTMC), and
standard numerical algorithms can be used to compute the state probabilities. From these systems, the
interesting performance measures of the system can then be derived. For multi-dimensional Markov chains
underlying to the inventory systems, an appropriate numbering of the states yields a repetitive structure
infinitesimal generator matrix, which can be formulated as birth-and-death process, quasi-birth-and-death
process [28,29], / /M G 1-type, etc. This repetitive structure of the infinitesimal generator matrix allows the
calculation of the state probabilities by approaches known as the matrix-geometric method, matrix analytic
method [30], etc.

However, in several application contexts, the inventory systems are characterized by deterministic
timers or non-exponential durations (e.g., arrival pattern, the service pattern of servers, lead time, and
lifetime). In this case, the underlying stochastic process of these systems falls in more complex classes of
the so-called non-Markovian processes but solution may still be viable if the model satisfies the Markov
property at specific times (regeneration points). The traditional approaches to solve non-Markovian models
use phase-type expansions, apply the method of supplementary variables [31], or construct an embedded
Markov chain [32]. The supplementary variable method is known to be originated by Cox [33] and has
become one of the most frequently used approaches for both the continuous and discrete-time queuing
systems. The framework of this method in stochastic models leads to the notion of the partial differential
equations, ordinary differential equations, and integral equations [34]. The supplementary variable method
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is known as an efficient way of deriving the steady-state solution for the stochastic process underlying a
Markov regenerative stochastic Petri net (MRSPN) formalism [31].

This article is an extension of the work [35] presented in the conference “IEEE International Conference
on Recent Advances in Mathematics and Informatics (ICRAMI’2021),” where we have presented an
approach for modeling and analyzing the inventory system with finite sources of demands, retrial demands,
positive service time, exponential lead time, ( )s S, replenishment policy, and demand search from the orbit.
Immediately after a service completion, the server with probability p makes an instantaneous search for an
orbital demand for the next service or remains idle with the complimentary probability ( )− p1 . The notion
of orbital search for inventory system was introduced with the hope that it would decrease the length of
server idle period and not neglected the unsatisfied (orbital) demands. We gave an extensive analysis of this
system using GSPN formalism. This high-level modeling formalism allows us to generate the underlying
diagram state and the CTMC of the studied system. However, the state space of CTMC underlying our GSPN
increases exponentially as a function of the source size, the maximum inventory level, and the inventory
level threshold. So, for real applications, the models may have a very large state space (state space explo-
sion). Hence, by exploiting the repetitive structure of the transition rate matrix of our GSPN, we develop a
recursive algorithm for automatically calculating the steady-state probability vector and the performance
indices, without generating the reachability graph or the CTMC.

In this extendedwork, we added some numerical results to original work [35] in order to highly illustrate the
influence of the system parameters on some performance characteristics. Numerically, we investigate the
sensitivity analysis of the search probability, the maximum inventory level, the inventory level thresholds,
and the number of sources over the total expected cost rate. Most of the aforementioned works assume that
the lead time is instantaneous or exponentially distributed. However, this basic lead time assumption is far from
the real situation. For this, we assume that the lead time is generally distributed. So the underlying process
to the inventory system considered is a Markov regenerative process. Under this assumption, we suggested to
use the MRSPN formalism in order to establish the appropriate model for our system. This formalism allows us
to capture easily the interaction between the components of this system, to better understand its behavior, to
generate its underlying diagram state, and to compute its performances. To obtain the quantitative analysis of
this MRSPN model, we used the supplementary variable method. In addition, we established an algorithm that
comprises steady-state solution and computes performance measures. The numerical results for performance
measures and the total expected cost rate are presented under the assumption that the lead time follows the
following family of distributions: exponential, Erlang, hypoexponential, and hyperexponential.

2 SPNs

SPNs are defined by associating a random variable called firing time for transitions [36]. A random firing
time elapses after a transition is enabled until it fires. Many stochastic variants of SPN have been proposed,
which can be used as high-modeling formalism for performances evaluation and reliability of systems, like
GSPN [37], deterministic and SPNs, MRSPN [38]. According to the type of distribution allowed for the firing
time, the SPN may correspond to a wide range of stochastic processes.

The GSPN class contains two types of transitions: immediate transitions and exponential transitions.
The marking process �( ) ≥t t 0 generated by the GSPN class is a semi-Markovian process; this process
includes two types of markings: tangible markings and vanishing markings. The quantitative analysis of
the GSPN can be summarized as follows:
• Generating the reachability graph of the GSPN,
• Eliminating the vanishing markings in order to obtain the reduced reachability graph,
• Converting the reduced reachability graph to CTMC with state space H (set of tangible markings),
• Constructing the transition rate matrix A of the CTMC,
• Computing the steady-state probability vector v of the CTMC by solving the linear system of balance
equations:
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where e is a column vector of 1’s of appropriate dimension and 0 is a vector of zeros of appropriate
dimension.

• Computing the characteristics of the GSPN model (mean number of customers in places, throughput of
transitions, probability of event, etc.).

The MRSPN class is an extension of SPNs in which the transition firing time is immediate, exponentially
distributed, or generally distributed. This MRSPN class describes a stochastic process �( ) ≥t t 0, and this
marking process cannot be mapped into a CTMC. Since the stochastic behavior of timed transitions with
non-exponentially distributed firing delay is not memoryless, the evolution of the underlying stochastic
process depends on the history. The inclusion of supplementary variable into the state description leads to a
continuous-state Markov process for which the Kolmogorov-state equations can be derived and be numeri-
cally solved. This variable represents the time elapsed since the GEN transition was enabled. The marking
process �( ) ≥t t 0 is described by three matrices A, A, and Δ, where:
• The generator matrix A contains all exponentially distributed-state transitions that do not preempt a GEN
transition.

• The exponential-state transitions that preempt a GEN transition are denoted by the generator matrix A.
• The probability that the firing of a GEN transition leads to state “j,” given that the transition is fired in
state i, is represented by the matrix of branching probabilities Δ.

The steady-state solution based on the supplementary variable method of the MRSPN is obtained by the
following steps:
• Step 01. Obtain the two matrices Ω and Ψ:
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where ( )F xGEN is the firing time distribution of the GEN transition g ,G denotes the set of all GEN transitions
of the MRSPN, AGEN is the generator matrix of the subordinated CTMC of the GEN transition g , I GEN is the
diagonal matrix whose ith element is equal to one if ∈i G and equal to zero otherwise.

• Step 02. Compute the vector x by solving the linear system:
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=
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0
e

,
1,

where, = + + −S IA Δ AΩ ΨEXP GEN is the generator matrix of a CTMC, we refer to it as the embedded CTMC,
= +L I ΨEXP is the conversionmatrix, IEXP is the diagonal matrix whose ith element is equal to one if the state

i is exponential and equal to zero otherwise and AEXP filtered matrix is defined by: = IA AEXP EXP .
• Step 03. Compute the steady-state probability distributions v of the MRSPN by the formula:

=v xL.

3 The proposed GSPN model

We consider a continuous review inventory system with finite sources of demands ( )≤ < ∞N2 , retrial
demands, positive service time, positive lead time, ( )s S, replenishment policy, and demand search from the
orbit. The following assumptions and notations are considered:
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• The arrival process of primary demands is quasi-random with parameter ( )>λ 0 .
• The maximum inventory level is S units. The policy used is ( )s S, , in which an order is placed for a
quantity (“ = − > +Q S s s 1”) units up to S whenever the inventory level falls to the threshold s or below.

• The lead time distribution is exponential with parameter ( )>α 0 .
• When the inventory level is zero or the server is occupied, any arriving primary demand joins a virtual
room called orbit. These orbiting demands compete for their demands according to an exponential
distribution with parameter ( )>γ 0 . We consider the constant retrial policy (i.e., the retrial rate is inde-
pendent of the number of customers in the orbit).

• Immediately after a service completion, the server takes a demand from the orbit with probability p, when
there are demands in the orbit and the stock is not empty, and with probability ( )− p1 , the server
remains idle.

• We suppose that the service time following exponential distribution with rate ( )>μ 0 and the search time is
negligible.

The GSPN describing this system is given in Figure 1.
Our model contains six places pi, =i 1, 6 (noted by circles) and nine transitions ti, =i 1, 9. The white

rectangular boxes represent the exponential transitions (t1, t3, t7, and t9), and the thin bars represent the
immediate transitions (t2, t4, t5, t6, and t8). The interpretation of the places and transitions of our model is
explained in Table 1.

The markings (ordinary states) of our GSPN are given by:

( )= # # # # # #M p p p p p p, , , , , ,i 1 2 3 4 5 6

and its initial marking is ( )=M N S, 0, 0, , 0, 00 . According to the equation “# + # + # =p p p N1 3 6 ,” we
deduce that the vectors (micro-states) ( )= # # #M p p p, ,i 3 4 6 provide all information needed for states
description of this GSPN model. So, the state space of this GSPN is defined as:

{( ) } {( ) }

{( ) } {( ) }

= = … ∪ = … = … −

∪ ≠ = … = … − ∪ = …

H k k N j k j S k N
j k j Q j S k N Q k k N
0, 0, , 0, , 1, , , 1, , , 0, , 1

0, , , , 1, , , 0, , 1 0, , , 0, , ,

and the total number of its states is equal to “ ( )+ +N S2 1 2.”

Figure 1: GSPN model of the inventory system with finite sources of demands, retrial demands, service time, lead time, and
demand search from the orbit.
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The marking process �( ) ≥t t 0 underlying the GSPN depicted in Figure 1 is isomorphic to a three-
dimensional CTMC that expresses server status (# =p 03 if the server is idle and # =p 13 if the server is
busy), #p4 the number of demands in the orbit, and #p6 the inventory level. We arranged the state space of
this CTMC as:

{ }= …j S00 1j 0j, , , 1, , ,

where = ≪ ≫ = …k k N00 00 , 0, , , = ≪ ≫ = … = … −jk j S k N1j 1 , 1, , , 0, , 1, = ≪ ≫ = … =jk j S k0j 0 , 1, , ,
… −N0, , 1, = ≪ ≫ = …Qk k N0Q 0 , 0, , .
The infinitesimal generator A can be expressed in the block form:

where

Table 1: Interpretation of the places and the transitions in the GSPN model

p1 Contains the free sources

p2 Contains the primary or repeated demands

p3 Contains the demand in service

p4 Represents the level stock

p5 Represents the service completion

p6 Represents the orbit

t1 Represents the arrival of the primary demands
t2 Represents the access to the service
t3 Represents the service of demand
t4, t5, and t6 Represent the feedback to the sources
t7 Represents the lead time
t8 Represents the access to the orbit
t9 Represents the repeated demands
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0, otherwise.
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0, otherwise.
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0, otherwise.
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0, otherwise.
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0, otherwise.
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The dimensions of the entries (sub-matrices) of A are given in Table 2.

4 The steady-state solution

The GSPNmodel given in Figure 1 is bounded and admits the initial marking M0 as home state. Then, the steady-
state probability distribution = ≪ ≫v v i j k, , of this GSPN exists and is unique. The elements ≪ ≫v i j k, , are given by:

( ( ) ( ) ( ) ∣ ( ) ( ) ( ) )= # = # = # = # = # = # =≪ ≫

→+∞
v p t i p t j p t k p i p j p klim , , 0 , 0 , 0 .i j k

t
, ,

3 4 6 3 0 4 0 6 0

Using the block-structured matrix A, the vector v can be represented by:

( )= = …v v v v j S, , , 1, , ,00 1j 0j

where

( )

( )

( )

( )

= = …

= = … = … −

= ≠ = … = … −

= = …
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≪ ≫

≪ ≫

≪ ≫

v v k N
v v j S k N
v v j Q j S k N

v v k N

, 0, , ,
, 1, , , 0, , 1,
, , 1, , , 0, , 1,
, 0, , .

k

jk

jk

Qk

00

1j

0j

0Q

00

1

0

0

Table 2: Dimension of sub-matrices of A

A N N0 1, 1( )+ + B N N0 , 1( )+ A N N1 ,( ) D N N,( ) E N N,( ) A N N2 ,( ) B N N,( )

A N N3 ,( ) A N N4 ,( ) DQ N N1,( )+ CQ N N1, 1( )+ + AQ N N1, 1( )+ + BQ N N, 1( )+ C N N,( )
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The linear system =vA 0 yields the following global balance equations:
•
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The aforementioned global balance equations (except the first equation in (1) for = +j s 1) can be recur-
sively solved to obtain
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And I is an identity matrix.
The vector v0S can be obtained by solving the two equations:
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5 The proposed MRSPN model

In this section, we consider that the lead time is of general distribution with cumulative distribution
function ( )F xGEN . Thus, the suggested model is depicted in Figure 2. The black rectangular box represents
the general transition t7 of lead time.

The matrix A is given by:

Figure 2: MRSPN model of the inventory system with finite sources of demands, retrial demands, service time, lead time and
demand search from the orbit.
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The othermatrices: A3, A4, AQ, B, B0, BQ, D, DQ, and E are the same to those obtained for the previous GSPNmodel.

The matrix of branching probabilities Δ is given by:
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The matrix A is a zero matrix (i.e., there is not an exponential-state transition that preempts a GEN
transition t7).

6 Performance indices

The performance measures of our inventory systems and the total expected cost rate in the steady-state can
be defined as follows:
• The mean inventory level, nl,
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• The expected reorder level, nr,
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• The probability that server is busy, nB,
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• The effective search rate, nES,
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• The expected number of successful retrials, nESR,
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• The probability that inventory level is zero, p0,
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N
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• The probability that inventory level is greater than s, ps,
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• The mean generation of primary calls, λe,
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• The mean waiting time, ω,

=ω n
λ

.o

e

• The mean response time, ϖ,
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• The total expected cost rate TC in the steady-state is given by:
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where Ch, Cs, and Cw are, respectively, the inventory carrying cost per unit item per unit time, setup cost
per order, and the waiting cost for an orbiting demand per unit time.

7 Numerical application

We construct two programs based on the formulas obtained in previous sections in order to compute
numerically the probability distributions of the two models (GSPN and MRSPN). We show the influence
of the system parameters on the system performance measures and the total expected cost rate. The
numerical results for:
▸ the GSPN model are given in Tables 3–5 and illustrated in Figures 3–6.
▸ the MRSPN model is given in Table 6.

Table 3 presents the effect of search probability p on various performance measures for =λ 0.8, =μ 1,
=γ 0.25, =α 0.6, =N 10, =S 9, =s 3, =C 1h , =C 5s , and =C 3w . Table 3 shows that an increase in the

search probability p makes an increase in measures such as expected reorder level nr, probability that
server is busy nb, effective search rate nES, probability that inventory level is zero p0, mean generation of
primary calls λe; however, mean inventory level nl, expected number of customer in the orbit no, expected
number of successful retrial nESR, probability that inventory level is greater than s, ps, mean waiting time ω,
mean response time ϖ, and total expected cost rate TC decrease. In Tables 4 and 5, the total expected cost
rateTC for various combinations of maximum inventory level S, level stock s, the search probability p, and
the number of sources N are given. In Table 4, the numerical values show thatTC is a convex function in S
and s and the minimum occurs at ( ) ( )=s S, 6, 22 , which equals to 230.0767. We observe that TC is a
decreasing function on p.

From Table 5, we observe that TC is an increasing function on N . Also, it may be observed that TC is
more sensitive to changes in N than to changes in S and s. Figures 3 and 4 show the influence of arrival rate
λ, retrial rate γ, and the search probability p on the mean response time ϖ. We note that the mean response
time ϖ of the inventory system with orbital search mechanism is maximum. The location and the amplitude
of this maximum depend on the retrial rate γ and the search probability p. For higher values of the search
probability p or lower values of retrial rate γ, the maximum becomes less dominant. The arrival rate λ has a
significant influence on the mean response time when the retrial rate and the search probability p are weak.
The effect of the generation of primary demands λ and the retrial rate γ on the total expected cost rateTC is
shown in Figure 5. It shows thatTC increases when λ increases andTC decreases when γ increases. Figure 6
shows the influence of the lead time rate α and the service time rate μ on the total expected cost rateTC. We
observe thatTC decreases when the mean lead time rate α increases. Table 6 the numerical results obtained
by using the supplementary variables method to analyze the MRSPN that models the inventory system
considered are given. It presents numerical results when the lead time follows different distributions,
namely, exponential ( )Exp μ , Erlang ( )E μ2 , Hypoexponential ( )μ μHypo ;2 1 2 , and hyperexponential

( )H q μ μ; ;2 1 2 , assuming that the expected lead time of these distributions has the same value = 2, 5μ
1 .

This table shows that there is a difference in the values of the performance indices between exponential
and non-exponential distributed cases. Note that Erlang distributed lead time gives the lowestTC (resp. no),
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Table 3: Effect of search probability p on selected performance measures for GSPN that models our inventory system for
λ 0.8= , μ 1= , γ 0.25= , α 0.6= , N 10= , S 9= , s 3= , C 1h = , C 5s = , and C 3w =

Measures p 0= 10−2 0.2 0.5 0.7 0.9 1

nl 5.6070 5.6017 5.4962 5.3145 5.1850 5.0507 4.9824
no 8.8107 8.8040 8.6721 8.4471 8.2875 8.1220 8.0374
nr 0.0881 0.0886 0.0984 0.1150 0.1269 0.1391 0.1454
nB 0.5286 0.5316 0.5902 0.6902 0.7611 0.8347 0.8723
nES 0.0000 0.0052 0.1159 0.3361 0.5158 0.7228 0.8368
nESR 0.1151 0.1143 0.0981 0.0699 0.0496 0.0282 0.0171
p0 0.0110 0.0112 0.0174 0.0301 0.0405 0.0525 0.0592

ps 0.8532 0.8523 0.8361 0.8083 0.7886 0.7681 0.7577

λe 0.5286 0.5316 0.5902 0.6902 0.7611 0.8347 0.8723
ω 16.6687 16.5628 14.6941 12.2391 10.8889 9.7305 9.2144
ϖ 17.6687 17.5628 15.6941 13.2391 11.8889 10.7305 10.2144
TC 32.4796 32.4567 32.0043 31.2309 30.6818 30.1122 29.8214

Table 4: Effect of maximum inventory level S, inventory level s, and search probability p on the total expected cost rate TC for
λ 1.5= , μ 5= , γ 0.2= , α 2= , N 14= , C 1h = , C 25s = , and C 20w =

p S s/ 2 3 4 5 6 7 8

0.2 20 261.7116 261.4102 261.6048 262.0612 262.6660 263.3668 264.1426
21 262.0044 261.7159 261.9072 262.3490 262.9300 263.5980 264.3312
22 262.3169 262.0416 262.2313 262.6616 263.2234 263.8651 264.5642
23 262.6465 262.3844 262.5738 262.9949 263.5410 264.1613 264.8329
24 262.9910 262.7418 262.9319 263.3457 263.8789 264.4814 265.1304
25 263.3485 263.1119 263.3033 263.7114 264.2338 264.8215 265.4518

0.5 20 248.9849 247.7635 247.2975 247.3271 247.6887 248.2841 249.0591
21 249.0862 247.8965 247.4416 247.4638 247.8013 248.3563 249.0732
22 249.2240 248.0661 247.6239 247.6423 247.9617 248.4851 249.1565
23 249.3934 248.2670 247.8386 247.8559 248.1615 248.6599 249.2951
24 249.5905 248.4949 248.0808 248.0989 248.3943 248.8728 249.4787
25 249.8120 248.7463 248.3469 248.3672 248.6549 249.1173 249.6994

0.8 20 234.3789 232.2309 230.9601 230.3532 230.2514 230.5429 231.1547
21 234.2088 232.1021 230.8539 230.2486 230.1263 230.3738 230.9153
22 234.0975 232.0336 230.8107 230.2117 230.0767 230.2918 230.7797
23 234.0375 232.0170 230.8210 230.2319 230.0897 230.2809 230.7275
24 234.0225 232.0456 230.8772 230.3004 230.1552 230.3288 230.7432
25 234.0474 232.1136 230.9737 230.4103 230.2651 230.4259 230.8152

Table 5: Effect of the number of source N and maximum inventory level S on the total expected cost rate TC for λ 1.2= , μ 4= ,
γ 0.5= , α 1.8= , p 0.8= , s 4= , C 0.5h = , C 9s = , and C 13w =

S N/ 6 7 8 9 10 11 12

16 41.2537 53.4579 66.1565 79.0579 92.0295 105.0223 118.0206
17 41.1877 53.3705 66.0591 78.9565 91.9268 104.9192 117.9174
18 41.1654 53.3295 66.0093 78.9031 91.8723 104.8643 117.8624
19 41.1782 53.3260 65.9979 78.8886 91.8567 104.8484 117.8464
20 41.2198 53.3530 66.0180 78.9059 91.8730 104.8644 117.8624
21 41.2851 53.4054 66.0642 78.9496 91.9158 104.9070 117.9049
21 41.3704 53.4791 66.1323 79.0155 91.9809 104.9718 117.9696
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whereas hyperexponential distribution gives the highest value. Thus, the hyperexponential distributed lead
time is the pessimistic since it overestimates the cost rateTC. In this case, the approximation of our MRSPN
model by the GSPN model one, it causes little loss in terms of cost. So, under this situation, the GSPNmodel

Figure 3: Effect of arrival rate λ and the search probability p on the mean response timeϖ; N 12= , S 15= , s 5= , λ 0.1,…, 1.5= ,
μ 1.2= , γ 0.15= , α 1= , and p 0,…, 1= .

Figure 4: Effect of arrival rate λ and the retrial rate γ on the mean response time ϖ; N 16= , S 14= , s 6= , λ 0.15,…, 3= , μ 2= ,
γ 0.15,…, 1.5= , α 1= , and p 0.4= .
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is valid to estimate the cost rate TC of our inventory system. Also, we observe that, with exponentially
distributed lead time, TC (resp. no) lies in between that of Erlang and hyperexponential cases. In addition,
the mean waiting time ω is low when the lead time follows the Erlang distribution and it is high when the
lead time follows the hyperexponential distribution.

Figure 5: Effect of arrival rate λ and the retrial rate γ on the total expected cost rate TC ; N 20= , S 25= , s 8= , λ 1,…, 5= ,
μ 3.5= , γ 0.1,…, 2= , α 2= , p 0.3= , C 2.8h = , C 10s = , and C 17w = .

Figure 6: Effect of the replenishment rateα and the service time rate μ on the total expected cost rateTC ;N 18= , S 25= , s 10= ,
λ 1.5= , μ 1,…, 6= , γ 0.5= , α 0.5,…, 4= , p 0.6= , C 0.2h = , C 7s = , and C 16w = .
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8 Conclusion

In this article, the queueing inventory model with finite sources of demands, ( )s S; replenishment policy,
service time, retrials demands, lead time, and demand search from the orbit has been studied by the SPNs
formalism. We analyze this inventory system for two different lead time scenarios: exponential and non-
exponential. On the one hand, when the lead time is exponentially distributed, the GSPNmodel is proposed
for this inventory system and the probability distribution obtained by using the CTMC. On the other hand,
when the lead time is generally distributed, the MRSPNmodel is proposed for this inventory system and the
probability distribution is obtained by the supplementary variable method. Both extensions GSPN and
MRSPN gave us a graphical representation, which allowed us to generate the diagram states and to
calculate the performance indices and the total expected cost rate of the inventory systems studied.
Furthermore, numerical results are established in order to see the influence of the system parameters on
some performance characteristics and to highlight the convexity of the total expected cost rate.

This work could be extended in different directions. One among these is the introduction of arbitrarily
distributed research time. It is also interesting to study this inventory system when the lead time distribu-
tion is unknown. The kernel method is used to estimate the distribution of the lead time from real data.
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