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Abstract: In the current manuscript, we combine the g-fractional integral operator and g-fractional derivative
to investigate a coupled hybrid fractional g-differential systems with sequential fractional g-derivatives.
The existence and uniqueness of solutions for the proposed system are established by means of Leray-
Schauder’s alternative and the Banach contraction principle. Furthermore, the Ulam-Hyers and Ulam-
Hyers-Rassias stability results are discussed. Finally, two illustrative examples are given to highlight the
theoretical findings.
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1 Introduction and preliminaries

In recent years, the fractional differential equations have been applied in various areas of engineering,
mathematics, physics, and other applied sciences because of their ability to describe memory effects (see,
e.g., [1-3]).

The discrete versions of continuous-type problems in science can be made from the point of view of the
so-called g-calculus. The Caputo g-fractional derivative has been introduced on the base of the fractional
g-integral and fractional g-derivative, always with the lower limit of integration equal to 0. However, in
some considerations, such as solving g-differential equation of fractional order with initial values at a
nonzero point, it is of interest to allow that the lower limit of integration is variable. Recently, many
researchers got much interested in looking at fractional g-differential equations as new model equations
for many physical problems. For example, some researchers obtained g-analogue of the integral and
differential fractional operators properties, such as the g-Laplace transform, g-Taylor’s formula, and
q-Mittage-Leffler function. For some fundamental results in the theory of fractional calculus and fractional
differential equations, see, e.g., [4—-9]. In addition, many scholars have paid much attention to the frac-
tional quantum calculus, which has lots of applications in different areas of mathematics, such as
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combinatorics, number theory, basic hypergeometric functions, and other sciences. Recently, considerable
attention has been given to the existence and stability of solutions for differential equations and systems
with fractional quantum calculus. For more details, we refer the reader to the monographs [10-12] and the
references cited therein. Hybrid differential equations have been the object of many researchers, see
[13-15]. The hybrid differential equation of first order

d_ &G

dt(qb(g, $(c))) Y5, (), ¢e€l0,T],

5(%) = 50 €R,

was studied in [16] under the hypotheses that the functions ¢ € C([0, T] x R, R\{0}) and ¢ € C([0, T] x R, R).
The hybrid differential equations with fractional derivative have been addressed extensively by several researchers,
for which the reader can consult [17-20] and the references cited therein. On the other hand, several papers
including the hybrid differential equations with fractional g-derivative have been raised, for example [21-23] and
the references therein. In [21], Ahmad and Ntouyas studied the existence of solutions for the fractional hybrid g-
differential equation as follows:

0 &) = 0,1,1<6<2,0 1
q((l)(c’ s(g)) ltb(C’ 5(9));C (S [ s ]’ < <2, <g<1,

§(0)=0, §@)=0,

where CDZ is the Caputo fractional g-derivative of order § and the functions ¢ € C([0, 1] x R, R\{0}), and
Y € C([0, 1] x R, R). In [22], the author studied the existence, uniqueness, and Ulam-Hyers-Rassias stabi-
lity for a class of hybrid Caputo fractional g-differential pantograph equations described as follows:

°Df| — ()
> s £, E(A))

£(5)
k
Y. 815, £(9), A9

k
= Y0l £6), £016), D]
i=1

§(0) + ¥(§) = 6. &y € R,

where0 < q,6 < 1,0 < A, u <1, CD,? is the Caputo fractional g-derivative, ¢ € [0, T], ¢, € C(J x R2, R - {0}),
and @, € CJ x R*,R),i=1,..., k, k € N*. Samei and Ranjbar [23] discussed the existence and uniqueness of
solutions for the fractional hybrid g-differential inclusions with the boundary conditions of the form

eps £
N @6, £(6), 106 (6), 1% (), .., IfE(5))

€ @5, £(¢), IJEQ), IPE(S), ....I"é(5)), ¢ € [0, 1],

£(0) = 'fo’ HOE 51’ fo’ ‘51 €R,

where 1< 6§ <2,q € (0,1), I,f denotes the Riemann-Liouville-type g-integral of order 8 > 0, f € {a;, yj},
i=1..,nj=1...,mnmeN, CDS denotes Caputo-type g-derivative of order 8, ¢ : [0, 1] x R" — (0, c0)
is continuous, and ¢ : [0, 1] x R™ — P(R) is a multifunction. Recently, sequential hybrid fractional differential
equations have also been studied by several scholars, see, e.g., [24—27] and the references cited therein. In [24],
the authors considered the fractional sequential type of the hybrid differential equation

50 - 5 s 00
Y(s, §(5)

a f(o) +b ‘f({) =c, CDyé'(O) — O,
(6, §(6)  P(s, &(5))

= ¢(¢, (), 1%6(¢)), ¢ € [0, T,
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where 0 < 8,y <1,1< 6§ + y < 2, IF is the Riemann-Liouville fractional integral of order 8 > 0, 8 € {a, y;},
¢, € C([0,T] xR,R),i=1,2,...,k,p € C([0, T] x R, R\{0}),and ¢ € C([0, T] x R%,R) and a, b, c are real
constants with a + b # 0. The existence and uniqueness results were obtained by applying a generalization
of Krasnoselskii’s fixed point theorem. In [25], the authors studied the existence, uniqueness, and stability
analysis for a class of sequential hybrid fractional differential equations described as follows:

cps| DG - T M5, £, DT (6)
Y5, £(), D e ()

= (s, §(¢), 1%6(5)), ¢ € [0, 1],
DY&(0) = 0, £(0) = g(£(e)), £(1) = g,(&(e)),

where0 < §<1,1<y<2,0<e<1, I# is the Riemann-Liouville fractional integral of order B>0,B¢€{a A},
the functions ¥ : [0, 1] x R? - R\{0}, ¢, : [0,1] xR - R,i=1,2,...,k, and ¢ € C([0, 1] x R%, R) satisfy
the Carathéodory conditions, the boundary functions g, g, : R — R are non linear, and R represents the set
of real numbers. To the best of our knowledge, there is no article discussing the coupled system of fractional
hybrid g-differential equations in the literature. The objective of this article is to study the sequential coupled
system of fractional hybrid g-differential equations of the following form:

cpéif cpér L] . | -
q[ q(¢1(c, x(5), v(5)) (5, k(6), v(§)), ¢ € [0, 1]

{epsfepe, v(¢) ) . celo. 1], 1)
q[ p ( ROR0) (6, k(§), v($)), 6 € [0, 1]
k(0) =x(1) =0, v(0)=v(1)=0,

0<g<1l, 0<6;,6;<1, i=1,2,

where CD,‘; is the Caputo fractional g-derivative of order &, where a € {§;, 6;}, ¢, : [0, 1] x R*? > R - {0} and
¥, : [0,1] x R? > R, i =1, 2are continuous functions. The operator CD;‘ is the fractional g-derivative in the
sense of the Caputo, which is define as follows:

CD;‘v(c;) = I;7°Djv(¢), a>0,
DYv(¢) = v(¢),

where n is the smallest integer greater than or equal to a. The fractional g-integral of the Riemann-Liouville-
type [28-30] is given as follows:

1
[y()

v(g) = v(s),

Iv(g) =

G
j(g‘ - gs)@ Vy(s)dgs, a > 0,
0

where the g-gamma function is defined by I,(a) = ((11__‘1;;2:1), a € R\{0, -1, -2, ...} and satisfies

L+ 1) = [T, la, = %, aeR.

We need the following essential lemmas.

Lemma 1. [31] For a, B > 0 and the function v defined in [0, 1], the following formulas hold:

IEIPv(¢) = IF*Pv(¢) and DITSv(6) = v(s).
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Lemma 2. [31] Let a € R,. Then, the following equality holds:

o-1

anpa _ _ Cj J
IZDAV(s) = v(5) IZO e 1)qu(0)-

Lemma 3. [31] Fora € R, and 8 > -1, we have

LB+

_ y)a+pB)
T+ p+ s =0

(s - x)®] =
Furthermore, the following auxiliary result is crucial.

Lemma 4. Fori = 1, 2, let ¢, € C([0, 1] x R, R - {0}) and ¢, € C([0, 1], R). Then, the solution of the problem

cpdl cpbs L) i | .
q( ! (‘f’l(s", k(¢), v(c)) ,(c), ¢ €[0,1]

| L) = 9(6): 6 € 10,11, @
q( ! (‘1’2(9 x(¢g), v(c)) 0,(6), ¢ €[0,1]

k(0) = k(1) = 0, v(0) = v(1) = O,
0<g<1l 0<é6;,6,<1, i=1,2,

is given as follows:

¢ o, L
() = PRI [ - goyomarng o - HEILTD (1 - goyomap(sias ®
qg\U1 1 o qg\U1 1 o
and
¢ 9, |
) = PESS [(6 g g - PEIDI [0 -, @
0 0

Proof. Applying the Riemann-Liouville fractional g-integral operators Igl and Igz on both sides of equations
in (2) and using Lemma 2, we obtain

CD91 L) — 151 ,CDGZ(L) _ 162 ; 4 ’ 5
’ [¢1(c, EERYE)) R PYOIERTE)) A ©

where ¢, d; € R. Next, applying the Riemann-Liouville fractional g-integral operator Igl and Igz on both
sides and using Lemma 2, we obtain

_ 8146, a 6,
k(6) = (s, (1), V(c))[Iq o6 + O l)c + Cz], (6)
o, d
V(C) = ¢2(C: K(C)a V(C))I:Igz o ‘Pz((;) + I}I(Tl-l—l)cgz + dz], (7)

where ¢, d, € R. Now, using the conditions x(0) = k(1) = 0 and v(0) = v(1) = 0, we can obtain

a=-Ty6, + DI (1), =0,

6,+6 (8)
dy = -T(6, + DIZ*p,(1), dr=0.

Substituting the values of ¢;, d;, i = 1, 2 in (6) and (7), we obtain (3) and (4).
Conversely, applying the operators CDgl and CDgZ on (3) and (4), respectively, it follows that
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T, (01 + 1)
CDGI( K(C) ): 151 ( ) _ q 151+91 (1)’
N o xevien) 7 T P o
cno V(C) ) I‘q(62 + 1) 8,46
D ———— | =, (¢) - ————I12"*%¢(1).
d (qbz(c, x(<), V(c))) G TR
Next, applying the operators CD,fl and CDgZ, we obtain
cnél| cne k(¢) cnd| e v(5)
D3| Do ————— || = (), DYDY ———2—— || = 9,5 (10)
“ ( “ (qbl(c, x(6), v(§)) )) wied T ( d (¢2<c, k() vy )| ~ ¢
From (3) and (4), it is easy to verify that the boundary conditions x(0) = k(1) = 0 and v(0) = v(1) = O are
satisfied. This establishes the equivalence between (2) and (3)-(4). This completes the proof. O

The rest of the article is organized as follows. In Section 2, we establish sufficient conditions for the
existence and uniqueness of solutions for the main system. The stability of solutions is discussed in Section
4. We present numerical examples to illustrate and validate the effectiveness of the main results in
Section 5.

2 Existence and uniqueness results

Theorem 5. Let us now define the space
WxZ={(x,v):x,veC(0,1],R)},
endowed with the norm ||(x, V)|lwxz = ||x|| + ||[vl|, where
lIxll = sup{lx(5)| : ¢ € [0, 1]} and ||[v|| = sup{|v(¢)| : ¢ € [O, 1]}.

It is clear that (W x Z, ||.|lwxz) is a Banach space.

In view of Lemma 4, we can define operator T : W x Z — W x Z as follows:

T(x, v)(§) = (Ti(x, v)(5), Tk, v)(5)), (11)
where
¢
~ (6, k(6), v(s)) L NGi6D)
Ti(x, V)(C)_—rq(61+ N !(c qs) Y,(¢, k(5), v(¢))dys
(5. K(6), V(OGP | "
_ T > _ (61+61-1)
o !(l g5)® 0 (6, K(6), V(§))ds
and
¢
_ ¢2(C’ K(g)! V(C)) _ (52+92_1)
T, ) = PSS !(c 45)® 0D (g, K(), V(§))dys
(13)

(s, k(6), v(6))s*
I4(6> + 62)

1
J(l - gs) 09Dy (¢, k(¢), v(5))dys.
0

We impose the following hypotheses:
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(H1) ¥, :[0,1] x R? - R are continuous functions and there exist constants 7, > 0 such that for all ¢ € J
andx;, vieR, i=1,2,

[P,(s, 1, vi) — P,(6, 1o, vl < my(J1a — | + [vi — va)),
[,(6, K1, vi) = ¥,(6, 12, v < My([Ka = Kol + [vi = V).

(H2) ¢,:[0,1] x R> > R - {0} are continuous functions and there exist positive constants A;, i = 1, 2, such
that forall¢ e Jand x,v € R,

|¢1(C, K, V)l < AI’ |¢2(€’ K, V)| < AZ'

In the following, we present the existence and uniqueness of solutions of problem (1) using Banach’s
fixed point theorem.
Theorem 6. Assume that (H;) and (H,) hold and that

Mgy < 1 Ao, <

1
61+60:+1) 4 T 6,+6,+1) 4’ (1)

where M; = supcejo,11|Y;(¢, 0, 0)| < co, i =1, 2. Then, the problem (1) has a unique solution on [0, 1].

Proof. Define the set B; = {(kx,v) € W x Z : ||(x, V)|lwxz < 0}, whereo € R satisfies the following inequality:

2MM; 2MM)
I,(61+61+1 T,(6,+6,+1
max 261+ 61 +1) ’ 482+ 02+1) <o.
My on,

1 1
4T T+ 0,+1) 4 T6+0,+10)
We first show that TB, c B,. For all ¢ € J and (k, v) € B,, we have

[P,(s, k(6), v(eDI < [Py (s, k(5), v(5)) — (s, 0, )] + [¥h,(g, O, 0)|
<k ()l + [v(e)D) + M (15)
<n(llxll + lIvID) + My < no + My

and

[15(s, k(5), v(ENI < [1h,(g, x(6), v(§)) — P,(s, 0, 0)] + [1h,(g, O, 0)|
< ([k(§)] + V(D) + M, (16)
<ny(llxll + VD) + M, < n,0 + M,.

By (15), we obtain

ITiC, v)(§) < Ay sUp § ————— j(c gs) 0Dy (g, x(5), v(6))|dgs
¢e[0,1] q(61 01)
¢ I 51+01-1 17
+ —=2—— | (1 = gs) 0Dy (g, k(5), v(§))|dgs
Fq(61 + 91) p l/)1 C c c q
< 2A1)’11 o+ 2A1M1 ,
L6+ 6,1+ 1) La+p+1)
which implies that
2A
ITi06 Il < g, 2o 18)
I‘q(61 + 91 + 1) Fq(61 + 01 + 1) 2

Now, using (16), we obtain
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2\
IT:0c, V)| < LB R (19)
Fq(52 + 92 + l) Fq(62 + 62 + 1) 2

Consequently, we obtain
1T (e, Vliwxz = 1TiGe, VI + 1 T3, VI

Ay + Aom, 20 My + 2MoM, (20)
61+ 6:+1) Ty b6,+6,+1) 61+ 6,+1) Ty 6,+6,+1)
<0,
which implies that TB, C B,.
For (x;, v;\) e Wx Z,i =1, 2, and for each ¢ € [0, 1], we have
ITi(q, v1)(§) — Ti(e, v2)(6)|
< My sup{——— I(c gs)Cr D (g, 1(5), v(6)) = Py(s, x(5), v())ldgs
¢e[0,1] (51 +01) (21)
1
+—————j( @s)® 070 (1 = %8115, 1(5), V($)) = (5, K(E), VEMds -
q(51 +6y) o
Thanks to (H;), we can write
2A1rll
Ti(xq, vi) — 136, v < — |lig = va, Vi — Vollwxz - 22
ITGa, vi) = TG, V)| LGt 6+ 1) [ = v, vi = Vallwxz (22)
Analogously, we can obtain
2A2T12
L, v) — Lo, Vo)l € ———————— |l1a — 19, Vi — Vallwxz - 2
134, vi) — Lo, vo)l| TGy + 62+ D I — 1, vi = Vallwxz (23)
From the definition of ||(.)|lwxz, we have
1T, vi) = (0, v)llwxz = ITi(a, vi) — TG, vo)ll + ITGa, vi) — T, vo)l|
ZAmI 2A27I2 (24)

+ K — K,V —V, e
LG+ 6+ D) T 64 0,1 | TR Vallw

Thanks to (14), we conclude that T is a contraction mapping. Hence, by Banach fixed point theorem, there
exists a unique fixed point, which is a solution of system (1). This completes the proof. O

Now, we prove the existence of solutions of problem (1) by applying the Leray-Schauder nonlinear
alternative.

Lemma 7. [33] (Leray-Schauder alternative). Let F : E — E be a completely continuous operator (i.e., a map
that is restricted to any bounded set in E is compact). Let

OF)={uecE:u=AF@u) for some 0 <A< 1}.

Then, either the set O(F) is unbounded or F has at least one fixed point.

For the forthcoming result, we suppose that
(H3) ¥, :[0,1] x RZ > R are continuous functions and there exist constants 9;, y; > 0,i=1,2, and
9o > 0, yy > 0 such that for all ¢ € J and x, v € R, we have:
Pi(6, K, V) < 8o + Gilk| + Galv]
and
Yo, 1, V) < B + pylKl + ylVI-
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Theorem 8. Assume that hypotheses (H,) and (Hs) are satisfied. Furthermore, assume that

My Moy < 1 A9, + Moy < 1
Fq(51 + 91 + 1) Fq(52 + 92 + 1) 2 ’ Fq(61 + 91 + 1) Fq(62 + 92 + 1) 2 ’

(25)
Then, system (1) has at least one solution on [0, 1].

Proof. In the first step, we show that the operator T: W x Z — W x Z is completely continuous. By con-
tinuity of the functions ¢, i;, i = 1, 2, it follows that the operator T is continuous.
Let Q ¢ W x Z be bounded. Then, we can find positive constants A and B such that

[P,(s, k(5), v(e))] < A, |,(¢, k(¢), v(¢))| < B, forall (x,v) € Q.

Then, for any (x, v) € Q, we have

s
1
I Ti(x, I < Ay 6.1 0) I(c - gs) @0 D6, K(6), v(6))ldgs
q\“1 1
0
¢ (26)
TR [ 6 = a5y o 5. (). ) Idys
q\Y1 1 o
2MA
< A e A
Fq((Sl + 91 + 1)
which yields
20A
Lk, V)| € —————— <
I T(x, V)| LG+ 6+ D +00 (27)
We also have
2M\,B
T(xk, < — < .
1 T(xc, VI OTTES) +00 (28)
It follows from (27) and (28) that
2MA 2M\,B
T, V)|lwxz < + .
“ ( )“W ‘ Fq(51 + 91 + 1) Fq(62 + 92 + 1) (29)
Thus,
IT(w, 2)|lwxz < +0o.
Next, we show that T is equicontinuous. For all 0 < ¢, < ¢, < 1, we have
[(6; = )0 4 |g OO — OO |eh— oDy
Ti(x, - Ti(x, < MNA 30
|Ti(x, v)(g;) 106, V(I 1 [ L, + 6+ 1) + L6+ 6, + 1) (30)
and
_ (62+62) 4 (62+602) _ ~(62+62) 0, _ -0,
1T, V(&) — Totr, ()l < A8 L5~ Lt | L > S Y RO
Fq(62 + 92 + 1) Fq(62 + 92 + 1)

Thanks to (30) and (31), we can state that || T(k, v)(5) — T(x, v)(¢,)llwxz — O as ¢, = ¢,. Thus, by using the
Arzela-Ascoli theorem, one can conclude that the operator T : W x Z — W x Z is completely continuous.

Finally, it will be verified that the set £ = {(x,v) € W x Z, (x,Vv) = €T(x, v), 0 < € < 1} is bounded. Let
(x, v) € Z. Then, for each ¢ € [0, 1], we can write

k(¢) = eTi(x, v)(¢), V() = D (x, v)(5).
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Then,
()] € =2 (9o + K] + V(S o
S TG+ 6y v 1) 0 IS oAV (32)
and
VOl €~ Gty + ()] + BV 33
S —rq(52+92+1)l‘0 MG wKI1vE)N). (33)
Hence, we have
[Ix]l < 2—[\1(90 + x|l + 9alIvID) (34)
Fq(61 + 61 + 1)
and
20,
V| € ———————(u, + || + wlIvlD,
[IvI| L6+ 05+ 1)(Ho wllxll + lIviD (35)
which imply that
2/ 2/ 21\ 2/
lIxll + {lvll < . Jo + - Mo + : I + - My [l
Tq(51 + 91 + 1) Fq(52 + 62 + 1) rq(61 + 91 + 1) Fq(52 + 62 + 1) (36)
2/ 2/
gk L9+ 2, [IIvll.
q(61+ 61+ 1) I,(6,+0,+1)
Consequently,
2090 20opy
”(K, V)”sz < T(61+ 61+ 1) T(62+ 62+ 1) (37)
II
for all ¢ € [0, 1], where
20, 20opy I 2o,

| )

This shows that the set Z is bounded. Hence, all the conditions of Lemma 6 are satisfied, and consequently,
the operator has at least one fixed point, which corresponds to a solution of the system (1). This completes
the proof. O

’ 1-
Fq(51 + 01 + 1) rq((Sz + 92 + 1)) (Fq((sl + 91 + 1) i Fq(62 + 62 + 1)

3 Ulam-Hyers-Rassias-stability results

In the following section, we consider Ulam’s-type stability of the g-fractional problem (1). For ¢ € [0, 1], we
provide the following inequalities:

cpo| ¢ 91( Ka(c)
1 1 ¢,(s, 1a(5), vi(s))

< Al)

)] - (s, 1a(6), vi(s))

(38)
cpof ¢ 92( vi(¢)
1 1 b5, 1a(6), vi(5))

< AZ:

)] - ll)z(c’ Kl(C)’ VI(C))

and
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o L) ~ WilS, 16D, < (o),

4 4%&«@w@) Pi(5, 1($), Vil < Aihu(g)
(39)

cpsa| cpos L) e KO, .

q(q(%mm@xm0> 0,6 16(6), vi(6)) | < Adha(s)

where A; are positive real numbers and &; : [0, 1] —» R*, i = 1, 2 are continuous functions.

Definition 9. System (1) is Ulam-Hyers stable if there exists a real number @y, y, = (@y,, @y,) > 0 such that
for each A = (A4, A;) > 0 and for each solution (x;, v;) € W x Z of the inequality (38), there exists a solution
(k,v) € W x Z of the problem (1) with

[Ka(s) — x(¢), vi(¢) — v(§)l < @yyA, ¢ €[0,1].

Definition 10. System (1) is Ulam-Hyers-Rassias stable with respect to h = (hy, hy) € C([0, 1], R) if there
exists a real number @y, y, n = (@y, n, Wy, n) > O such that for each A = (A4, A;) > 0 and for each solution

(xq, vi) € W x Z of the inequality (39), there exists a solution (x, v) € W x Z of the problem (1) with
[1a(¢) — k(), vi(¢) = v(§)| < @y, kAR(S), ¢ € [0, 1].

Theorem 11. Assume that (H,) and (H,) hold. If
Al’h < Fq(51 + 91 + 1) and Az)’lz < Fq(52 + 92 + l), (40)

then the problem (1) is Ulam-Hyers stable.

Proof. Let (1, v;) € W x Z is a solution of the inequality (38) and let (k, v) € W x Z be the unique solution of
the problem

Cpdi| Cpo: L) _ , | | .
4 4%mmmwm (6. K(6), (), 6 € [0, 1]

) 1(0) = (0), (1) = K1),
%@%%——ﬂﬁ——)=%wmawmmemm

T 9,6, k(6), v(6)

v1(0) = v5(0), wi(1) = v,(D).

By Lemma 7, we have

_ 81403 ) K _a e
K(6) = ¢y(s, K(c),V(c))(Iq @ (¢) + rq(91+1)¢ +Cz),

_ 82+02,,V dl 0,
v(6) = P55, x(5), v(c))(lq 0, () + L0+ 1)c + dz),

where
@1(6) = Pi(5, k(5), v(6)), ¢, (5) = P,(g, (), v(5)), ¢ € [0, 1].

By integration of the (40), we obtain

A 61+6;
K1(6) — ¢,(¢, k(5), V(c))(I,?”"lcof‘(c) + L)c"l + 64) ‘ < d A (41)

< ’
Fq(91 +1 - Fq(51 + 91 + 1) B Fq(61 + 01 + 1)

and
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vi(§) — B,(¢, k(§), v(ED| I8 %) (¢) + Lc"z +d, || < AgP1% < A . (42)
2 B ¢ "2 L,6; + 1) T8+ 0,+1) T8+ 6,+1)
From hypotheses (H;) and (H,), we have
+ G
[Ka(6) — k()< | K(s) — Py(5, k(5), V(c))(Igl ok () + mcgl + 64) ‘
+ 15, k(6), VDI p(6) - (o) (43)
A Alrll
< ( _ _
TG+ 05 1) + (611 0; + 1)\|K1(€) k() + vi(¢) — v(5)D),
which implies that
/11 Alrh
— < ( _ _ .
[Ka(s) — x(¢)| < 6+ 6,51 + L6+ 6+ l)\lkl(c) k() + [vi(s) = v(e)D) (44)
In addition, we have
A Aon,
— < — — .
vi(¢) = v(g)l < L6+ 0, D) + L6, 0 1 1)(|K1(C) k(©) + [vi(g) = v()D) (45)
Thus,
|()(6), v1(6)) = (k(5), V(eI = [Ki(g) — k(S| + [vi(s) — v(¢)
1 1
(rq(51+el+1) * rq(52+92+1)) (46)
= A A A= wl/’ﬂ/’z/l’
min(l - o 1- oM, )
[(61+61+1)° T,(62+6,+1)
where A = max{A;, A,}. Hence, problem (1) is Ulam-Hyers stable. O
Theorem 12. Assume that (H), (H,), and (39) hold. Suppose there exist Vi > 0, i=1,2, such that
I20n(6) < yp i), t € [0, 1], i=1,2, (47)

where h € C([0,1],R,), i =1, 2, are nondecreasing. Then, system (1) is Ulam-Hyers-Rassias stable.

Proof. Let (x;, v;) € W x Z is a solution of the inequality (39) and let us assume that (x,v) € W x Z is a
solution of system (1). Thus, we have

_ 8140y K a 0,
K(6) = ¢y(5, k(¢), V(c))(Iq @ (¢) + L6+ 1)¢ + Cz),

16, v d
v(§) = ¢,(¢, k(5), V(c))(lgz ) () + D,(Tlﬂ)cez + dz).

From inequality (41), we have

< AIZ*Oh(o) < Ay, h(s), ¢ €[0,1] (48)

Kl(c) - ¢’1(C’ KI(C), Vl(c))(IgIJrel(Plxl(g‘) + cel + C4)

_ 8
Fq(Bl + 1)
and

< AIPOm(S) < Ay u(s), ¢ €[0,1]. (49)

+6209 V1 d
vi(§) — ¢,(¢, xa(s), Vl(C))(I(}SZ b2p)(s) + MTB-I-DCQZ + d4)

Now, using (H;) and (H,), we can write
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01k C 1
lla(s) — k(9 < | 1(¢) = (5, ra(6), vl(c))(lgl fpl(e) + F,I(TZDCQ + c4) ’
+ 1hy(s, 1($), il DIZ* () = ()] (50)
Mgy
<A m(t) + —— - - ,
< Ay hy(6) + ORI 1)(|1<1(c) k(©)] + [vi(s) = v(OD)
which implies that
Alrll
t) - k()] < A9, h(t) + ————— - - .
[a(t) — k(©)] < 4, m(t) + L6+ 6+ 1)(Ikl(c) k()] + [vi(g) — v(§D) (51)
On the other hand,
Mon,
- <A h(t) + ————— - - .
[vi(§) = v(S)l < Iyha(t) + T+ 0>+ 1)(IK1(<;) k()] + [vi(§) - v(©D) (52)
Thanks to (51) and (52), we obtain
1(1(6), vi(6)) — (k(), v(§))I = [ra(¢) — k()| + [vi(S) — v(S)I,
+
< Y, t Vh, Ah(c)
: 1 Ay 1 Aoty (53)
M = L 66D’ " 616,510
= w’/’l‘/’z’h/lh(c)'
Thus, system (1) is Ulam-Hyers-Rassias stable. O
4 Examples
Example 13. Consider the following system of hybrid g-fractional differential equations:
3.1 2c+1
CD4 CDZ K(C) _ i s 2 IV(C)| S , 0, 1],
1 i['(“gl“”“ 60 KO s ey T3 sl
| P P v(¢) 1 Kl cosv(g) ¢+ 1 G4)
CDi CDLG | sink(¢) | + |€cosv(g‘) | +1 = 2 : + (;f; + : 6 € [0, 1],
7 = 26+ 4y (k@I +1) 32 2
(x(0) = x(1) =0, v(0)=v(l)=0.

and the following 1-fractional inequalities:

4
3 1
¢pi|cp3 x(5) B ismzx(g) _ v(¢)l _x+1
G (e QEEECGITEIEN ) G+ MOl + D 3
el epi v(s) o1 Kl cosv(e) g+1
% % | sinK(g)|+3|7cosv(§) | +1 z(c + 4)2 (|K(§)| + 1) 3zeq+1 2

and



DE GRUYTER Hybrid differential systems with Caputo fractional g-derivatives = 13

El Bt 2c+1
CD4 CDZ K(g) _ i 2 Iv(g)l _ 3 < Ah ,
1| Pl e || T s Y T B ooy 5 |5
2 5
cpslenz v(s) B 1 [x(¢) cosv(g) ¢+1
Di Dl6 | sink(g) | + | cosv(g) | +1 - 2 B ¢+1 - = Ah(c)'
A = 26+ 4) (k@I +1) 32 2
Here, 6= 2,6,=3,8,=2,0,= 2,4 = ;, and
o1 [v(s)l 26 +1
R A G R R
1 k(I cosv(¢)  ¢+1
VAo R el + D T 32 T2
cos(k(¢c) + v(¢))| + 1 sink(¢)| + |cosv(c)| + 1
¢1((;,K,v):| c3l 9 ’¢2(C,K,V):I 9l 3|7 9l .

For (w;, z;)) € R%,i=1,2,and t € [0, 1], we have
1
[Y,(, K, v1) = (G, Ko, V)| < %(Pﬁ - 1| + |[vi — va]),

1
[P5(5, K, V1) = P,(S, Ko, Vo) < 3—2(|K1 = 10| + |vi = val),

and

NN ST

¢,(G; K, =30 »,(¢, 37
Hence condition (Hl) is satisfied with n; = and =3 respectlvely, and condition (H,) is satisfied with
N== and N = respectlvely

Thus condltlons

A A
7 — 4.8957 x 103 < +, 2l

1
i — 2 49873 x 103 < =
L6+ 6, +1) 4 I,(6,+60;,+1) % 4

are satisfied. It follows from Theorem 5 that system (54) has a unique solution and is Ulam-Hyers stable with
1(a(6), vi(5)) — (xk(5), v(§))| < 9.9378 x 1073A.
Let hi(¢) = hy(¢) = ¢?, then

3,1

N%M%P%ﬂ< 2f=%mo

n(¥

and

5

2

2 2
I}"¢h z(c)—I3 6(c2)< )c = Unha(5).
4

r(3

Thus, condition (47) is satisfied with h(¢) = ¢% and Vi = - (17), Vi = 7 2(2). It follows from Theorem 12 that
problem (54) is Ulam-Hyers-Rassias stable with o °

|(a(5), vi(§)) — (k(5), v(¢))| < 7.34Ah(s), ¢ € [0, 1].

Example 14. Consider the following hybrid fractional @-differential system:
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m3f 5 -6 -2 )
CDJ% CD\/% | cos(K(K)(f\?( ) | +1 = Sl 2 X c COSK(C) + ¢ V(C) »G € [O, 1],
S s (FEEEeR )] 16In2+¢% 15(0+4) 25,80 + ¢
1, (55)
e : .
cn3 lons v(5) sin¢ K(¢) sinv(¢)
D3;|"D> ‘ = X + ¢el0,1]
Je Je ’ s L1s
0 iy it +3|7COSV(C) S J32+¢2 Se(s+4)?  35er/1+¢
x(0) = k(1) = 0, v(0) = v(1) = O.

For this example, we have §; = 1%3 0, = % 8, = % 0, = % q= %, and

i, K, v) = l+es e % cosk L e
155 %o 16In2 +¢2  15(c+4)  3,/80 + ¢
(g, K, V) = sing K sinv
206y Ay -

+ +
[32+¢2  5e(s+4)? 35e2[1+¢
It is easy to find that

1 1 1
LK V)| < —— + — k| + —v|,
[y (s )] 32 60II 12OII

1
35e?

1 1
K V)| < — + —x| + v,
[,(¢ )] e SOeII vl

2 3
< — < =
(5, K, V)| < 3 lp,(, , V)| < 3’

1 2

which implies Jo = ﬁi 91 = %, 9, = %, Ho = %’ Ky = ﬁ’ W = 5> M= 5, and Ay = % Therefore, we
obtain
A
M9y + 2 = 1.4605 x 1073 < 1
L6i+6,+1) T6+6,+1) 2
and

M, N Ao,
Fq(61 + 61 + 1) rq(62 + 92 + 1)

= 8.5619 x 107* < %

Thus, all the conditions of Theorem 8 are satisfied, and problem (55) has at least one solution on [0, 1].

5 Conclusion

In this study, we considered acoupled hybrid fractional g-differential systems involving two sequential
Caputo fractional g-derivatives. The uniqueness, existence, and Ulam stability of the solutions have been
discussed. The existence and uniqueness of solutions for the mentioned problem is established by applying
contraction mapping principles. By the aid of the Leray-Schauder alternative the existence of at least one
solution is established. Furthermore, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability results are
obtained. Finally, a simulative examples are proposed in order to enlighten the theoretical results. Since, in
this field of interest, it is important to increase ability of scholars for investigating differential equations
with fractional quantum calculus and trying to find applicability of the studied problems in real word
phenomena, in this work we have discussed a coupled hybrid fractional g-differential systems with two
sequential Caputo fractional g-derivatives. However, for future developments, we think that it will be more
suitable to discuss the above g-fractional problem by considering n-sequential Caputo g-derivatives. For
further consideration in the future, we will continue to study the Ulam-Hyers-Mittag-Leffler stability for the
above proposed system by using Henry-Gronwall inequality.
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