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Abstract: In this article, a numerical solution for the Rosenau-Kawahara equation is considered. A new
conservative numerical approximation scheme is presented to solve the initial boundary value problem of
the Rosenau-Kawahara equation, which preserves the original conservative properties. The proposed
scheme is based on the finite difference method. The existence of the numerical solutions for the scheme
has been shown by Browder fixed point theorem. The priori bound and error estimates, as well as the
conservation of discrete mass and discrete energy for the finite difference solutions, are discussed. The
discrepancies of discrete mass and energy are computed and shown by the curves of these quantities over
time. Unconditional stability, second-order convergence, and uniqueness of the scheme are proved based
on the discrete energy method. Numerical examples are given to show the effectiveness of the proposed
scheme and confirm the theoretical analysis.
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1 Introduction

The well-known Korteweg-de Vries (KdV) equation is a classical paradigm of integrable nonlinear evolution
equations, which plays an important role in the development of soliton theory [1,2]. However, in the study of the
dynamics of dense discrete systems, the case of wave-wave and wave-wall interactions cannot be treated by the
well-known KdV equation. Furthermore, the slope and behavior of high-amplitude waves may not be well
predicted by the KdV equation because it was modeled under the assumption of weak anharmonicity. In order to
overcome the shortcoming of the KdV equation, Rosenau [3] proposed the KdV-like Rosenau equation

U + Ut + Uy + Ul = 0. (1.1)

The theoretical results on the existence, uniqueness, and regularity of the solution to (1.1) have been investi-
gated by Park [4]. Since then, various numerical techniques have been proposed for (1.1) [5-11] and also the
references therein; especially in [11], operator time-splitting techniques combined with the quintic B-spline
collocation method were developed for the generalized Rosenau-KdV equation. For wide, interesting, and
related topics covered, we should also recall the numerical study done on the equations in [12-21].

For further consideration of the nonlinear wave, Zuo [22] added the viscous terms u,, and —uUyy, to the
Rosenau equation and proposed the Rosenau-Kawahara equation
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Ut + Ut + Wox — Wooxx + U + Ul = 0. (1-2)
Recently, Zuo [22] obtained solitons and periodic solutions for the Rosenau-Kawahara equation. Hu et al. [23]
proposed two conservative schemes for the Rosenau-Kawahara equation. The numerical results are interesting.
However, both conservative laws of the Rosenau-Kawahara equation were not proved in [23]. But, both conserva-
tive laws play very important roles in the following numerical analysis of the proposed scheme. Furthermore, as far
as the computational studies are concerned, the handling of the nonlinear term uu, also has a different discretiza-
tion method. Therefore, in this article, we give a modified proof of the conservative properties, and an attempt has
been made to propose a new difference scheme for the Rosenau-Kawahara equation (1.2) with the initial condition

u(x, 0) = up(x), x¢€la,b], (1.3)
and the following boundary conditions
u(a, t) = u(b, t) = ua, t) = u(b, t) = u(a, t) = un(b,t) =0, tel0,T], (1.4)
where ug(x) is a known smooth function.
In [24], Biswas et al. studied the solitary solution of the Rosenau-Kawahara equation; by the solitary
wave assumptions, the solitary solution and its derivatives have the following asymptotic values: u — 0 as
3

a;l: — 0 as x — oo forn > 1. Thus, the problem can be set up in a compact subset [a, b]. This

X — +o00 and
implies that the initial boundary value problems (1.2)-(1.4) is consistent with the initial value problems
(1.2) and (1.3) for —a > 0 and b > 0. Hence, we can prove that the system (1.2)—(1.4) possesses the following

conservative laws [23]:

b b
Q) = Ju(x, £)dx = Iu(x, 0)dx = Q(0), (1.5)
a a
E(t) = [[ullf, + llunllz, = E(0). (1.6)
Proof. Integrating over the interval [a, b] in (1.2) yields
b b
I(uz + Ut + Uox — oo + Uy + Ut)dx = %J-udx + %uml’é + Upels — Ul + ull + %uzl’é = 0. 1.7)

a a
According to the asymptotic values ofu — 0 and % — 0 withn > 1in the aforementioned compact subset

[a, b], we have

- '[udx = 0. (1.8)

b

Let Q(t) = [ u(x, t)dx. (1.5) holds.
a

Next, we shall prove (1.6). Consider u; + Uyt = —Upx + Upoox — U — Ull,. We have

b b
%E(t) =2 Juutdx +2 quxuxxtdx

a a
b b

=2 juutdx + b - 2 juxuxxxtdx
a a
b b

=2 Juutdx - QUi |2 + 2 quxxxx,dx
a a (1.9)

b
=2 ju(ut + uxxxxt)dx

a
b

=2 Iu(_uxxx + Uoooox — Ux — uux)dx

a
w2l -l -l - 2wl
=0.
By the definition of E(t), (1.6) holds. O
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It is well known that the conservative difference schemes perform better than the non-conservative ones, and
the non-conservative difference schemes may easily show nonlinear blow-up [25]. Some conservative schemes
have been proposed in the literature [26-34]. Recently, efficient and conservative numerical techniques were
used to solve the general nonlinear wave equation [35] and the nonlinear fractional Schrédinger equations [36],
with references therein. The numerical results of all the schemes are very encouraging. For the wide topics of
structure-preserving schemes covered, the efficient numerical methods proposed in [37-40] are efficient. The
main purpose of this article is to construct a new numerical scheme that has the following advantages: coupling
with the Richardson extrapolation, the proposed scheme is uniquely solvable, unconditionally stable, and of
second-order accuracy; the new scheme preserves the original conservative property; the coefficient matrices of
the scheme are symmetric and seven-diagonal, and the Thomas algorithm can be employed to solve it effectively.

The remainder of this article is organized as follows. In Section 2, an energy conservative C—N difference
scheme for the Rosenau-Kawahara equation is described and the discrete conservative laws of the differ-
ence scheme are discussed. In Section 3, we prove the existence of the scheme. In Section 4, convergence,
stability, and uniqueness of the scheme are proved. In Section 5, numerical experiments are reported.

2 A conservative scheme and its discrete conservative law

In this section, we describe a new conservative difference scheme for the problems (1.2)—(1.4). Let h and 7 be
the uniform step size in the spatial and temporal directions, respectively. Denotex; = a + jh (0 <j <)), t, =

nt (0 <n<N), u]-” = u(x, t), and Z;? ={u=Wlu,=u=up=w =y =, =0,j=-2,-1,0,1,
2, ...,J,J +1,] + 2}. Define the difference operators:

j+1 j Jj j-1 j+1 j-1
@ == @ = L= (@ = L
w9 - wf w Wi - 207 + Wl el @4l
(a)j )t = — 7 (CUj Ik = B w; ©= -
J-1
(@ v =hY WM, |lw? = (", oY), |o"lo= max |w]].
1gj<J-1

j=1

In the article, C denotes a positive constant independent of mesh steps h and 7, which may have different
values in different occurrences.
The following conservative C—N difference scheme for the IBV problems (1.2)—(1.4) is considered:

1 1 1 1 1 1 1
n n n+= n+= n+= 1( n+s5 n+= n+= n+=
W + U ozt + (uj 2 -y 2 + |y 21+ 3 um2 + U 2 4 qu U 21 =0, (21
XXX XXXXX X X

u = uo(x), 1<j<j-1, (2.2)
ug = = (ug)z = Uz = Ugle = W)k = 0. (2.3)

For convenience, the last term of (2.1) is defined as follows:

1 1 1 1 1
K(u"*%, (um%))?) _ §(ujr':lz n ui"+2 4 uj"_:z ujn+2 .
X
To obtain conservative laws, we introduce the following Lemma. It can be proved without difficulty [8].

Lemma 2.1. For any two mesh functions: u, v € Z,?, we have
o v) = —(u,vz), (Vi) =~ (W),

and
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(u w) = (e, ) = — |l 2.
Furthermore, if (u))x = (U)xx = 0, then

(U, Uoezz) = [l -
Theorem 2.1. Suppose u, € HZ[a, b], then the scheme (2.1)-(2.3) admits the following invariants:
J-1
Q'=hYyu'=Qv'l=-=Q" (2.4)
j=1
E" = W' + |lugll? = E*' =---= E°. (2.5)

Proof. Multiplying (2.1) with h, according to the boundary conditions (2.3), then summing up for j from 1 to
J — 1, we obtain

J-1
hY '™ —ul') = 0. (2.6)
j=1
Let
J-1
Q"=h)ul, 2.7)
j=1

then (2.4) is obtained from (2.6).
Taking the inner product of (2.1) with 2u™*>, according to boundary condition (2.3) and Lemma 2.1, we
have
1
SR = P + P = Tkl + () 2wd) () 20
T T XXX X (2.8)
+ (K(u"*%, (u”*%)), 2u"*%) =0.
X

Note that
((um%) 2u"+%) =0, ((u'“%) 2u"+%) -0, ((u"”%)A, 2u"+%) =0, (2.9)
XXX XXXXX X
and
J-1 1 1 1 1
2 1 1 1 1 1
(K(u”*z (u'”%)i), 2u”*5) = gh z [(u;;1 + u}n+2 + ujn_?)(ujmz) ]u}.mZ
j=1 £
R T e e T N A s
= 5121 W2+ 2w ? flug? - w2 | |y (2.10)
J-1 1 1 1 1 J-1 1 1 1 1
1 n+= n+>\) n+5 n+5 1 n+= +5) n+5 n+3
=3 (u}.+1 + U )u]-+12u] 2 - 3 (uj 2+ ulz)ujlzuj 2
j=1 j=1
=0.
It follows from (2.8)—(2.10) that
(12 = 1) + (lug P = llwil?) = 0. (2.11)

By the definition of E™, (2.5) holds. O
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3 Existence

To prove the existence of solution for scheme (2.1)-(2.3), the following Browder fixed point theorem should
be introduced. For the proof, see [41].

Lemma 3.1. (Browder fixed point Theorem). Let H be a finite dimensional inner product space. Suppose that
g : H — H is continuous and there exists an a > 0 such that (g(x), x) > 0 for all x ¢ H with ||x|| = a. Then,
there exists x* € H such that g(x*) = 0 and ||x*|| < a.

Theorem 3.1. There exists u" € Z;, which satisfies the difference scheme (2.1)—(2.3).

Proof. It follows from the original problems (1.2)-(1.4) that u° satisfies the scheme (2.1)-(2.3). Forn < N - 1,
assume that u!, u?,..., u" satisfy (2.1)-(2.3). Next, we prove that there exists u"*!, which satisfies (2.1).
Define an operator g on Z_ as follows:

T
8(v) = 2v — U™ + e — 2Uex + Tz — Thooes + TVz + E(V"“ +Vj + Vo)V (3.1)

Taking the inner product of (3.1) with v and using
(Ve v) = 0, (Voszor v) =0, (v&sv) =0, (a1 + ¥+ vive, v) = 0,
we obtain that

(), v)=2VIP = 20", v) + 2|lviad P = 2uuzss Vi)
2 2/[VIP = 20w VI + 2lviad P = 2l el ] V]
2 2/[VIP = (P + IVIP) + 2lvid P = (el P+ 1 1) (3.2)
2 [VIP = (1P + ool P) + 1o P
2 [P = (P + g P)-

Obviously, for Vv € Z?, (g(v), v) = 0 with [|v|]> = [|u"|? + [Ju|? + 1. It follows from Lemma 3.1 that there
exists v* € Z) that satisfies g(v*) = 0. Let u"*! = 2v* — u", it can be proved that u™*! is the solution of the
scheme (2.1)—(2.3). This completes the proof of Theorem 3.1. O

4 Convergence, stability, and uniqueness of the scheme

Next, we discuss the convergence stability and uniqueness of the scheme (2.1)-(2.3). Let v(x, t) be the
solution to problems (1.2)-(1.4), vi' = v(x;, t,), then we define the truncation error of the scheme (2.1) as
follows:

1 1 1 1 1 1 1
n_ /on n n+5 n+5 n+5 1 n+35 n+5 n+5 n+5
Erj' = (VD¢ + (V] Dixe + (V,- -lv +1v; v’y vty . (4
XXX XXXXX X X

According to the Taylor expansion, we know that Erf' = O(t? + h?) holds if 7, h — 0.

Lemma 4.1. (Discrete Sobolev’s inequality [42]). There exist two constants C; and C, such that

[uleo < G| + Glluy]l-
Lemma 4.2. Suppose u, € HZ[a, b], then the estimate of the solution of the initial boundary value problems
(1.2)-(1.4) satisfies

lull, < €, ludl, <G, ulle, < C.
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Proof. It follows from (1.6) that
lull, < G, lullr, < C. (4.2)

An application of Hélder inequality and Schwartz inequality yields
1
i, < Nl el < > (I, + sl I, ) (4.3)
Hence, ||uy||r, < C. By Sobolev inequality, we have ||u||;_ < C. O

Lemma 4.3. (Discrete Gronwall inequality [42]). Suppose w(k) and p(k) are nonnegative mesh functions and
p(k) is nondecreasing. If C > 0 and

k-1
w(k) < p(k) + Ct Y w(l) vk,
1=0

then
w(k) < p(k)e¢™ vk,

Lemma 4.4. Suppose u, € Hg[a, b], then there is the estimate of the solution u" of (2.1): ||[u"|| < C, |luy|| < C,
which yields ||u"||«, < C.

Proof. It follows from (2.5) that
[lu"ll < C, lugll < C. (4.4)

Using Lemma 2.1 and Schwartz inequality, we obtain
ni2 n n 1 ny2 nir2
el < [l udl < E(IIM [IF + luedl?) < C. (4.5)
According to Lemma 4.1, we have |[u"||,, < C. O
Remark 4.1. Lemma 4.4 implies that scheme (2.1)—(2.3) is unconditionally stable.

Theorem 4.1. Suppose u, € HZ[a, b] and u(x, t) € C"3, then the solution u" of the scheme (2.1)-(2.3) con-
verges to the solution of problems (1.2)—(1.4) in the sense of |||l norm and the rate of convergence
is O(12 + h?).

Proof. Subtracting (4.1) from (2.1) and letting e’ = vj' - i, we have

1 1 1
Er' = (&) + (€ xxxxt + (ej’”z) - (ej'”z) + (e}_’”z) +P+Q, (4.6)
XXX XXXXX X

X

where

P 1 n+% n+% n+% n+% 0 1 n+% n+% n+% n+%
=3 Vi? vy 2Vl 2 =3 U2+ 2+ w2 |y .
%

Computing the inner product of (4.6) with 2e™*2, and noting that

((en+;) , Zen+;) =0, ((en+;) , Zen+;) =0, ((em—;) , 2en+;) =0,
XXX XXXXX X

we obtain

(Brm, 2e72) = Z(lem R ~ llelP) + —(llel P ~ llef) + (P + @, 2¢mY). (4.7)
T T
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According to Lemma 4.2, 4.4 and Cauchy-Schwartz inequality, we have

J-1 1 1 1 1 1 1 1 1 1
1\ 2h n+s n+s O D I nty neo ) n+y n+y
(P +Q,2e z) =3 v +v 2+vi2 |y e USRS L
X X

N

j=1
J-1 1 1 1 1 1 1 1 1
2h n+s n+s n+= n+s n+s n+5 n+s n+=
_4r 2 2 2 2 2 2 2 2
=3 [(ej+1 te *+e )(uj ) + (ujJr1 U T+ U, )(e}- )
j=1 £ %
< C(lled™I* + 1lef|? + lle™ ! + lle™?).

In addition, there exists obviously that
(B 26743) < NEFIE + S (llem 1P + flen|P).

Substituting (4.8)—(4.9) into (4.7), we obtain
(le™ 1P = [lel?) + (lex 1> - llexd?) < Cr(lle™ 2 + |le™? + llef™ P + lley]) + l|Erm|.

Similarly to the proof of (4.5), we have
1 1
lleg P < E(Ile"“ll2 +les 1P, llexlP? < E(Ile"ll2 + [lesd -

Thus, (4.10) yields
(lle™ 2 = 11e"l®) + (llei 112 = llekd?) < Cr(lle™ 12 + [le"|* + llegI? + llexdl®) + TllEr|.
Let B" = ||e"|]> + ||eX|]?, then (4.12) can be rewritten as follows:
(1 - Cr)(B™' — B™) < 2CtB" + T||Er"|?.
If 7 is sufficiently small, which satisfies 1 — Ct > 0, then
B™1 — B < CtB" + Ct||Er"|2.

Summing up (4.13) from O to n — 1, we have

n-1 n-1
B"< B®+ Ct ) ||Er|? + Cr ) Bl
1=0 1=0
Noting that
n-1
T Y ||Er|P < nt_max |[EF|? < T [0(? + k)P,
=0 O<l<n-1
and e° = 0, we have B° = [O(1? + h?)]?. Hence,
n-1
B < [0(1? + )P + Cr ) BL.
1=0

According to Lemma 4.3, we obtain B" < [O(t? + h?)]?, that is
lle"l] < O(* + h?), |legll < O(t* + h?).
This together with (4.11) and Lemma 4.1 gives
lle"|e < O(T% + h?).

This completes the proof of Theorem 4.1.

Similarly, we can prove the stability of the difference solution. The details are omitted.

el 4

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Theorem 4.2. Under the conditions of Theorem 4.1, the solution of scheme (2.1)-(2.3) is stable by the
[|]|oo nOTmM.

Theorem 4.3. The scheme (2.1)—(2.3) is uniquely solvable.

Proof. Suppose that u" and U™ both satisfy the scheme (2.1)-(2.3). Let w" = u"* — U", then we have

YH—l n+l YH—l
W)t + (W] Durze + (Wj Dxxx — (Wj Dotk + (Wj e+ I1+1=0, (4.17)
w) =0, (4.18)
wo = W' = (Wg)z = W)z = (W) = W)z = 0, (4.19)

where

1 1 1 1 1 1 1 1
I= %(u]_':z + u]_"+2 + uf”lz)(u_"u) , I = ‘%(U;‘n:f + UJ_"+2 + U;flz)(U."”),?.

Similarly to the proof of Theorem 4.1, we obtain that
WP + [lwgd > = 0. (4.20)

This completes the proof of Theorem 4.3. O

5 Numerical experiments

In this section, we shall compute some numerical experiments to verify the correction of our analysis in the
above sections.

Consider the initial-boundary value problem for the Rosenau-Kawahara equation (1.2)—(1.4). The exact
solution of the system (1.2)—(1.4) has the following form:

u(x, t) = (—i—; + 135—56 205 )sech4 [%\/—13 + /205 (X - %\/205 t)] (5.1)

The initial condition of the studied model is obtained from (5.1):

u(x, 0) = (—E + > 205 )sech4 (%«/—13 + /205 x). (5.2)

12 156

Table 1: The errors of numerical solutions at t = 6 with various h and t for the scheme (2.1)

h T lIv® = ull lv" - u"lle Il va—ud | 1 Vi - u oo
(v =um|| V7= u"[loo

0.4 0.4 2.08567 x 1073 7.23237 x 107* - -

0.2 0.2 5.23337 x 1074 1.81471 x 1074 3.96965 3.96596

0.1 0.1 1.30957 x 107* 4.54316 x 10~ 3.99242 3.99037

0.05 0.05 3.30439 x 1075 1.13603 x 1075 3.99809 3.99761

0.4 0.2 1.47546 x 1073 5.08196 x 1074 - -

0.2 0.1 3.69368 x 107 1.27183 x 107 3.98720 3.98563

0.1 0.05 9.23770 x 107° 3.18208 x 10~° 3.99682 3.99561




DE GRUYTER

Numerical approximation for Rosenau-Kawahara equation

Table 2: The errors of numerical solutions at t = 10 with various h and 1 for the scheme (2.1)

— 9

h T [lv? = u"| [Iv" = U"|| | vi -t | I vE = 4k Jlow CPU time

v —um | v =u" oo
0.4 0.4 3.43837 x 1073 1.19758 x 1073 - - 29.047 s
0.2 0.2 8.63021 x 107 3.00546 x 1074 3.96007 3.95519 287.656 s
0.1 0.1 2.15981 x 1074 7.52081 x 107> 3.99010 3.98661 4.23 x103 s
0.05 0.05 5.42160 x 10~ 1.88069 x 107 3.99747 3.99692 6.367 x 10% s
0.4 0.2 2.43357 x 1073 8.43732 x 1074 - - 56.625 s
0.2 0.1 6.09377 x 107* 2.11201 x 107* 3.97956 3.97587 569.047 s
0.1 0.05 1.52477 x 1074 5.28166 x 10~ 3.99496 3.99193 8.068 x 10% s

Table 3: The errors in the sense of L..-norm of numerical solutions u” of the scheme (2.1) at different time t with various h and t

t h=1t=0.4 h=1t=0.2 h=1t=0.1 h=1t=0.05

2 2.36285 x 107 5.94147 x 1075 1.48662 x 107> 3.71732 x 1076
4 478784 x 1074 1.20237 x 1074 3.00929 x 107° 7.52510 x 1076
6 7.23237 x 107 1.81471 x 1074 4.54316 x 1075 1.13603 x 1075
8 9.63714 x 1074 2.41833 x 1074 6.05150 x 10~° 1.51333 x 1075
10 1.19758 x 1073 3.00546 x 1074 7.52081 x 10~° 1.88069 x 107>

Table 4: The errors in the sense of L,-norm of numerical solutions u” of the scheme (2.1) at different time t with various h and t

t h=1t=0.4 h=1t=0.2 h=1t=0.1 h=1=0.05

2 6.99455 x 1074 1.75479 x 1074 4.39154 x 1075 1.10141 x 1073
4 1.39565 x 1073 3.50160 x 107 8.76227 x 107° 2.19159 x 107>
6 2.08567 x 1073 5.23337 x 1074 1.30957 x 107 3.30439 x 1075
8 2.76715 x 1073 6.94432 x 107 1.73777 x 1074 454320 x 10~°
10 3.43837 x 1073 8.63021 x 10°* 2.15981 x 1074 5.42160 x 1075

Table 5: Discrete mass and discrete energy of the scheme (2.1) when h = 7= 0.05

t Q" En
t=0 4.12089321499933 0.83620118172401
t=2 4.12089302402904 0.83620118171116
=4 4.12089342992713 0.83620118172960
t=6 4.12089416312627 0.83620118175778
=8 4.12089522384561 0.83620118242616
t=10 4.12089327111637 0.83620118182357

It follows from (5.1) that the initial boundary value problems (1.2)-(1.4) is consistent to the initial value
problems (1.2)—(1.3) for—a > 0, b > 0. In the numerical experiments, we takea = -40, b = 120, and T = 10.
The errors in the sense of L, and L,-norm of the numerical solutions are listed on Tables 1-4 under different
mesh steps h and 7. Tables 1 and 2 verify that the scheme (2.1) has an accuracy of O(r? + h?). CPU time
is given to show that the proposed scheme is easily solved and stored. Tables 3 and 4 are presented to show
the good stability of the numerical solutions. Table 5 and Figure 1 of the curves of discrepancies of
the discrete mass and discrete energy are given to show that the scheme (2.1) preserves the discrete
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10" The discrepancies of discrete mass of scheme (2.1)-(2.3) with =h=0.05 and 0= t< 10 x 10 The discrepancies of discrete energy of scheme (2.1)-(2.3) with t=h=0.05 and 0= t< 10
T T T T T T 10 T T T T T
Discrepancies of discrete mass — Discrepancies of discrete energy

sl i

Discrepancies of discrete mass
o
T
)
Discrepancies of discrete energy
o
- T

(a) (b)

Figure 1: The discrepancies of conservative laws of the Scheme (2.1) with h = 7= 0.05 and 0 < t < 10.

Table 6: L..-norm errors comparison of Schemes |-l at different time t with h = 7= 0.2

t 2 4 6 8 10

| 5.63242 x 1075 1.137091 x 1074 1.72392 x 1074 2.30840 x 107* 2.88211 x 1074
I 1.15741 x 1074 2.33753 x 1074 3.53667 x 107* 472674 x 1074 5.89342 x 1074
n 5.94147 x 1075 1.20237 x 107 1.81471 x 107* 2.41833 x 107 3.00546 x 1074
Table 7: L,-norm errors comparison of Schemes I-IIl at different time t with h = 7= 0.2

t 2 4 6 8 10

| 1.70833 x 1074 3.41048 x 10°* 5.10109 x 107 6.77538 x 1074 8.42946 x 1074
I 3.48375 x 107* 6.95306 x 1074 1.03963 x 1073 1.38033 x 1073 1.71663 x 1073
1] 1.75479 x 107* 3.50160 x 10~* 5.23337 x 1074 6.94432 x 1074 8.63021 x 1074

—-0.05

0o 500 1000 1500 2000 2500 3000 3500

Figure 2: Exact solutions of u(x, t) att = 0 and numerical solutions computed by the scheme (2.1) with h = 7 = 0.05 at ¢t = 5, 10.
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conservative laws very well. We denote the presented scheme as Scheme III, the nonlinear scheme as
Scheme I and the linear scheme as II in [23]. Error comparisons have been made between Schemes I-III
in Tables 6 and 7. From Tables 6 and 7, it is shown that the errors obtained by our method are much better or
in good agreement with the others in [23].

The curves of the solitary wave with time computed by the scheme (2.1) with the mesh steps
h = 7 = 0.05 are given in Figure 2, the waves at t = 5 and 10 agree with the ones at t = 0 quite well, which
also shows the efficiency and accuracy of the scheme in the present article.

6 Conclusion

In this article, an attempt has been made to construct a new numerical scheme to solve the initial-boundary
problem of the Rosenau-Kawahara equation. The presented scheme has the following advantages: the new
scheme is conservative and preserves the original conservative properties; the algebraic system obtained
from the presented scheme is easy to store and solve by the software systems of nowadays. The existence of
the numerical solutions for the scheme has been shown by Browder fixed point theorem. A detailed
numerical analysis of the scheme is presented including a convergence analysis result. Numerical examples
are reported to show the efficiency and accuracy of the scheme.
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