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Abstract: In this research work, we proposed a Haar wavelet collocation method (HWCM) for the numerical
solution of first- and second-order nonlinear hyperbolic equations. The time derivative in the governing
equations is approximated by a finite difference. The nonlinear hyperbolic equation is converted into its full
algebraic form once the space derivatives are replaced by the finite Haar series. Convergence analysis is
performed both in space and time, where the computational results follow the theoretical statements of
convergence. Many test problems with different nonlinear terms are presented to verify the accuracy,
capability, and convergence of the proposed method for the first- and second-order nonlinear hyperbolic
equations.
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1 Introduction

Most of the scientific and physical phenomena govern the nonlinear hyperbolic partial differential equa-
tions (NLHPDEs) and have an important place in atomic physics, aerospace, industry, biology, and engi-
neering problems. To find the exact solution of these kinds of NLHPDEs is very complicated due to the
nonlinear term; therefore, implementation of numerical schemes is an alternative option to find their
solution. In this article, we consider the first- and second-order NLHPDEs.

The first-order NLHPDEs can also be used in modeling the vibration of structures (like machines,
buildings, and beams) and are considered as the foundation for the basic equations of atomic physics
(see [1,2] and the references therein). Particular types of NLHPDEs are the Wave and Telegraph equations,
which have wide applications in signal analysis for transmission, communication, and broadcasting of
electric signals [3], random walk theory [4], and wave circulation or propagation [5].
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The second-order NLHPDESs have many applications in mathematical chemistry, mathematical physics,
and mathematical biology, such as chemical kinetics, fluid dynamics, solid state physics, quantum field
theory, optics, atomic physics, and plasma physics.

Due to the aforementioned applications, different numerical techniques have been developed to solve
the important NLHPDESs. These numerical techniques are the finite difference method [6-10], the Galerkin
method [1,11-13], the B-spline collocation method [14], the spectral collocation method [15,16], the Cheby-
shev approach [17], and the wavelet collocation method [2]. Some recent contributions are also reported
in [18-20].

Recently, the research has been focused on the Haar wavelet application in the investigation and
analysis of different problems in applied sciences. Different algorithms based on weak and strong formula-
tions contain the meshless wavelet method [21], the Daubechies wavelet-based method [22], the wavelet
Galerkin method [23], and the wavelet collocation method [24,25]. A thorough introduction of the
wavelet schemes for PDEs is given in [26]. Different scientific and engineering phenomena have been
represented in the forms of ordinary differential equations, integro-differential equations, and PDEs, which
have been solved by Haar wavelets in the references [27-42]. A further development of Haar wavelet is
related to the solution of challenging fractional differential and integral equations [43-47]. The further
extensions of the Haar wavelet approach are presented to solve linear and nonlinear direct problems
[25,48-50] and inverse problems [41,42,51-53]. The latest contribution on Haar wavelets is presented in
[54] for identification of software piracy.

Haar wavelets-based algorithms have also been reported for hyperbolic PDEs. In [55], a second-order

linear hyperbolic PDE has been solved with the Haar wavelet operational matrix method. In [56], az‘i(assf ) has

been approximated by Haar wavelets to just find the numerical solution in the unit interval [0, 1] using some
transformation that converted the governing equation into the system of PDEs.

1.1 The governing equations

Mathematically, the first-order NLHPDE can be presented as follows:

op(s, T) N op(s, T)

+f(p(s, 1)) =g(s,7), a<s<bh, 0<t<T, o))
ot 0s

with the initial and boundary conditions ¢(s, 0) = I(s) and ¢(a, T) = B(1).
The second-order NLHPDE can be written as follows:

%p(s, 7) . %p(s, T)
or? 0s?

99(s, 1)
oT

+f(<p(s, 7), ) =g(s,17), a<s<bh, 0<1<T, 2)

with the initial conditions

09(s, 0)
aT

@(s, 0) = L(s), L(s)

and boundary conditions
p(a, 1) = Bi(1), (b, T) = By(7).

In the above equations, f represents the nonlinear term, g, I, I, b, B, B, and B, are known functions, and ¢
is the only unknown function that is to be determined.

When f (go(s, T), %) = w, equation (2) is known as the damped wave equation, whereas when

f ((p(s, T), %STT)) = w + ¢(s, T), equation (2) is known as the telegraph equation. These damped wave

and telegraph equations have applications like wave phenomena and electric signal propagation in trans-
mission wires. In fact, this partial differential equation is more appropriate than the ordinary diffusion
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equation for representing the reaction-diffusion models in many scientific fields, such as biology, where
biologists come across these types of equations in the development of pulsating blood flow in arteries and
the random motion of bugs along a hedge [57].

If f((p(s, 7), a(pgsr,‘r)) = @(s, T) + @(s, T)¥, where k = 2 or 3, then equation (2) is named Klein-Gordon

equation and can be studied in field theory and relativistic quantum mechanics, which have enormous
significance for physicists [58] and also described dissemination of dislocations in crystals and the activities
of basic particles.

When f((p(s, 1), a‘pésr’ L

importance in a range of relevant fields, such as relativistic field theory and differential geometry, and it
also appears in other related physics topics, including the movement of a rigid pendulum attached to an
expanded cable, the transmission of fluxons in Josephson junctions, the transmission in ferromagnetic
materials of waves taking rotary motions in the course of magnetization, laser pulses in two-state medium
and dislocations in crystals [59,60].

In this article, the potential of Haar wavelets is investigated on the first- and second-order NLHPDESs.
The theoretical convergence is supported by our numerical results in the interval [a, b]. The time and space
derivatives are discretized using finite-difference and Haar wavelets, respectively. Due to the discontinuity
of the Haar functions, the approximation starts from the highest-order derivatives in the model equation. By
further integration of the series, the unknown solution can be obtained. By introducing these approxima-
tions in equation (1) or (2), a system of algebraic equations can be easily solved. The details of the proposed
methods are given in the subsequent sections.

) = sin(¢(s, 7)), equation (2) is classified as Sine-Gordon equation, which has

2 Haar functions

A generalized representation of the Haar functions is defined as follows:

1 for s e[g@), &),
h(s) = -1 for s € [§@), GO),

0 elsewhere,
where
. b - a)k . b-a)k+ 0.5 . b-a) k+1
G =a+ Q, Gl =a+ M, G =a+ w
m m m
Here, m =2, j=0,1,... , represents the level of the wavelet, k = 0, 1,..., m — 1 is the translation para-

meter, and i = m + k + 1. We note thati > 2. We define

) for s e [a,b],
hu(s) = {0 elsewhere,

which is also known as the mother wavelet. To keep the derivations simple, we intend to introduce some
notations for the following integrals fori = 2, 3, 4,...,
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puw)=jm@0dy
0 for s < {(D),
s - ¢ ) for s € [¢,(0), &(0),
s - 4) - 2s - o) for s € [5(0), (D),

s =G - 2As - G@) + (s - GM)  for s> G,

Di(s) = _[pi,l(S’)dS’
a

0 for s < (i),

26 - GO for s € [0, ),
T\516 - 6@y - 265 - o for s e [§0), &),

S = GOP - 2As - (AP + - GOP] for s> (),

and

b
— pi(shas' = L=’
C= Ipl,l(s )ds' = e 3

As p;1(s) is increasing in the interval [{;(7), (i)) and decreasing in the interval [{;(i), (i), but the max-
imum value is at {,(i). Hence,

. b-a
max(p;(s)) = pi1(G0) = (4)
S 2m
It is noteworthy to mention that the following formula has been proved in [61]:
b - 2
max(py o(s)) = -2, 5)
s 4m

3 Haar approximation

As we consider here the first- and second-order NLHPDESs, we approximate them with two different Haar
wavelet collocation methods (HWCMs) in Sections 3.1 and 3.2.

3.1 HWCM for first-order NLHPDE

In this subsection, we consider Haar wavelets as a basic part of our numerical technique for the spatial
discretization of equation (1). To construct HWCM for first-order NLHPDE, we start approximating the first-
order derivative with Haar functions as follows:

ST S MO, ©
S i-1

Integrating equation (6) w.r.t s, from a to s, we obtain
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@(s, 1) = (a, T) + Y A(T)pi(s).

i=1

If 7, be the current time level and 7,,; be the next time level, then equation (1) can be linearized in the
following manner:

aQD(S, Tn+l) + a‘P(S, Tn+1)

+ f(@(s, 7)) = g(S, Tur1)-
or 0s
Using the forward difference approximation for time derivative, we obtain

<p(sa Tn+1) - ‘P(s, Tn) + a(p(s’ Tn+1)
At 0s

+ f(@(s, 1) = g(s, Tos1) — O(AT). (7)

For a Haar wavelet-based numerical solution, we define M = 2/ for some J > 0 and

M
Pu(s, ) = o(a, 1) + Y A(T)pia(s). (8)
i-1
Ifj=J],thenk=2 -1andi=m+k+1=2 +2 —1+1=2x2 =2M (Section 2). Differentiating equa-
tion (8) w.r.t s, we obtain

M

Y AORS).

i=1

a(pM(s, T) _
as

The relationship between exact and approximate representations is

0p(s, ) Opy(s, T) . OEu(s, 1)
ds ds s

(s, T) = @y(s, T) + Ey(s, 7), and

where Ey(s, 1) = Ozo:}li(‘r)pi,l(s) and %: io:)li(r)hi(s).

i=2M+1 i=2M+1
Now the exact form of equation (7) using Haar wavelet is
Pu(Ss Tait) = Py(s, T) N Ey(s, Tre1) — Eu(s, 1) N 0Py (S, Tnv1) + OEm(S, Tus1)
AT AT 0s as
= g(s, Ty1) — O(AT),

Ou(Ss Tor1) — @y(s, T) . 0Py,(S, Tas1)
AT as

+ f(@u(s, 1) + f(Eu(s, 7))

EM(S, Tn+1) - EM(S, Tn)
At

+ f(@y(s, &) = 8(S, Tar1) — O(AT) -

_ M _f(EM(S, Tn))'
ds

(1-0.5)
M

Dropping all the error terms and using the collocation pointss; = a + (b — a) ,1=1,2,...,2M, we have

O (81 Te1) — @S, T) . 0@y, (81, Tus1)

+ f((PM(Sl, Tn)) = g(sb Tn+1)-

AT 0s
Now defining
n g M,n ap?/u e M,n
Plhri= @@ 1) + Y AM"pii(s), and e Y AM sy, ©9)
i=1 i=1
we obtain
Pn+1 _ Pn apm-l
ML_Z ML Z MWL fPyD) = 8(S1 Tar)- (10)

AT 0s

Putting equation (9) in equation (10), we obtain a system of 2M equations with 2M unknowns, which can be
easily solved for A;s, i.e.,
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AN (pia(sp) + Athi(sp)) = Pl + ATg(S1, Tuar) = M (Pl - 9(a, 7). 1)
Equation (11) can be written as follows:

[H Lomxom [X omx1 = [Blamxa (12)

where H is the Haar coefficient matrix,X = [AM*AM-n+1 | AMn+1] §s the unknown Haar wavelet coeffi-
cients, and B is a vector that represents the right side of equation (11). Equation (12) can be easily solved for
X. By inserting X in equation (9), we obtain the desired numerical solution. We define the following
formula to interpolate the solution at any point s:

PiS) = p(a, Tra1) + ZAM "1pia(s),

i=1

then P4 (s) = (s, Tys1)-

3.2 HWCM for second-order NLHPDE

To construct HWCM for second-order NLHPDE, we start by approximating the second-order derivative with
Haar functions as follows:

(o]

= YAO). (13)

i=1

d%p(s, 1)
0s?
Integrating equation (13) w.r.t s, from a to s, we obtain

op(s, T) aq)(a T)
as 0s

Z/l (DPi1(5). (14)

i=1

Integrating equation (14) w.r.t s, from a to b, we obtain

@) _ g0 - pe. §M> .

1
0s b - (15)
Eliminating w from equations (14) and (15), we obtain
Ap(s, )  _ - -
P ) + YADR), 16)

i=1

where W,(7) = W and hi(s) = pi(s) - ﬁ. Again, partially integrating equation (16) w.r.t s, from a
to s, we obtain

@S, T) = W(s, T) + iAi(T)Hi(S),
i=1 (17)
where (s, T) = ¢(a, 7) + (s - AW(1), and h(s) = p;»(s) - (s - a) 3

If 1, be the current time level and 7,,; be the next time level, then equation (2) can be linearized in the
following manner:

aqo(s Tn+1)

32(s, Trs1) . 32p(S, Try1)

o e ACGCRD)

- g(s’ Tn+1)’

where fj is the linearized form of the function f. Using forward difference approximation for time derivative,
we obtain

@S, Tas1) — 20(S, T) + P(S, Tp_1) . 9%p(s, Trs1)
AT? 0s?

= 8(8, Tr1) — O(AT?) - O(AT).

+ filo(s, Tn))( @(S, Ts1) — @(s, rn))

AT (18)
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To find the numerical solution based on Haar wavelet, we define

M
Pu(s, T) = Wo(s, T) + Y A(Thi(s). (19)
i=1
Differentiating equation (19) w.r.t s, we obtain

M

= Y AO).

i=1

M
% = Wy(1) + Y A(Thy(s),

i=1

az(pM(s’ T)
0s?

The relationship between exact and approximate representations are
@(s,T) = @y(s, T) + Ey(s, 1), where Ey(s, 1) = Y A(Dhi(s),
i=2M+1

OFEu(s, T) - =
,  Wwhere ——— = A(Dhi(s),
where == Y. A(Dhi(s)

i=2M+1

0p(s, T)  Oy(s, T) , OEu(s, 1)
as as as

and

Vp(s, ) _ Ppu(S, T OEu(s, 1)
0s? 0s? 0s?

2 o0
SIS _ ¥ MO,

i=2M+1

,  Where

Now, the exact form of equation (18) using Haar wavelet is

(PM(S, Tn+1) - 2<PM(S, Tn) + §0M(S, Tn—l) : azfl’M(S, Tn+1) (PM(S’ Tn+1) - §0M(5, Tn)
At? 0s? At
— 2 —
EM(s, Tn+1) ZEMA(:; Tn) + EM(S, Tn—l) _ 9 EMéz;Tn+l) _ fl(EM(sy Tn))( EM(S, Tn+1)AT EM(S, Tn))

+fi (§0M(S, Tn))(

= g(s, Tn+1) -
- O(AT).
Dropping all the error terms and using the collocation pointss; = a + (b - a)(l’—yg's), 1=1,2,...,2M, we have

(pM(Sl, Tae1) — (PM(SI, To)

(PM(SI, Tn+l) - 2‘PM(51, Tn) + (PM(SI, Tn—l) " a2§0M(519 Tn+1)

+ filgy,(sy, Tn))( ) = g(s1, Tos)-

At? 0s? At
Now defining
M
P = Wolss, To) + ZAiM’nhi(Sl),
i=1
P CL -
a;‘“ = W(t) + Y AMh(s), (20)
i=1
PN, B
== Y AM (s,
S
we obtain
Pnﬂ _ppn 4 pn—l aanJrl pn+1 _ pn
P S 4 PR T | = 88 ) (21)
At 0s At

Putting equation (20) in equation (21), we obtain a system of 2M equations with 2M unknowns as follows:
[Homsom [ X Jomxa = [Blomx1s (22)

where H is the Haar coefficient matrix,X = [AMIAM:n+1  AMn+1] i the unknown Haar wavelet coeffi-
cients and B is a vector that represents the right side of equation (21). The equation (22) can be easily solved
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for X. By using X in equation (20), one can obtain the desired numerical solution. We define the following
formula to interpolate the solution at any point s,

M
PINS) = WolS, Turr) + Y AMMR(s),
i=1

then P17 (s) = (s, Ts1).

3.3 Summary of the algorithms

The algorithm for the first- and second-order NLHPDEs is presented as follows:
Input: N=2M, M =2, J e N,.
Step 1: Compute h;(x), p;1(x) and p;>(x).
Forn =1,..., P, where P is the maximum number of iteration.
Step 2: Construct H and B according to equations (12) or (22).
Step 3: Calculate the unknown Haar wavelet coefficients with the help of

X = HB.

Step 4: Construct an approximate solution from equations (9) or (20).
Output: If the maximum of absolute error is acceptable, then the for loop will end; otherwise, go to
Step 2.

4 Convergence analysis

Let [0, T] be partitioned into 0 = 1y < i<... Tp = T, where P is a positive integer. In this section, we derive
the rate of convergence when ¢(s, 7p) is approximated by the solution given by the numerical method
designed in Section 3.

Theorem 1. Assume that a—‘f, ai:, and a%; exist and are bounded in [a, b] x [0, T]. For any M =2,

J=0,1,2,...,and p =0, 1,... P, where P is a positive integer, if P} (s) is the Haar wavelet solution and
@(s, Tp) is the exact solution, then

1
max [|o(.,7) — Phllio@,p) < O(—) +O(T1), as] — oo and P — oo,
0<p<P M
where AT = maXo<p<p-1(Tp+1 — Tp)-

Proof. For p =1, 2,..., P, we have
loC,1) — Polliowep) < IEmlliog by + 194 (oTp) — Phillicoweb)

where || Eyllz=(q,5) is defined as follows:

Z Aipii(s)

||EM||L°°(a,b) = "(p(-,Tp) - (pM(-’Tp)"L"O(a,b) = max
S |izam+1

It is shown in [61, equation (18)] that A; < 8/2*1. In fact, it can be shown that |A;] < 8/2*! (which should also
have been required in [61]). Therefore,

1
2j+1

[ole)
IEulio@p <B Y

max|p; ().
i=2M+1 S
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By using equation (4), we obtain

|Emllzoca,py < B z

i=2M+1

2]+1 mSaX|Pi,1(S)|

co 2 2

b -
<B( a)];lkzo(zﬁ—l)
_Bb-a Z 1

S+l
2 ga 2

B(b -a) 1  Bb-a

4 20U M

where b - a is the length of the interval, M = 2, and b — a « M when ] — o0, so
Euliapy < O(i)
‘MIL®(a,b) = M .

The second part||g,,(.,7,) — PHllioe,p) is the error due to the time iteration where we used forward difference
approximation, which is the first-order accurate in time, i.e., [l¢,,(.,7,) - PHll < O(A7). O

Theorem 2. Assume that a—‘f, aa—‘f, aa—‘;”, %TVZV, and B;TW exist and are bounded in [a, b] x [0, T]. For any M = 2/,
J=0,1,2,... ,and p =0,1,... P, where P is a positive integer, if P (s) is the Haar wavelet solution and

(s, 1) is the exact solution, then

max lo(, 1) — Phllio@,p) < O(]&I ) + O(AT), as ] — oo and P — oo,
<
where AT = maXo<p<p-1(Tp+1 — Tp)-

Proof. For p =1, 2,..., P, we have
loC,1) — PHlliowp) < 1Eulliogsy + 19y (5Tp) — Philliow,b)»
where || Eyllz=(4,p) is defined as follows:

OZO: Aihi(s)| .-

i=2M+1

||EM||L°°(a,b) = ”‘P(-’Tp) - (pM(-’Tp)”L"O(a,b) = m;':lx

maxlh s)I-

|Emlizo@,p) < B z

}1
12M+12

By using successively equation (17), the triangle inequality, equations (3) and (5), we obtain

Elman<h Y 2,H[max (Pia(s))] + max|(s - @) H
i=2M+1 S -
00 3
<2B(b-ap Y ( ]_1“)
i=2M+1 2
< 28(b - a)? i ZZ( L )3
j=J+1k=0 21+1
00 1\2
—Bb-ar y (=
ﬁ( a) jzlil(zﬁl)

S ol
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The second part [|@,(.,7p) — Plli=(a,p) is the error due to the time iteration where we used a finite difference
approximation that is first-order accurate in time, i.e., [l¢,,(.,7,) - PHll < O(AT). O

5 Test cases

We implement the HWCM by calculating the results of different numerical test problems. The E, error norm
has been used for accuracy measurements, which is defined as follows:

Eo = max (lo(s;, ) — PhiD-
1<I<2M

All results were obtained by “MATLAB R2009b” software on DELL PC Laptop (Intel(R) Core(TM)i3-3110M
CPU 2.40 GHz, 4.0 GB RAM). For all computations, we used CPU time having the unit “second.”

Test Problem 1. We consider the following linear case of first-order hyperbolic equation with
f(p(s, 7)) = @(s, T) in equation (1):

2—f+2—f+<p:g(s,r), a<s<b, 0<71<T,
with the initial and boundary conditions,
(s, 0) = cos(s) and ¢(a, 1) = cos(a + 1),
where
g(s, T) = -2sin(s + 1) + cos(s + T).
The exact solution is given in [1,2]

(s, T) = cos(s + T).

Tables 1 and 2 describe the maximum error, the convergence, and the CPU time. The theoretical rate of
convergence is 1 (Theorem 1), which is in good agreement with the experimental rate of convergence given
in Table 1. The comparison of Haar wavelet-based solution with the exact solution and the absolute error at
different T are shown in Figure 1. From the aforementioned figures and tables, it is concluded that the
proposed HWCM is efficient and accurate.

Table 1: The numerical results at M = 16, a = 0, b = 1, and T = 1 for Test Problem 1. The theoretical rate of convergence is 1
(Theorem 1)

At E.. Experimental rate of convergence
1/10 0.0575 -

1/20 0.0290 0.9843

1/30 0.0195 0.9878

1/40 0.0146 0.9900

1/50 0.0117 0.9915

1/60 0.0098 0.9926

1/70 0.0084 0.9935

1/80 0.0074 0.9942

1/90 0.0065 0.9949

1/100 0.0059 0.9954
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Table 2: The numerical results ata = 0, b = 1, and T = 1 for Test Problem 1 with different M

m E.. CPU time
(At = 0.01)
1 1.579 x 1072 0.5020
2 6.605 x 1073 0.5312
4 5.791 x 1073 0.6467
8 5.851 x 1073 0.8029
16 5.890 x 1073 1.5616
(At = 0.001)
1 1.389 x 1072 0.5855
2 4.005 x 1073 0.7357
4 1.112 x 1073 1.1304
8 6.208 x 1074 3.0479
16 5.905 x 10~ 7.2140
M = 64 and s € [—10, 10] M =16 and s € [0, 1]
B
5
84
=
[
24
= |
=
3
o2
1
iE P P 5 P ow P .
10 g8 -6 4 2 0 2 4 B g8 10 i
s s

Figure 1: Numerical solutions for Test Problem 1 at different T with At = 0.01.

Test Problem 2. Now considering the following first-order NLHPDE with f(¢(s, 1)) = sin(¢(s, 7)) in
equation (1):

a—(p+a—(p+sin((p)=g(s,‘r), a<s<b, 0<7t<T,
or 0s

with the initial and boundary conditions,
¢(s,0) =sin(s) and ¢(a, 1) = sin(a - 1),
where
g(s, ) = sin(sin(s — 1)).
The exact solution is
(s, T) = sin(s — 1).

Tables 3-6 illustrate the maximum error, the convergence, and the CPU time, where the accuracy of the
solution depends on parameters M and Ar. The theoretical and experimental rates of convergence are
inline, i.e., 1 (Theorem 1 and Table 6). The maximum errors forT < 10 and T > 10 are given in Tables 3 and 4,
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Table 3: The numerical results at M = 16, a = 0, b = 1, and At = 0.01 when T < 10 for Test Problem 2

T 1 2 4 6 8 10
E. 6.115 x 1073 2.112 x 1073 6.610 x 1073 4.947 x 1073 1.717 x 1073 6.808 x 1073
CPU time 1.060 1.988 3.982 5.954 7.913 9.852

Table 4: The numerical results at M = 16, a = 0, b = 1, and At = 0.01 when T > 10 for Test Problem 2

T 20 40 60 80 100
E. 5.624 x 1073 3.078 x 1073 6.477 x 1073 3.727 x 1073 4.122 x 1073
CPU time 12.550 26.065 38.383 50.015 62.849

Table 5: The numerical results ata = 0, b =1, and T = 1 for Test Problem 2 with different M

M E. CPU time E. CPU time
(At = 0.01) (AT = 0.001)

1 1.402 x 1072 0.050 1.485 x 1072 0.138

2 7.530 x 1073 0.093 5.070 x 10-3 0.252

4 6.410 x 1073 0.111 1.455 x 1073 0.733

8 6.146 x 1073 0.315 7.933 x 1074 2.606

16 6.115 x 1073 1.060 6.649 x 1074 7.084

Table 6: The numerical results at M = 16,a = 0, b = 1, and T = 1 for Test Problem 2. The The theoretical rate of convergence is 1
(Theorem 1)

At E. Experimental rate of convergence
1/10 0.0562 —
1/20 0.0291 0.9492
1/30 0.0197 0.9621
1/40 0.0149 0.9682
1/50 0.0120 0.9717
1/60 0.0100 0.9739
1/70 0.0086 0.9754
1/80 0.0076 0.9764
1/90 0.0067 0.9771
1/100 0.0061 0.9775

and the algorithm gives stable results for T > 10. From these tables, it is concluded that as the resolution M
increases and At decreases, the accuracy of the proposed HWCM also increases.
Test Problem 3. We consider the following first-order NLHPDE with f(¢(s, 7)) = e?S? in equation (1)

a—(P+a—(p+e‘/’=g(s,r), a<s<bh, 0<71<T,
oT as

with the initial and boundary conditions,

@(s,0)=s*>-s and ¢, 1)=a’>-a+T,
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where
g(s, T) = 25 + e'-s+),
The exact solution is
o, T) =82 - s +T.

In Tables 7 and 8 the maximum error, the convergence, and the CPU time are displayed, where the
precision of the solution depends on M and Ar. The theoretical and experimental rates of convergence are
aligned, i.e., 1 (Theorem 1 and Table 8). Figure 2 depicts the space-time graph of approximate and exact

Table 7: The numerical results ata = 0, b = 1, and T = 1 for Test Problem 3 with different M

M E.. CPU time E.. CPU time
(AT = 0.02) (AT = 0.001)

1 4,499 x 1072 0.148 4,205 x 1072 0.231

2 1.439 x 1073 0.284 1.243 x 1073 0.435

4 8.217 x 1073 0.295 3.522 x 1073 0.934

8 7.714 x 1073 0.482 9.917 x 1074 2.719

16 7.625 x 1073 1.136 8.042 x 1074 10.030

Table 8: The numerical results at M =16,a = 0, b = 1, and T = 1 for Test Problem 2. Theoretical rate of convergence is 1

(Theorem 1)

At E.. Experimented rate of convergence
1/10 0.0765 -
1/20 0.0379 1.0103
1/30 0.0253 1.0021
1/40 0.0189 0.9991
1/50 0.0151 0.9974
1/60 0.0126 0.9962
1/70 0.0108 0.9953
1/80 0.0095 0.9946
1/90 0.0084 0.9939
1/100 0.0076 0.9933

Figure 2: The 3D plots for Test Problem 3 at M = 16, T = 1, and At = 0.01.
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Figure 3: Comparison of exact and numerical solutions for Test Problem 3 at different T with M = 16 and At = 0.01.

solutions. The comparison of numerical and exact solutions at different T are also given in Figure 3. From
these tables and figures it is concluded that the proposed HWCM can easily and accurately handle the first-
order NLHPDE with various types of nonlinear terms.
Test Problem 4. We consider the following dissipative second-order NLHPDE [3,62]:
dp o Ap

—L _ L )
+<pa‘r

= (? - 1 - 2sin(ns) sin(t)) sin(;is) cos(t), 0<s<1, 0<t<T,
or>  0s?

with the initial conditions,

0p(s, 0) _

0,
oT

¢(s, 0) = sin(rs) and

and the boundary conditions
@0,7)=0=¢1,1).
The exact solution is
(s, T) = sin(7s) cos(T).

The 3D contours of exact and numerical solutions are compared in Figure 4, where the peaks appear by
increasing the time T. The absolute errors are calculated for various time T = 1, 7, 9, 12, 15, and 19 and are
presented graphically in Figure 5. In Table 9, we fixed At = 0.0001 for different values of M to check the
spatial convergence of the HWCM, and it has been found that the theoretical and experimental rates of
convergence for the space variable are in good agreement, and the CUP times are also shown. In Table 10,
we fixed M = 16 and T = 1 for different At to check the time variable convergence, where the theoretical and
experimental rates of convergence for the time variable are also in good agreement. Hence, the HWCM is
convergent and efficient.

Test Problem 5. We consider the following Klein-Gordon equation with two different cases as a
challenging problem [63,64]:
az—(p—afaz—(p+a1<p—b1(p3=0, -10<s<10, 0<t<T, (23)
or? 0s?
where a;, b; € R, and a;b; # 0.

Case (i) (Single-soliton wave): Equation (23) represents a single-soliton wave if the initial condi-
tions are

(p(s’ O) = ASE‘Ch(Bs) and w
T

= c,ABsech(Bs) tanh(Bs),
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Numerical Solution
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Figure 4: The 3D contour plots for Test Problem 4 at M = 16.
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Figure 5: The absolute error for Test Problem 4 at different T with M = 16 and At = 0.01.

and the boundary conditions are

(0, 7) = Asech(B(-10 - c,r)) and (1, 7) = Asech(B(10 - c,1)).
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Table 9: The numerical results at At = 0.0001,a = 0,b = 1, and T = 1 for Test Problem 4. The theoretical rate of convergence is
2 (Theorem 1)

M E.. Experimental rate of convergence CPU time (second unit)
1 7.5329 x 1072 - 2.7428

2 3.0358 x 1072 1.3111 5.6209

4 8.3629 x 1073 1.8600 11.1650

8 2.0812 x 1073 2.0065 24.4861

16 4.5977 x 1074 2.1784 415712

Table 10: The numerical results at M = 16,a = 0, b = 1, and T = 1 for Test Problem 4. The theoretical rate of convergence is 1
(Theorem 1)

At E.. Experimental rate of convergence CPU time (second unit)
1/10 7.5368 x 1072 - 1.3518
1/20 3.9613 x 1072 0.9279 1.4755
1/30 2.6765 x 1072 0.9669 1.8109
1/40 2.0146 x 1072 0.9874 2.3692
1/50 1.6110 x 1072 1.0019 2.7356
1/60 1.3391 x 1072 1.0137 3.1376
1/70 1.1435 x 1072 1.0241 3.6975
1/80 9.9613 x 1072 1.0336 4.1004
1/90 8.8100 x 1072 1.0427 4.5785
1/100 7.8861 x 1072 1.0514 5.0365

The exact solution is
(s, T) = Asech(B(s — ¢,1)),

where A = 2"1 ;B = az = a, by, a1 c > 0; ¢, represents the velocity, and A is the wave amplitude. In
our computatlon we ﬁave considered a; = 0.3, b; =1 and ¢, = 0.25.

Case (ii) (Double-soliton wave): Equation (23) represents a double-soliton wave if the initial condi-
tions are

@(s, 0) = Asech[p,(s - x,)] + Asech[p,(s - X,)] and

ap(s, 0)

et au,Asech[p, (s — x,)] tanh[p, (s — x,)] + cpAsech[p,(s — X,)] tanh[p,(s — %,)],

and the boundary conditions are
¢(-10, 7) = Asech[p,(-10 - x,) — a1] + Asech[pu,(-10 - %,) — o] and
®(10, 7) = Asech[,(10 - x,) — at] + Asech[},(10 - X,) — &1].
The exact solution is
@(s, T) = Asech[u,(s - x,) — ar] + Asech[p,(s - X,) - o1],

where A = zb—“ll is the wave amplitude; p, = af 75 M = af 7 and ay, by, a? — ¢, a? - ¢ > 0. In our com-
putation, we have considered ¢; = 0.3, b; =1, = -¢, = 0. 25 X, = =2, and X, = 2.

In Figure 6, the Haar wavelet based numerical solution is presented at different T and At by fixing M,
where the HWCM has easily captured the single soliton and there does not seem to be any blow-up
phenomenon.
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Figure 6: The numerical solution for Test Problem 5(i) at M = 512.

In Figure 7, the high resolution-based numerical solution is shown, where the HWCM captured the
double soliton and also there does not seem to be any blow-up phenomenon, therefore the HWCM is stable.
This example also illustrates the validity and capability of the proposed HWCM.

Figure 7: The numerical solutions for Test Problem 5(ii) at T = 1, M = 512, and At = 0.01.
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Figure 9: The 3D plots for Test Problem 6 at M = 16.
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Test Problem 6. We consider the following Sine-Gordon equation as a special case of second-order
NLHPDE

2 2
9% 99 . Gin(@)=0, -20<s5<20, O<t<T

or?  0s?
¢, sinh| ——
J1-¢2

cosh| =£—
J1-¢2

The initial and boundary conditions can be obtained from the exact solution. For our numerical calculation,
we have considered the velocity ¢, = 0.5.

This Test Problem is challenging and represents the collision of two Sine-Gordon kink solitons. In
Figure 8, the comparison of the exact and numerical solutions for different time T = 0.1, 5, 10, and 20 are
shown and the collision of kink solitons can be clearly observed. The 3D view of the numerical and exact
solution up to T = 8 is presented in Figure 9. In Table 11, we fixed At = 0.0001 for different values of M to
check the spatial convergence of the HWCM, and it has been found that the theoretical and experimental
rates of convergence for the space variable are in good agreement. The numerical results at M = 16 and
T = 1 for different At are given in Table 12, where the theoretical and experimental rates of convergence for
the time variable are also in good agreement in this case.

The exact solution is given in [63]

(s, T) = 4tan!

Table 11: The numerical results at At = 0.0001,a = 0,b = 1, and T = 1 for Test Problem 6. The theoretical rate of convergence is
2 (Theorem 1)

M E.. Experimental rate of convergence CPU time (second unit)
1 4.5990 x 1073 - 2.4199
2 2.3806 x 1073 0.9499 5.4584
4 6.9063 x 1074 1.7853 15.5490
8 2.0234 x 1074 1.7710 55.3128

Table 12: The numerical results at M = 16, a = 0, b = 1, and T = 1 for Test Problem 6. The theoretical rate of convergence is 1
(Theorem 1)

At E.. Experimental rate of convergence
1/10 0.0562 -

1/20 0.0261 0.9721

1/30 0.0175 0.9847

1/40 0.0132 0.9893

1/50 0.0105 0.9917

1/60 0.0088 0.9932

1/70 0.0075 0.9942

1/80 0.0066 0.9949

1/90 0.0059 0.9954

1/100 0.0053 0.9958
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6 Conclusion

In this work, we have proposed the HWCM for the numerical solution of the first- and second-order
NLHPDESs. The E,, error norm and the rate of convergence show that the proposed numerical method is
accurate and applicable to solve NLHPDEs. Considering the different types of nonlinear equations discussed
earlier, we may conclude that the proposed HWCM is practical, efficient, and effective for solving the first-
and second-order NIHPDEs numerically. Due to the high potential achievements of the HWCM, the current
scheme can be implemented to 2D and coupled NLHPDEs. These topics are the focus of our forth-
coming work.
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