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Abstract: The primary goal of this research is to investigate the approximate numerical solution of varia-
tional inequalities using quasimonotone operators in infinite-dimensional real Hilbert spaces. In this study,
the sequence obtained by the proposed iterative technique for solving quasimonotone variational inequal-
ities converges strongly toward a solution due to the viscosity-type iterative scheme. Furthermore, a new
technique is proposed that uses an inertial mechanism to obtain strong convergence iteratively without the
requirement for a hybrid version. The fundamental benefit of the suggested iterative strategy is that it
substitutes a monotone and non-monotone step size rule based on mapping (operator) information for its
Lipschitz constant or another line search method. This article also provides a numerical example to
demonstrate how each method works.
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1 Introduction

The primary goal of this article is to investigate the iterative methods used to approximate the solution of
the variational inequality problem (VIP) using quasimonotone operators in any real Hilbert space. Let & be a
real Hilbert space and M be a nonempty convex, closed subset of &. Let K : & — & be an operator. A
problem (VIP) for K on M is described as follows [28]:

Find r* ¢ M suchthat (K(*),y - r*) >0, Vye M. (VIP)

To validate the strong convergence, it is assumed that the following requirements are met:
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(K1) The solution set for problem (VIP) is denoted by VI(M, K) and it is nonempty.
(K2) An operator K : & — & is said to be quasimonotone such that

(7((}’1), y2 - y1> > 0 = <7((y2)9 y2 - Y1> = 0’ V)/p y2 € M'
(K3) An operator K : & — & is said to be Lipschitz continuous with constant L > 0 such that
1K (y) = Kyl < Llly, = woll, Yy, ¥, € M.

(K4) An operator K : & — & is said to be sequentially weakly continuous, i.e., {K(u,)} weakly converges
to K(u) because each sequence {u,} weakly converges to u.

It is well recognized that the problem (VIP) is a crucial problem in non-linear analysis. It is a key
mathematical model that integrates a number of important concepts in applied mathematics, such as a non-
linear system of equations, optimization conditions for problems with the optimization process, comple-
mentarity problems, network equilibrium problems, and finance (see for more details [15,18-21, 26,30]). As
a result, this concept has several applications in mathematical programming, engineering, transportation
analysis, network economics, game theory, and computer science.

The regularized approach and the projection method are two popular and generic methods for solving
variational inequalities. It should also be mentioned that the first technique is most usually used to deal
with variational inequalities accompanied by the monotone operator class. In this method, the regularized
subproblem is strongly monotone, and its unique solution is obtained more conveniently than the initial
problem. In this article, we will look into projection methods that are well known for their ease of numerical
computation.

Furthermore, projection techniques can be used to find a numerical solution to variational inequalities.
Many researchers have created original projection methods to solve various types of variational inequalities
(for more details, see [5-8,12,14,17,22,23,25,27,29,31,38] and others in [3,4,9-11,16,32-36]). All techniques
for resolving the (VIP) problem are focused on computing a projection on the appropriate set M. Korpe-
levich [22] and Antipin [1] introduced the equivalent extragradient method. Their method is as follows:

U € M,
Yo = Pulun — pK(un)l, 1)
Upi1 = PM[un - p(]((yn)]y

where0 < p < % In keeping with the previous technique, we used two projections on the underlying set M
for each iteration. Indeed, if the feasible set M has a complicated structure, the method’s computing
efficiency may decrease. This section will go through various methods to obtain through this limitation.
In the study by Censor et al. [12], the subgradient extragradient technique was first used. The following
strategy is used in this technique:

u € M,
Yo = Puluy — pK(up)l, )
Uns1 = Pg [u, — pK(y)1,

where 0 < p < % through
En=1{z€&: Uy — pK(Un) ~ Yp 2 — ¥) < O}

Tseng’s extragradient technique [31], which uses only one projection every iteration, is another notable
method that does not require two projections. The following strategy is used in this technique:

uleM,

yn = PM [un - pq((un)], (3)
Upi1 =Y + p[(]((un) - ‘K(y,,)],

where 0 < p < % It is important to note that the previous techniques have two main flaws: a fixed step size
rule that is reliant on the Lipschitz modulus of the cost operator and a weakly converging iterative
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procedure. The Lipschitz modulus is frequently uncertain or difficult to calculate. A fixed step size limita-
tion that impacts the method’s efficacy and speed of convergence may be difficult to explain theoretically.
Additionally, in the situation of an infinite-dimensional Hilbert space, the investigation of a strongly
convergent iterative sequence is crucial.

The gradient projection technique was the first well-established projection method for determining
variational inequalities, and it was followed by numerous additional projection methods, including the
well-known extragradient approach [22], the subgradient extragradient methods [12,13], and others
[14,17,25, 31,39]. The aforementioned methods are used to solve variational inequalities using monotone,
strongly monotone, or inverse monotone. Furthermore, while generating approximation solutions and
determining their convergence, fixed or variable step sizes frequently depend on the Lipschitz constants
of the operators. This can limit implementations since, in some cases, some parameters are unknown or
impossible to estimate.

The purpose of this research is to look at variational inequalities using quasimonotone operators in
infinite-dimensional Hilbert spaces. Furthermore, this study shows that the iterative sequences generated
by all four subgradient extragradient algorithms strongly converge to a solution. Subgradient extragradient
methods use both monotone and non-monotone variable step size rules. The study of inertial algorithms is
also presented, which typically enhances the efficiency of the iterative sequence. The article’s main con-
tribution is that it investigates explicit monotone and non-monotone step size rules using inertial schemes
and achieves strong convergence.

This article is written as follows. Section 2 provides preliminary results. Section 3 describes four novel
methods and their convergence analysis. Finally, Section 4 provides some numerical findings to explain the
practical efficiency of the proposed methods.

2 Preliminaries

This section contains various important identities as well as significant lemmas. Let us define the fol-
lowing set:

VIIM, K), ={r e M : M@,y —r) >0, Vye M}
For any u, y € &, we have
lu +yIP = lul® + 2¢u, y) + lylP.
A metric projection Pp(y,) of y, € & is described by:
Py(yp) = argmin{lly; - y,ll : y, € M}

Lemma 2.1. [2] Suppose that Py, : & — M is a metric projection. Then, the following conditions are satisfied:
(1) e3 = Py(ey) if and only if

(e —e3,e,—e3) <0, Ve, e M,

)

IN

ler — Py(e)l? + IPvi(er) — eal® < lley — eal’, e e M, e; € Z,

3

llet — Py(edll < lles —eall, ey e M, e el
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Lemma 2.2. [37] Let {p,} c [0, +00) be a sequence such that
DPne1 £ (1= @)Pn + Gulny Y €N,
Moreover, two sequences {g,} ¢ (0, 1) and {r,} ¢ R such that

+00
lim g, =0, ) gn=+c0 and limsupr, <O.
n—+oo n=1 n—+oo

Then, lim,,_, ,,,pn = O.

Lemma 2.3. [24] Let {p,} be a real sequence, and there exists a subsequence {n;} of {n} such that
DPn; < DPngy for all i € N.

Then, there exists a non-decreasing sequence my c N such that my — +oo as k — +o0o, and satisfying the
following inequality for k € N:

Pmy < Py and Pk < Pmys-

Indeed, my = max{j < k : p; < pj.1}.

3 Main results

In this section, we propose four new methods to solve quasimonotone variational inequalities in a real
Hilbert space and prove strong convergence results for the proposed method. The first and second methods
involve a monotonic self-adaptive step rule to make the algorithm independent of the Lipschitz constant.
Letg : & — & be a strict contraction function through constant & € [0, 1). The main algorithm is as follows:

Algorithm 1 (Explicit monotonic viscosity-type subgradient extragradient method)

Step 0: Let u; € M, p € (0,1) and p, > 0. Moreover, sequence {y,} ¢ (0, 1) such that

lim y,=0 and Y %y, = +co.

n—+oo

Step 1: Compute

W= Pri(un - P,ﬂ((un))-

If u, = y,, then STOP. Otherwise, go to Step 2.

Step 2: Construct a set &, = {z € & : (U, — p, K(un) - ¥, 2 - ¥, < 0} and evaluate
tn = Pg,(Un — p,K(¥p))-

Step 3: Calculate

Un+1 = yng(un) + (1 - yn)tn-

Step 4: Calculate

. M un =yl :
min {pn, m} if K(un) # K,

Pn else.

pn+1 = (4)

Set n := n + 1s and go back to Step 1.

Lemma 3.1. A step size sequence {p,} generated in (4) is decreasing monotonically with a lower bound
min{%, Po} and converges to a fixed p > 0.

Proof. It is obvious that {p,} is a monotone and non-increasing sequence. It is given that operator K is
Lipschitz continuous with a constant L > 0 such that
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[K () = Kyl < Lllug = y,ll.
Let K(u,) #+ K(y,) such that

Ml =yl Bl =l
17CCu) = KO~ Lty =yl ~

U
T (7)

As a result of the aforementioned expression, {p,} has a lower bound of min{%, Po}. Moreover, there exists
p > 0 such that lim,_,p, = p. O

Algorithm 2 (Inertial monotonic explicit subgradient extragradient method)

Step 0: Let up, u; € M, p € (0, 1) and p, > 0. Moreover, {y,} c (0, 1) such that

lim y,=0 and Y, %y, = +oo.
n—+oo

Step 1: Evaluate s, = uy + X,,(Un — Un-1) — ¥, [un + X,,(Un — un-1)], where y, such that

. X &n .
minsz, — lf u Un_
{z’ ||un—un-1||} n # Un-1s

0<X,<f, and J,= ®)
)21 else,

with positive sequence &, = - (y,) such that lim,,_woo‘;—: =0.

Step 2: Compute

Yo = Pu(sp - Pn7<(5n))-

If u, = y,, then STOP. Otherwise, go to Step 3.

Step 3: Construct a set &, = {z € & : (s, — p,K(Sn) - ¥» Z — ¥ < O} and evaluate

Un+1 = Pg,(Sn — P K(¥,)).

Step 4: Calculate

. Bl Sn—yal ;
min {pn, m} if K(sn) # K3,

Pn else.

pn+l = (6)

Setn :=n + 1 and go back to Step 1.

Algorithm 3 (Non-monotonic explicit viscosity-type subgradient extragradient method)

Step 0: Letu; € M, p, > 0, u € (0, 1) and choose a non-negative real sequence {¢,} such that ) ¢, < +oo.
Moreovet, {y,} ¢ (0, 1) such that

lim y,=0 and Y %y, = +oo.
n—-+0o

Step 1: Compute

Yo = Pr(un = p, K(un)).

If u, = y,, then STOP. Otherwise, go to Step 2.

Step 2: Construct a set &, = {z € & : (up, — p,K(uyn) - ¥, 2 - y,) < 0} and evaluate
tn = Pg,(Un — p, K(¥,))-

Step 3: Calculate uy.q = y,8(un) + (1 - ytn.

Step 4: Calculate

. ulun =yl .
min {pn * P ||7<(un)—f1<(yn>u} if Klun) # Ky,

P+ @, else.

n+l =

®)

Setn :=n + 1 and go back to Step 1.
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Algorithm 4 (Inertial non-monotonic explicit subgradient extragradient method)

Step O: Let up, u; € M, p € (0, 1), p; > 0 and choose a non-negative real sequence {¢,} such that
Y @, < +0o. Moreover, {y,} c (0, 1) such that

lim y,=0 and Y %y, = +co.

n—+oo

Step 1: Evaluate s, = u, + X,,(Un — Un-1) — V,[un + X,(Un — un-1)], where y, such that

. R min{%, L} if u, + up_1,
0 < XYl < Xn and Xn = llun = n-1l (9)

3 else,

with positive sequence &, = - (y,) such that limn_>+ooi—" =0.

Step 2: Compute

yn = PM(SYI - pn(]((sn))‘

If u, = y,, then STOP. Otherwise, go to Step 3.

Step 3: Construct a set &, = {z € & : (s, — p,K(Sn) — ¥, 2 — ¥,y < O} and evaluate
Un+1 = PS,,(Sn - Pn‘K(yn))

Step 4: Calculate

i Ml sn =yl .
min {Pn + Oys m} if K(sp) # Ky,

Pp + @, else.

pn+1 = (10)

Setn :=n + 1 and go back to Step 1.

Lemma 3.2. A sequence {p,} generated by expression (8) is convergent to p and satisfying the following
inequality:

min{%,pl} <p<p +P whereP= Y g.

n=1

Proof. Due to the Lipschitz continuity of a mapping %, there exists a fixed number L > 0. Let K(u,) # K(y,)
such that

O B e
I176Cu) = KON~ Lty =y, ~ L

)
By using mathematical induction on the definition of p,,;, we have
min | £ < P
L ’ p] = pn S pl + P
Let
[er-l - pn]+ = max{0, p,,; — Py}
and

[pn+1 - pn]_ = max{0, _(pm-l - pn)}

From the definition of {p,}, we have

+oo +00
Z(pm-l - pn)+ = z max{oy Pn+1 - pn} < P < +00. (12)

n=1 n=1
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That is, the series Y *}(,,; — p,)" is convergent. Next, we need to prove the convergence of Y *1(0,,1 — Po) -
Let Y21 (Pps1 — P,)~ = +00, due to the reason that

Prs1 = Pn = (pn+1 - pn)Jr - (pn+l - pn)i'
Thus, we have
k k k
Prs1 —P1 = z (pn+1 - pn) = Z(prwl - pn)Jr - z(pnﬂ - pn)i' (13)
n=0 n=0 n=0
By allowing k — +co in expression (13), we have p, — —oo as k — oo. This is a contradiction. Due to the
convergence of Z’;:O(p,l+1 - p,)"and Z’;:O(pn+1 - p,)” as k — +oo in expression (13), we obtain lim,_,.,p0, = p.

This completes the proof. O

Lemma 3.3. Let the mapping K : & — & satisfy conditions (K1)-(K4). For any r* € VI(M, K),, we have

It — 712 < g — PP — (1 - ﬂ)uun —yl? - (1 _ B ")utn —ylP.

n+1 n+1

Proof. Let us consider that

ity = 7*1% = |Pg [un — p, Ky )] — 111
= Pg,[un = p, Ky + [un = p, Ky )] = [un — p, K] - r*II?

14
= [un = p, K] = I + |Pg,[un — p, K(¥)] = [un = p, K(y)II? )
+ 2Pg,[un — p, K] = [un = p KWL [Un — p, Kyl = 1.
By using r* € VI(IM, K), c &,, we obtain
1P, [un = P, KY)] = [t = p, KDII? + (Pe,[tn = p, K] = [ttn = p, K], [Un = p, K(¥)] = 1) (15)

= (lun — p,K(¥ = Pe,lun = p Ky, 1 = Pe,Jun — p,K(y,)]) <0,
which implies that
(Pe,lun = p K] = [un = p K1, [un = p K] = 1) < =l1Pg,[un = p, K] = [un = p, K% (16)
Combining (14) and (16), we obtain

tn = T <llun = P, K() = 717 = I1Pg,[un = p,K(Y)] = [un — p, K(y)III?

<lun = 1P = llun = tall® + 20,(K (), 7* = ta). an
Since r* € VI(M, K),, we have
(K@*),y —r*y >0, forall ye M.
Thus, the aforementioned expression implies that
(K(y),y —r*) =20, forall ye M.
By using y =y, € M, we obtain
(KW)s Yo = 77 2 0.
Thus, we have
(KYp)s 1 = ta) = (KYp)s 1 = V) + {KW)s Y = ) < (KW Yy — ) (18)

Combining expressions (17) and (18), we obtain
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ity = 71> < llutw = 717 = llun — tall* + 20, (K5 ¥ — tw)
<l = 717 = llun = ¥, + ¥, = Gl + 20KV, ¥y — t0) (19)
<l = 7717 = llun = YI? = Iy, = tall? + 2Qun — P, KY) = Vs ta — V)
Note that t, = Pg,[un, — p, K(¥,)] implies that

2y = P, KV = Yoo = Vi) = 2y = P, KWn) = Yo ta = Vo) + 20,(KWn) = Ky tn = V)

P
<200 1KG) = KON = % o0
< By — i + PPt - .

n+1 n+1

Combining expressions (19) and (20), we obtain

* * p
ity = I < llutn = 717 = llun = YI? = Ny, — al* + —[pllun — Y, P + plitn = y,l]
n+1

) Hp, Hp,
<llup - | - (1 - —")Ilun o (1 - — )”tn -Vl

pn+1 n+1

(21)

O

Lemma 3.4. Let the mapping K : & — & satisfy conditions (K1)—(K4). If there exists a subsequence {un,}
weakly convergent to il and limy_,|lun, — ¥, Il = 0, then i € VI(M, K).

Proof. Since {u,, } is weakly convergent to & and limy_,llun, — Yol = O, the sequence {ynk} is weakly con-
vergent to i. Next, we need to show that it € VI(M, K). Thus, we have

Yo = Pm [unk - pnk(]((unk)]’
which is equivalent to
(Uny, = P K(Un) = Voo ¥ = Vo) <0, Yy € M. (22)
The aforementioned inequality implies that
U, = Yoo ¥V = Vo) < P (K (n ), ¥ = Y)» VY € M. )

Thus, we obtain
1
=, = Yoo ¥ = Yn) + (K () Y = Un) < (K(un)sy = ), ¥y € M. (24)
ng

By the use of min{%, P} < p < p, and {up,} is a bounded sequence. It is given that limy._, o /lun, — Yol =0 and
k — oo in (24), we obtain

likminf (‘K(unk), y—up) =20, VyeM. (25)
Moreover, we have
(K )> Y = Vo) = (K,) = Kty ), ¥ = ) + (K (un)s ¥ = Un) + (K ) Un = Y- (26)

Since limy_, oo[ltn, — ¥, Il = 0 and K is L-Lipschitz continuity on &, we obtain
lim 15 (un ) = Ky )l = 0. 7)
From expressions (26) and (27), we obtain

likminf (‘K(ynk), Y=Yy 20, VyeM. (28)
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For the continuity of demonstration, let us take a positive sequence {&;} that is decreasing to zero. For every
{ex}, we denote by my the positive smallest integer in order that

(‘K(um), Y —Up) +& >0, Vi>my. (29)

Since {&;} is decreasing, it is easy to observe that the sequence {my} is increasing.
Case I: If there exists subsequence {u,, } of {un,, } such that K(un,, ) = 0 (¥j). Let j — co, we obtain
] ]

(K@), y = ) = lim (K(un,, ),y = ) = 0. (30)

Thus, i € M and imply that & € VI(M, K).
Case II: If there exists a fixed number Ny € N such that for all ny, > No, K(uy,, ) # 0. Consider that

‘K(u,,Mk)

= 5> vn > No. (31)
K )P
Due to the aforementioned definition, we obtain
(K (ttny,)> Yo =1, Vit = No. 32)

Moreover, using expressions (29) and (32), for all n,, > Ny, we have

(‘K(u,,,nk), y + skY,,Mk - un,"k) > 0. (33)
Since K is quasimonotone, then
(K(y + SkYn,,,k), y + &Yn,, — Un,) > 0. (34)
For all n,,, > Ny, we have
(K3 y = Uny,) 2 (KY) = K + &N )s Y + &Ny, — Uny) — ECKY)s Y- 35)

Since {uy,} converges weakly to ii € M through K is weakly continuous on the set M, we obtain {K(un,)}
converges weakly to K{(it). Let K(#i) +# 0, we have

ITEI < liminf % (un, )1 (36)

Since {uy,, } € {un} and limy_, & = 0, we have

. . & 0
0= Jim leon | = Jim, ||7<(uimk)|| < @y~ ° (37)
Next, letting k — oo in expression (35), we obtain
(K(y),y — ) 20, Vy e M. (38)
Consider the case when u € M is an arbitrary element and O < p < 1. Thus, we have
i, =pu + (1-p). (39)
Then, ﬁ,, € M, and from expression (38), we have
p(K@y), u — 01y > 0. (40)
Hence, we have
(K({y), u - @) > 0. (41)

It is clear from equation (41) that

(K@), u - 1) > 0. (42)
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Hence, ti € VI(M, K). This completes the proof of lemma. O

Theorem 3.5. Let the mapping K : & — & satisfy conditions (K1)-(K4). Then, {u,} generated by the
Algorithm 1 strongly converges to r* = Pyim,) © g(r*).

Proof. Since p, — p, there exists a fixed number ¢ € (0, 1 - u) such that

lim(l—y—p"):l—y>s>0.

n—co Pri1

Therefore, there exists a fixed number M; € N such that

(I—H—p”)>e>0, vn > M. (43)
pn+1
From expression (21), we obtain

Ita = 717 < llun — 7*IP, Vn = M. (44)

It is given that r* € Q and due to the fact that g is a contraction with & € [0, 1), we have

ltnsr = 71 = 1y,8Wn) + (1 = ytn = 1°l
=y [8(un) — 1] + (1 = yIltn — 7]l
=y [8(un) + 8(r") — 8(r*) = '] + (1 = y)ltn — 11l (45)
< Yallgn) = 8Ol + ylg(r) — il + (1 = y)litn — 77l
<Vbllun — vl + yllgr) =l + (1 = yllty = 7.

Combining expressions (44) and (45) and y, c (0, 1), we obtain
tnsr = 1 < V€l — 11 + v llg(r) = Il + A = yllun — 1|

S[1 g+ Bl 1 - 1B

1-4)
< max{||un -, w} (46)
1-4)
_ 180 — 7
SmaX{IIMMl I, ) }

Therefore, we conclude that {uy,} is a bounded sequence. By using expression (21), we have

||un+1 - r*”2 = ”yng(un) + (1 - yn)tn - r*||2
=y lgun) — ] + A = ylt, — r*]II?
=yllgun) — P + @ = ylta — 717 = y,(1 = yllg(un) — tall?

< ylgu) - 2 + (1 - yn)[uun T (1 - ﬂ)nun —ylP - (1 _ Bon )ntn - ynuZ] “7)

n+1 n+1

- yn(l - yn)"g(un) - tn"2

< ylgQun) — I + lug — I — (1 - y,,)(l _ Bon )nun Syl - - yn)(l - "p")ntn 2.

n+1 n+1

The aforementioned expression implies that

1- yn)(l - Hon )"un =Yl + - yn)(l - Lo )”tn = Yll” < VallgQun) = I + llun = I = llupar = 1P, (48)

n+1 n+1

By using expression (44), we obtain
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ltner = 712 =y, 8(un) + A = y )tz — 12
= llylg@n) — ] + A = ylta - 71112
< (1 =y lte = 1% + 2y,(8(un) — 7%, (1 = ylta — 1*] + yilg(un) — r*])
= (1 = y)2ltn = 11 + 2y,(8(un) — g(r*) + () — 1", Uy — 1)
= (1 = y)lta = 1% + 2y,(8(un) — 8(r™), Uns1 — 1) + 2,(&(r") — 1", Upyy — 1)

< (1 =y lte = 1% + 248 lun — rllltnes = 71 + 2,48(r*) = 1%, Uiy — %) (49)
<L+ Y7 = 2l = 112 + 2%, & lun — 712 + 29,080 = 1% Upyy — 19
= (1= 2%l = 717 + Yl = 712 + 2y, &l — 712 + 20 (8" = 1%, Uniy — 1)
. Yalun = 712 (g(r*) = 1", Upy — 1)
:[1—2yn(1—€)]||un—rII2+2yn(1—€)[ ) - .
Case 1: Let us consider M, € N (M, > M;) such that
ltnsr = 1l < llun = ¥, VN > Ma. (50)

Then, lim,,_,o|lu, — r*|| exists. Let lim,,_,o[lu, — r*| = I. By the use of expression (48), we obtain

P,

n+1

Hp,

n+1

(1- yn)(l - )"un = Yal?+ @ - yn)(l - )”tn = Val? < VallgQ) = I + lun = I = llunsa = P, (51)

Since lim,_, o, lun — r*| exists and y, — O, we obtain
lim [u, - Yl = lim [t - y,ll = 0. (52)
n—oo n—-oo

By using the aforementioned results, we obtain

lim [[u, — till < lim lu, — y,ll + lim [y, — tll = O. (53)
n—oo n—oo

n—oo
It further implies that

||un+l - un" = ”yng(un) + (1 - yn)tn - un"

(54)
= ”yn[g(un) - un] + (1 - yn)[tn - un]” < yn”g(un) - un" + (1 - yn)”tn - un” — 0.
The aforementioned term specifically includes that
lim flups1 — ugll = 0. (55)
n—oo
By using Lemma 3.4, we obtain
limsup(g(r*) — r*, u, — r*) = limsup(g(r*) — r*, u,, — r*) = {(g(r*) - r, i - r*) < 0. (56)
n—oo k—oo

By the use of lim,,_, o /luns1 — Unll = 0, we may deduce that

limsup(g(r*) — r*, up,1 — r*) < limsup(g(r*) — r*, up,1 — Uy + limsup(g(r*) - r*, u, — r*) < O. (57)

n—oo n—oo n—oo

It is evident from expressions (49) and (57) that we are going to have it

limsup Yalltln = 712 (g(r*) — 1", Uy — 1)

n—oo 2(1 - {) 1- ‘S

By choosing n > M; € N (M; > M,) large enough such that 2y,(1 - §) < 1, and by the use of (49), (58), and
through Lemma 2.2, we conclude that |Ju,, — r*| —» 0 asn — oo.
Case 2: Suppose that there exists a subsequence {n;} of {n} such that

<0. (58)

tn, = 7*Il < llttn,,, — 77, Vi €N.

From Lemma 2.3, there exists a sequence {m;} ¢ N as {m;} — oo, such that
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It = Il < My, = 77l and g = 7l < llitm,, — I, VK € N. (59)

As in case 1, expression (47) implies that:

Hp Hp
(1- ymk)(l - '“k)numk ~ Y+ (1 - ymk)(l - ult ]ntmk ~ V2

my+1 my+1 (60)
< Vg (m) = P + i, = 71 = Nitmi1 = 7P
By using y,,, — O, we obtain the following result:
Bt Yy = T i, — Yy | = O, (61

Next, we are going to obtain the following:

ltmeer = mll = 1 8 (U, ) + (1= Vi) e = Uyl
=W [8(m) = tme ] + (1 = V) [ = thm ] (62)
< VI8 (ttmy) = Um I + (1 = Yy )Mty = U | — 0.

We use the same argument as in Case 1 such that

limsup(g(r*) — r*, um1 — r*) < 0. (63)

k—o00

By using expressions (49) and (59), we have

Ylme = 717 {g(r*) = 1%, Upps1 — 77
||umk+1—r*||2s[1—2ymk(1—f)]uumk—r*||2+2ymk(1—£)[ e + 180 T

21-¢) 1-¢
I 12 (gr) ) (e
Y llUmy — 7 g(r) —r, up1 — r*
<[1 -2y, (1 - Ollumesr — 1% + 2y, (1 - d + d .
[ Ymk( {)]" my+1 ” Ymk( {)l: 2(1 _ 5) 1- 5 :|
It continues on from that
u —r* 2 ) — r*’ —r*
it = poj2 < om0 (80D = My 1), (65)
21-4) 1-¢
Since y,,, — 0 and [lu, — r*|l is a bounded sequence, then, expressions (63) and (65) indicate that
[tmysr = 7> — 0, as k — oo. (66)
The aforementioned equation means that
lim g 7P < lim e~ P <. (67)
Consequently, u, — r*. This completes the proof of the theorem. O

Theorem 3.6. Let the mapping K : & — & satisfy conditions (K1)-(K4). Then, {u,} generated by the
Algorithm 2 converges strongly to a solution r* = Pyip,5(0).

Proof. By using the definition of {s,}, we obtain

Isn = 71l = lun + X,,(Un = Un—1) = Voln = XpVltn — Un—1) — 7*ll

6
1 = 3Gt = ) + (= ), — ) - Yl (68)

<@ = yllun =l + A = y )Xl = unall + ylirl

(69)
<@ = yllug = 1l + y kK,

where
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X .
A = y) = un = wpall + 17 < K.

n

It is given that p, — p such that there exists a finite number J € (0, 1 - ) such that

lim(l—y—p"):l—y>3>0.

n—oo pn+1

Thus, there is N; € N such that

(1—&)>3>O, vn > Ni. (70)
pn+1
From Lemma 3.3, we may rewrite

lUne1 = 71 < llsp — 7%, Vn = Ny (71)

By the use of expressions (69) and (71), we obtain
unr = 7l < (1 = y)lup = 1l + ¥k < maxfllu, — rill, K} - <max{lluy, - ', Ki}. (72)
As a result, we can conclude that {u,} is a bounded sequence. Indeed, by expression (69), we have
lIsn = 712 < (1 = y)?lun — 712 + y2KE + 2Kiy,(1 =yl — 77|

<llun = rI? + y[yK + 2K(1 = yllun — 1] (73)
<lup = 17 + ¥k,

for some K, > 0. Both expressions (21) and (73) imply that

Ntsr — P12 < Nt = P + y, K (1 - ﬂ)usn SR - (1 e )uum1 - (74)

n+1 n+1
From expression (68), we can write
lIsn = 7117 = llttn + X (tn = Un-1) = Voldn = XYt = Un-1) = 112

= = )@ = 1) + A = Yy (Un = Un-1) = ¥

<N = y)@n = 1) + @ = YKy (U = Un-DII + 241", S = T7)

= (1= ylun = 12 + (1 = Y22t = U all? + 26,(1 = Yl = 7ty
= Un-1ll + 2, (1", Sn = Uns1) + 2V =17, Upy1 — 17)

< (1= Yl = 712 + X7 lun = Un-all? + 26,1 = yln = 7ty = tnall + 2yl llise— (75)
= Unsall + 20, (1", Uns1 — T7)

= (1 - y)lug - P2+ y,,[xnnun Ul — el + 21— )t — 1

n Y

= Unal + 20 ISy = unall + 2¢r*, r* - un+1>]-
From expressions (71) and (75), we obtain

* * X * X
lUnir — 7012 < @ = y)llun — 1% + yn[xnllun - un_lllfllun = Un_all + 201 = y)llun — r 1= lluy
n n

(76)

= Upall + 217*Isn — Upsall + 2¢r, 7 — un+1>]-

Case 1: Consider that there exists a finite number N, € N (N, > N;) such that
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It = Il < llup = 77, VN = N, (77)

Thus, the aforementioned relation implies that lim,,_, ., |lu, — r*| exists and let lim,, o [lu, — r*|| = I, forl > 0.
By using expression (74), we can rewrite

(1 ~ Eon )usn — P+ (1 ~ Bon )numl Y P < g = PR+ Yo — e — PP (78)

n+1 n+1
Since limit of lu, — r*| exists and y, — 0, we can deduce that
Isn =Yl > 0 and fupe1 =yl > 0 as n— co. (79)
It continues from expression (79) that

lim s, — Upyll < lim [Is, - yn” + lim ||)/n = Upall = 0. (80)
n—oo n—-oo n—oo
Next, we need to evaluate

Sn = unll = llun + X, (Un = Un-1) = Vltn + X, (Un — Un—1)] = Ul
< Xplltn = Un_all + Yllugll + X, Vallun — un_ll

Xn 2Xn (8D
=Y, = lun = unall + Ylluall + v = llun — tnall — O.
n n
Thus, the aforementioned expression implies that
nliﬂ}o lun = Unsall < nlln.}o lun = sull + ,1131.30 lsn = nsall = 0. (82)
From given r* = Pyium,)(0), we have
O-r,y-r9 <0, Vy e VIIM, K). (83)
Moreover, it is considered that
li'IlIlsolip(r*, rt—u,) = 1(1111)10 (r*, r* — up,) = (r*,r*—i) < 0. (84)
By using the fact, lim,,_, o, |lus:1 — Uyl = 0. Thus, using expression (84), we can deduce that
limsup(r*, r* — u,,1) < limsup(r*, r* — u,) + limsup(r*, u, — uy,1) < O. (85)
n—co n—co n—co
By using expressions (76) and (85) and taking Lemma 2.2 imply that lu, — r*| — 0 asn — oo.
Case 2: Let there exists a subsequence {n;} of {n} such that
lun, = 71l < lltn,, — 7*ll, Vi €N.
Thus, by using Lemma 2.3, there exists a sequence {m;} c N as {m;} — oo such that
lum, — 7l < lum,, — "l and Jlux — r*| < lup,,, — r*l, forall k e N, (86)

Expression (78) implies that

Hp. Hp.
(1 - )Ilsmk = Y P+ (1 - ]Ilumk+1 = Y P < Mty = 7% + Y Ko = Nitmyes1 = 771 (87)

my+1 mp+1

Due to sequence y,, — 0, we deduce the following:

lim [ISm = Yl = M i1 = Yo, ll = 0. (88)
k—oo k—oo
It follows that
lim fup,,, = Sml < lim up,,, = ¥, I + lim lly,, — Sl = 0. (89)
k— oo k— o0 k— oo

Next, we have to evaluate



DE GRUYTER A class of strongly convergent subgradient extragradient methods

ISme = Umgll = 1y + G (U, = Uime-1) = V[t + Qo (g = Umy-1)] = U,

< Ul — Um—all + Vi Nty | + QY Nty — U1l
k k

Am 2 Am
= Y M = U1l + Vo Il + ¥ = = U1l — O.
my my

It follows that

111'11 ”umk umk+1" < hm ”umk - Smk” + hm "smk - umk+1" =0
k—o00 k—00 k—o0

By using the same argument as in Case 1, such that

limsup(r*, r* — Uy,+1) < 0.
k—o00

Now, using expressions (76) and (86), we have

(V.
1 = 712 < (1 = Yo ) Nty = 7702 + Voo | Qe = U1l = ety — Uyl + 2(1 = Yy, )1ty
k k k.
my

- e

Nty = Umg—all + 207 WSmy, — Uyl + 2(r%, r* = umk+1>:|

my
< (1= Y )Mty — 7712 + ymk[amkuumk Al 2 1t — 1)+ 2(1 = Yy )it
my
-r ” ”umk umk—lu + 2||r*||”5mk - umk+1” + 2()’*, r - umk+l> .
mj
Thus, we obtain
||umk+l - r*"Z < amk”umk umk 1” "umk umk—lll

my

+2(1 =y Yt — P2

=

Pty = Uyl + 207 WISy, = Umgesall + 2%, 77 = umk+1>:|-
my

Since y,, — 0 and [[uy, - r*| is a bounded sequence, then expressions (92) and (94) imply that
”umk+1 = r*||2 — 0, as k — oo.
It implies that

lim [l - r? < hm [Umy+1 — 7*I* < 0.
k

n—oo

As a consequence, u, — r*. This will complete the proof of the theorem.
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(90)

91)

(92)

(93)

(94)

(95)

(96)

O

Theorem 3.7. Let the mapping K : & — & satisfy conditions (K1)-(K 4). Then, {u,} generated by Algorithm 3

converges strongly to a solution of the problem VIP.

Proof. The proof is the same as the proof of Theorem 3.5.

O

Theorem 3.8. Let the mapping ‘K : & — & meet conditions (K1)-(K4). Then, {u,} generated by Algorithm 4

converges strongly to a solution of the problem VIP.

Proof. The proof is the same as the proof of Theorem 3.6.
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4 Numerical illustrations

The numerical results of the proposed iterative schemes are given in this section, in contrast to some related
work in the literature and also in the analysis of how variations in control parameters affect the numerical
effectiveness of the proposed algorithms. All computations are done in MATLAB R2018b and run on an HP
i5-6200 8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Let H = [, be a real Hilbert space with sequences of real numbers satisfying the following
condition:

lal? + lual? + -+ Junl? +--- < +oo0. 97)
Assume that K : M — M is defined by:
G() = (5 - luldu, Yu € H,

where C = {u € H : |lu|| < 3}. It is to note that K is sequentially weakly continuous on & and VI(M, K) = {0}.
For each u, y € &, we have

1K) — KN =I5 — Nulu = G = lylDyll
=115 = y) = ull(u - y) = (ull = lyDyll

<5fu =yl + lulllu =yl + [lull = lylliyl (98)
<5u =yl + 3llu -yl + 3llu -yl
<fu - yl.

Hence, K is L-Lipschitz continuous with L = 11. For any u, y € &, let (K(u), y — u) > 0 such that
(5 = llul){u,y — uy > 0.
Since |Ju| < 3, it implies that
(u,y —u) > 0.

Thus, it implies that

(K(y),y —wy =G - lylDdy,y - w)
26 - llyDy,y —uw -G - lyDu,y — w) (99)
>2llu - y|? = 0.

Thus, we show that K is quasimonotone on M. Letu = (;, 0,0,...,0,..)andy =(3,0,0, ...,0, ...) such
that

(K(u) - K(y),u—-yy =25-3)2<0.

The formula for a projection on C is given in the following manner:

Table 1: Numerical values for Example 4.1

Number of iterations Execution time in seconds
uy Algl Alg3 Algl Alg3
(2,2, ..,25,000,0,0, ..) 41 36 3.93847480000000 3.33763350000000
,2,..,5000,0,0,..) 57 48 4.87583390000000 4.24728740000000
(5,5, «,510,0005 0, 0, ...) 48 39 4.37341940000000 3.82418350000000
(50, 50, ...,5010.0005 0, O, ...) 61 49 5.84570940000000 4.57478350000000

(500, 500, ...,50010.000, 0, 0, ...) 89 67 8.34746348000000 6.92528350000000
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Table 2: Numerical values for Example 4.1

Number of iterations Execution time in seconds
Uy Alg2 Alg4 Alg2 Alg4
(2,2, 125000, 0,0, ...) 29 21 2.14638330000000 2.00018330000000
@,2,..,5000,0,0, ..) 33 27 2.87463850000000 2.14639210000000
(5,5, ..,510,000, 0, 0, ...) 30 21 2.72444340000000 1.92738850000000
(50, 50, ...,5010,000, 0, 0, ...) 41 34 4.56044940000000 3.93847350000000
(500, 500, ...,50010,000, 0, O, ...) 47 38 7.46292840000000 5.46293350000000
u if lu||l < 3,
Pe(u) =1 3u .
c(w) ﬂ, otherwise.
u

The following conditions have been taken for numerical study. (i) Algorithm 1 (Algl): p; = 0.22, u = 0.44,

Y, = ﬁ (ii) Algorithm 2 (Alg2): p, = 0.22, = 0.44, y, = ——, p, = % (iii) Algorithm 3 (Alg3):

(n+2)° &N
py =022, u=0.44, x=050, y,= riz) En = ﬁ; (iv) Algorithm 4 (Alg4): p, = 0.22, u = 0.44,

1 1 00
X =050y, = Gy &n = Gragyr Pn = (n1+ i (Tables 1and 2).

5 Conclusion

We developed various types of explicit extragradient-type methods for finding a numerical solution to
quasimonotone variational inequalities in a real Hilbert space. This approach is seen as a variant of the
two-step extragradient method. Two strongly convergent findings are well proven and correspond to the
suggested methods. The numerical findings were analyzed to demonstrate the numerical performance of
the suggested methods. These computational results show that the non-monotone variable step size rule
continues to improve the effectiveness of the iterative sequence in this scenario.
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