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Abstract: The aim of this article is to construct univariate Bernstein-type operators (8;,G)(x,z) and
(BZG)(x, z), their products (PunG)(X, 2), (QunG)(X, z), and their Boolean sums (S;,G)(x, z), (TpmG)(x, 2)
on elliptic region, which interpolate the given real valued function G defined on elliptic region on its
boundary. The bound of the remainders of each approximation formula of corresponding operators are
computed with the help of Peano’s theorem and modulus of continuity, and the rate of convergence for
functions of Lipschitz class is computed.
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1 Introduction

Approximation of functions by simpler class of functions, especially polynomials and positive linear
operators, has attracted lot of researchers to construct some other simpler class of operators in last decades.
Approximating functions, some data, and a member of a given set are some of the examples of the
approximation calculations. It was initiated basically in 1885, when great mathematician Weierstrass
proposed a fundamental theorem known as the Weierstrass approximation theorem, which guarantees
to construct polynomials to approximate continuous function on compact interval in R. Weirstrass itself
proposed a proof of theorem. A new era in the approximation theory started in 1912, when great Russian
mathematician, Bernstein [1] constructed the sequence of operators (polynomials) 8B,: C[0, 1] — C[0, 1] for
any bounded function G defined on [0, 1] to provide constructive proof of Weierstrass approximation
theorem for all x € [0, 1], n € N as follows:

B,(G; x) = é)('rl)xr(l - x)”*’G(%). (L.1)

This proof is based on probabilistic approach and is simpler, elegant, and constructive. The advantage
of using Bernstein polynomial is that it is compatible with computers and easy to implement for simulation
purposes. Space Cla, b] and C[0, 1] are identical as normed space with sup-norm. This Bernstein operator
can be extended to any arbitrary compact interval [a, b] of R with the help of the map ¢ : [a, b] — [0, 1]
defined by o(x) = Z:Z Another development started in the approximation theory when Korovkin in 1953

* Corresponding author: Mohammad Mursaleen, Departement of Mathematics, Aligarh Muslim University, Aligarh 202002,
India; Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung,
Taiwan, e-mail: mursaleenm@gmail.com

Mohammad Iliyas: Departement of Mathematics, Aligarh Muslim University, Aligarh 202002, India,

e-mail: miliyas39@myamu.ac.in

Asif Khan: Departement of Mathematics, Aligarh Muslim University, Aligarh 202002, India, e-mail: asifinu07@gmail.com

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/dema-2022-0199
mailto:miliyas39@myamu.ac.in
mailto:asifjnu07@gmail.com
mailto:mursaleenm@gmail.com

2 —— Mohammad lliyas et al. DE GRUYTER

discovered a simple criteria whether the sequence of positive linear operator converges uniformly to con-
tinuous function on [0, 1] by simply checking the uniform convergence of the Chebychev like test functions
1, x, and x? in the space C[0, 1] of all continuous functions on the real interval [0, 1]. As space C[0, 1] is not
strictly convex with respect to sup-norm, best approximation may not be unique. This idea motivates to
create some other positive linear operators on [0, 1].

In the finite element method for differential equations with given boundary conditions approximation
operators on polygonal domains are required. Thus, many researchers generalized Bernstein-type operators
on different domains and constructed some other operators for improved approximation. In this sequel, In
1973, Barnhill et al. [2-4] initiated and investigated smooth interpolation in triangles. Stancu studied
polynomial interpolation on boundary data on triangles and error bound for smooth interpolation [5,6].
Catinas extended some interpolation operators to triangle with one curved side [7]. Cai et al. constructed
A-Bernstein operators and studied its approximation properties in [8,9]. Braha et al. studied A-Bernstein
operators via power series summability methods in [10]. Mursaleen et al. studied approximation properties
by g-Bernstein shifted operators and g-Bernstein Schurer operators in [11,12]. Recently Khan et al. general-
ized Bernstein-type operators and studied applications of its basis in computer aided geometric design
(CAGD) [13,14]. For other applications of Bernstein-type operators related to construction of Bezier curves
and surfaces, one can see [15-19].

In 2009, Blaga and Coman [20] constructed Bernstein-type operators (85,G)(x, z) and (BZG)(x, z), their
products (PunG)(X, 2), (QunG)(x, z), and their Boolean sums (S,;,G)(x, z), (7.mG)(X, z) to approximate any
real valued function G defined on triangular domain. For other similar kind of works one can see [21-25].

Inspired by the idea of [20] and the recent work [15,26], first, we construct Bernstein-type operators
(BrG)(x, z) and (BiG)(x, z) in Section 2. In Section 3, we calculate some moments of the operators
(BrG)(x, z) and (BZG)(x, z). In Section 4, we define the approximation formula and present the estimate
for error bound. In Section 5, we discuss the rate of convergence for functions of Lipschitz class. Section 6
deals with product operators (£,,G)(x, z), (QumG)(x, z) and their remainders bound. In Section 7, Boolean
sum operators (S;;,G)(x, z), (ThmG)(x, z) and their remainders are computed on elliptic domain. Finally,
graphical analysis is presented to demonstrate theoretical findings in Section 8. These operators interpolate
the real valued function defined on the elliptic domain on its boundary.

2 Construction of univariate operators on elliptic domain

Let us consider the standard ellipse and elliptic region in the two-dimensional space R? defined as follows:

x> z?
EZ{(X,Z)G[RZ:;‘fﬁ:l},

2 2
E*:{(x,z)e[RZ:"—+Z—s1}.
aZ

Consider,
L={(x,2)eE:x<0}, DL={(x,2)eE: x>0}
={(x,z)€eE:z<0} and I;={(x,z) € E:z >0}

Notice that A, = (—a,/l - Z—z , z) and B, = (a,/l - Z—i , z) be the end points of line segment A,B, from [}

to I, parallel to axis Ox. Similarly, Cy = (x, -b,/1 - ;—z) and D, = (x, b,/1 - x—z) be the endpoints of

a2

line segment C,D, from I3 to I}, parallel to axis Oz. Line segment A,B, and C,D, intersect at the point

(x,z) € E* as shown in Figures 1 and 2. Let o} = {-a,/1 —Z—i + Za%,/l - Z—z,i: 0,1,--- ,m} and o7 =
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_ _x PN I S i it i _ _2 _z
{-b,/1 2zt an 1 2 )= 0,1,..., n} be uniform partitions of the intervals | —-a,/1 i a 1 7
and [—b 1- z—i, b,1- z—z], respectively. We denote g(z) =a,/1- Z—i, ze€[-b,b] and h(x) =

b1 - Z—i,x € [—a, a] throughout the article. Line segment A,B, represents the interval [-g(z), g(z)], and
its uniform partition is given by o %, = {-g(z) + 2;1—'g(z), i=0,1,..., m}. Similarly, line segment C,D, repre-

sents the interval [-h(x), h(x)], and its uniform partition is given by o Z = {-h(x) + Zéh(x), j=0,1,...,n}

as shown in Figures 1 and 2.
Now we introduce Bernstein-type operators (85,G) and (82G) for the function G : E* — R as follows:

Y i, z)G(—g(z) +21lg02), z), (x, 2) € E°\{(0, -b), (0, b)}

BXG)(x,z) = {1=0 2.1
(BrG)(x, 2) G0, —b), ©,-b) ¢ E (2.1)
G(0, b), (0,b) € E
Z-axis

>

A
Az/’_\Bz
< / 0 \ » X-axis

(-a,0) (a,0)
Iy M

(0,-b)

Figure 1: Elliptic domain.

Z-axis

(0,b)

» X-axis

A

U/
(-a,0) \\ (a,0)
3

(0,-b) G

Figure 2: Elliptic domain.
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and
Zn:cjn,j(x, z)G(x, —h(x) + Zlh(x)), %, z) € E*\{(-a, 0), (a, 0)}
(B26)(x, 2) = {170 " 2.2)
G(a, 0) (a,0) € E
G(-a, 0) (-a,0) € E,
where
") (x + g(2)i(g(2) - x)mi
Pmi(t, 2) = (7)o . (2 € B0, -b), (0, b} (2.3)
(2™
")z + h(x))(h(x) - z)"
Gnjx, 2) = (’) O ., (x,2) € E\{(0, -a), (0, a)}. (2.4)

We emphasize on the interpolation properties, the order of accuracy, and the remainder of the approx-
imation formulas for the constructed operators.

3 Some preliminary results

Definition 3.1. If the operator 8%, preserve the monomial of highest degree say k, i.e., (BXexo)(x, z) = xX,
then we say that operator 8}, has degree of exactness k. Then we write dex(8;,) = k.

Theorem 3.2. For any function G : E* — R, we have
@ B8,6=G onkE,
(i) (Breo)(x,z) =xi, i=0,1(dex(8y) =1),

2 _ x2
(Bre)(x,z) = x* + (8()* - x*»)
m
Zixt, i=0,1,jeN
Brex,z) =1 . — .1
(Bmeij)(x, 2) zl(xZ + M) i=2,jeN, 3.1)
m

where e;(x, z) = x'z/ and dex(8B},) denote the degree of exactness of the operator B,.

Proof. (i) One can easily notice from the basis functions (2.3)

. 1, fori=0,
pm,i(_g(z), Z) - {O, fOr l N 0,
and
- 1, fori=m,
Pm,i(8(2),2) = {0, fori<m.

Then one can easily verify with the help of definition of 8},G and aforementioned property of basis function
that 85,G=GonJuL =E.
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(i)

m m (7)o + 8@)i(g(2) — )™ _x)m
(Bieoo)62) = Y hni(6,2) = Y. ) - gD+ 8H) 07

iz i (28(@)™ (28(@)™

(Brew)x, z) = mez(x, z)(-g(2) + —Zg(Z))
i=0

=—g(z)zpm X, 2) + 2g(Z)Z—pml(x, z)
i=0
=-g(2) + 28(2) ( )( + 8(2))i(g(z) - x)mt
-8(2) + 28(z ,2;’) ——

2(2) n (7 1)ox + 8@ Hg(@) -
=—g(2) + 8@ )(X +g(Z))1zl Qg@ym!
(") o+ 8@ig() - m
=-g(2) + (x + g(2)) lz(:) (8@t
-8(2) +x +g(z) =x.

(Bhew)62)= Y i, 2)-8(2) + L252))
i=0

_$ (M)x + g@)igE - 0m
& @)™

Putting x = —g(2) + 2g(z)t, t € [0, 1],

(g(z)z + 4#g<z>2 - ﬁg(z)Z).

RX _ (M i1 _ pym—i 2 i ) 0 2
(Bmezo)(x,z)—z(.)tu 0 (g(z) 4 g@) 4mg(z))

.2 m .
=g(2)?+ 4g(Z)ZZ 3 ( ; )t (a-tymi- 4g(2)22#(r?)ti(1 - tym

i=0 i=0

- g + 4g(z)2(<1 -y %) ~ 4tg(2)?

— o(2)2 of 1 1\ + g(Z))Z ,1x+8(E)  x+82) .
~ g(2)? + 4g(2) (1 ) o v ag(ep 8 I g

_g?+ (1 - %)(x r g + X 2@ 1 g(2)) - 28@)x + g(2))

= (-g() + x + g@)) - %(xz ~g@P)
=x2+ i(g(z)2 - x?).
m

Fori=0,1,2 and j € N, we have

(Brey)(x, z) = mel(x z)(-8(z) + 2—g(Z))’ZJ

i=0

2 Y B, z)( g(2) + 2—g<z))

i=0
= ZI(Breio)(x, 2).

Hence, (3.1) follows immediately. O
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In the similar way, the following theorem is easy to prove.

Theorem 3.3. For any function G : E* — R, then
(i) BiG=GoneE,
(i) (Breo)(x,z) =z, i=0,1(dex(8})=1),

(Bieo)(x,z) = 2% + (h(x)* - z%)

xizl, j=0,1, ieN

BZe“ X,2) = . 2 _ 2

(Biey)(x, 2) XI(Z”M),,-:; ien,
n

where ejj(x, z) = x'z) and dex(B7%) denote the degree of exactness of the operator BE.

4 Approximation formulae and remainder

Now we consider the approximation formula
G = B5G + R;G,

where R},G denote the remainder if a function G is approximated by the approximants 8;,G.

Theorem 4.1. If G(.,z) € C[-g(z), g(z)], then

a
N

[(RFG)(x, 2)| < (1 + 5 )W(G(.,Z); 6), ze|[-b,b], (4.1)

where w(G(.,z); 6) represents the modulus of continuity of the function G with respect to the variable x.
ifs = L
Moreover, if 6 = N then

[((R:G)(x, 2)] < (1 + a)w(G(.,z); %), z € [-b, b]. (4.2)

Proof. Since we have by definition of remainder,

(REG)0 2] < Y Bt 26, 2) G(—g(z) + %ig(Z),Z)I-

i=0
< 1+l
(143

(RGO )| < Y i, z)(l +3

i=0

By using the inequality,

‘ G(x, z) - G(—g(Z) + z—ig(Z), Z)
m

X+ g@) - %Zgw )w(G<.,z); 5)

X +8(2) - izg(z) )w(G<.,z); 5)

1

< \1 ¥ %(Zﬁm,i(x, 2)(x + g(2) - ng(z))z] ‘w(f(.,z); 5)
i=0 m

(REG)(x, 2)] < [1 ¥ %% €@ - 1) ]w(c;(.,z); 5).

Since
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max [g%(z) - x’] =g*(z) and max [g%(2)] = &>
-8(z)<x<g(z) -b<zs<h

Hence,

X a
[((RnG)(x, 2)| < (1 + Sum

)W(G(.,z); 5).
Now, for § = % we obtain (4.2). m|
Theorem 4.2. If G(.,z) € C}-g(2), g(2)], then
i 2 = “ 8D g0 2), e g0 4.3)
for all z € [~b, b] and
[((RXG)(x, 2)| < %MzoG, (x,z) € E*, (4.4)

where

M;G = max|GUI(x, z)|.
a

Proof. As dex(8;,) = 1, by Peano’s theorem, one obtains. For more details on remainder calculation, see [5].

g(2)
(RLG)(x, 2) = f Koo, z; )G2O(t, 2)dt,

-8(2)

where G29(¢, z) denotes the second-order partial derivative with respect to first variable, and kernel

m

- .28(z
Koo, 23 £) = REICC = O] = (¢ = 0, = Y B, z)(—g(z) + D r)

i=0 +

does not change the sign on the interval [-g(2), g(2)], i.e.,
KZO(Xy Z3 t) < Oa X € [_g(Z)) g(Z)].

By using the mean value theorem, we obtain

g(2)
RLG)(x, 2) = GEOE, 2) j Knlx,z; dt, £ € [-g(2), 8(2)].
-8(2)

After an easy calculation, we obtain
2 _y2
(REG)(x, 2) = —(%)G@% 2,

where & € [-g(2), g(2)].
Since

max [g¥(z) - x?] < &2
-8(z)<x<g(z)

Hence, (4.4) follows immediately. O

Remark 4.3. From Theorem (4.2), for all x € [-g(z), g(z)] and z € [-b, b], we have
e If G(.,z) is a concave function, then (R;,G)(x, z) > 0, i.e., (ByG)(x, z) < G(x, z).



8 =—— Mohammad lliyas et al. DE GRUYTER

e If G(.,z) is a convex function, then (R}G)(x, z) < 0, i.e., (BXLG)(X, z) > G(x, z).

Remark 4.4. For the remainder RG of the approximation formula,
G = BiG + RZG,

A: If G(x, -) € C[-h(x), h(x)], then

(R, 2)| < (1 + 53_ )W(G(X, J; 6), (4.5)

n
where w(G(x, .); 6) is the modulus of continuity of the function G with respect to the variable z.

B: If G(x, .) € C{-h(x), h(x)], then

(RaG)(x, 2) =

22_2—::2()()6(0’2)()(, n), 1 e€[-h),hx)] (4.6)

for all x € [-a, a] and

2
(RZG)(x, 2)] < ;’—HMOZG, (x,2) € E',

where

MG = max|GU(x, z)|.
1a

5 Rate of convergence

Now, we study the rate of convergence of the operators (85,G)(x, z) with the help of functions of Lipschitz
class Lipy(a) with respect to first variable x, where M > 0 and 0 < a < 1.
A function G(.,z) belongs to Lipy(a) if

|G, 2) = G, 2)] < M|x — x|* (4, %,z € R). (5.1

We have the following theorem.

Theorem 5.1. Let G(.,z) € Lipy(a), then we have
[(BRG)x, 2) - G(x, 2)| < M[g*(z) - x*]*~, (5.2)

for all x € [-g(z), g(z)] and z € [-b, b].

Proof. Since (85,G)(.,z) : C[-g(2), g(z)] — C[-g(z), g(z)] are linear positive operators and G(.,z) € Lipy(a),
we have,

I(BrG)(x, 2) - G(x, 2)| < By(IG(s, 2) - G(x, 2)])

= 2 Pm,i(x, 2) G(‘g(z) + %ig(z),z) - G(x, z)
i=0
<M iﬁm,i(x, z)| -g(z) + 2;ig(z) - X ’ (5.3)
i=0

21 2 % ~ 2-a
-g(2) + ;g(Z) - X } [Pm,i(x,2)] 2.

<M [f’m,i(x, z)
i-0

By applying Holder’s inequality for sums, we obtain
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m . 2T m 5
I(BrG)(x, 2) = G(x, 2)| < M[ Y Pim,i(X, 2)| -8(2) + %g(Z) -Xx ] Y Bmix, Z)}
i=0 i=0

= M[(B1(s = )))x, D)2

Since
(B(s = X)))(x, 2) = gX(z) - x2.

Hence, we obtain (5.2) and the theorem is proved.

Remark 5.2. Let G(x, .) € Lipy(a), then we have
I(B76)(x, 2) ~ G(x, 2)| < M[R*(x) - z%]*7,
for all z € [-h(x), h(x)] and x € [-a, a].

6 Product operators

Let Pn = BrBZ and Qpy, = BEB}, be the products of operators 8, and BZ.
We have

m n .
P 2) = 33 B0 2)in (3 z)G(xi, “h() + %h(xi)), (x,2) € E,
i=0j=0
where x; = -g(2) + 2g(z)%, i=0,1,...,m.
The product operator Q,,, is defined by

n

QunG)X, 2) = Y Y G, j0X, 2)Pm,i (X, Zj)G(_g(Zj) + Z%g(zj), Zj), (x,z) € E*,

j=0j=0

where zj = —h(x) + 2;"h(x), j=0,1,...,n.

(5.4)

(6.1)

(6.2)

Theorem 6.1. The product operators Py, and Q, interpolate the function G on boundary of elliptic

domain, i.e.,
(PunG)(x, 2) = G(x, z), for all (x,z) € E.

The aforementioned proofs follow from some simple computation.

Let R? .G be the remainder of the approximation formula

G = PG + RE,G.

One can see that remainders R .G for G on boundary of elliptic region is zero. Hence, we compute bounds

for remainders R%,G on E*\E.

Theorem 6.2. If G € C(E*), then

(REG)(x, 2)] < (i,/w L2 1)w(G; 61, 62).
61 m 52 n

Proof. We have

(6.3)
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(R G)Cx, 2)] < lg;i Y. X Pmilx, Z)qn,j(_g(z) + 21&),2)
i=0j=0

5i g:gn:ﬁm,i(X, Z)qn,;( g(2) + ZIgr(n) )

* 2 b (x,z)qn,,-( g+ 252, 2 )]w(c; 51, 6,).

i=0j

x+g(z) - 21@
m

z + h(x) - 2lh(x)
n

i

i l(x,z)qn,( 5 + 252, )

X+ g(z) - 2i==—=
m

z me i(x, Z)Qn]( 8(2) + 21g( 2) ) ’ z + h(x) - %h(X)

< JBit- 290, 2),

DE GRUYTER

< J(Bi(s - (X, 2),

i=0j=0
while
z Zﬁm,i(x, z)tin,( g(z) + Zzg(z) ) =1,
i=0j=0
It follows,
(R G)x, 2)] <( JB(s - 07)(x, 2) + —J(zsza— 27)(x, 2) + 1)w(G 51, 6).
Since
(B;(S — X)z)(x’ Z) - M
and
(Bit - 2))(x,z) = W,
we have,

m n

|(R G x, 2)| < ( \/m + i\/w + 1)W(G; 81, 6,).
61 6,

7 Boolean sum operators

Let
Smn =By & BE = B, + BE - BXBE,
Tom = BL & B, = BL + By, — BEB,
be the Boolean sums of the Bernstein-type operators 8}, and BZ.

Theorem 7.1. For function G : E* - R, we have
SmnG lag* = G |og*

Proof. We have
SinG = (B, + B% - BrBAG.

The interpolation properties of 85, 87, and £, imply that
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For all (x, z) € E, we have

(SmnG)(x, 2) = (BpG)(X, 2) + (BR)G(X, 2) - Bp(B76)(x, 2) = G(X, 2).

Let R5,G denote the remainder of the Boolean sum approximation formula,
G = SynG + R3,G.

Similarly here remainder R3,G on the boundary of elliptic region is zero. Hence, we compute bounds for
remainders R3,G on E*\E. O

Theorem 7.2. If G € C(E*), then

2
(RS,G)(x, z)|<[ ,/ gt - ](G(,z)61>+( %/"“L) W(G(x, )38

(7.1)
20, _ 2(x) —
( JEEx ot 1)w(G; 5,,6,),
for all (x, z) € E*.
Proof. From the equality,
G-8mG=G-85G+ G- B (G- Pul),
we obtain,
(RGO 2)| < [(RRGIX, 2)] + [(REGIX, 2)| + [(RpuG)X, V)
Now, the proof easily follows from idea involved in proof of (4.2), (4.5), and inequality (6.3). O

Remark 7.3. Analoguous results for remainders of the product approximation formula can easily be
obtained.

G = QuG + R2,G = BZBXG + RE,G
and for the Boolean sum formula

G = TG + R7.G = (BZ & B)G + R G.

8 Graphical analysis

Let us consider the function G(x, z) = x exp(-x? — z?) for graphical demonstration defined on elliptic
domain E* = {(x,z) e R%: X{ + %2 < 1}. We present the graph of the function f(x,z) in Figure 3(a).
Figure 3(b)—(e) represents the Bernstein-type operators 85,G, B%G, product operator #,,,G, and Boolean
sum operator S;;,G for m = n = 5. One can easily observe that approximation can be made better by
increasing the value of m and n. Also notice that from each figure, each operators 85G, BZG, PG, and
SnG is interpolating the given function f(x, z) = x exp(—x? — z?) on the boundary of elliptic domain

E*={(x,z)e[R2:XZZ+%Zsl}.
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Y-axis

(e)

Figure 3: Bernstein operators, product operator and Boolean sum operator approximating function f(x, z) = x exp(-x? — z2) on
elliptic domain. (a) f(x, 2) = x exp(—x? - z2). (b) The operator B%G. (c) The operator BZG. (d) The operator $,,,G. (e) The
operator S;,G.
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