DE GRUYTER Demonstratio Mathematica 2023; 56: 20220198 a

Research Article

Daniela Inoan* and Daniela Marian

Semi-Hyers-Ulam-Rassias stability for an
integro-differential equation of order »

https://doi.org/10.1515/dema-2022-0198
received July 30, 2022; accepted January 20, 2023

Abstract: The Laplace transform method is applied in this article to study the semi-Hyers-Ulam-Rassias
stability of a Volterra integro-differential equation of order n, with convolution-type kernel. This kind of
stability extends the original Hyers-Ulam stability whose study originated in 1940. A general integral
equation is formulated first, and then some particular cases (polynomial function and exponential func-
tion) for the function from the kernel are considered.
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1 Introduction

An important aspect from the qualitative theory of differential and integral equations is the stability of
solutions. It is well known that this concept has various meanings in the literature, one of them being the
Hyers-Ulam stability. This notion appeared first in connection with homomorphisms, in an open problem
formulated by Ulam (see the book [1]), and answered by Hyers in [2]. A vast field of research developed
afterward, with many authors generalizing the initial definition of stability (Hyers-Ulam-Rassias stability,
generalized Hyers-Ulam-Rassias stability, semi-Hyers-Ulam-Rassias stability, and Mittag-Leffler-Hyers-
Ulam stability) and obtaining results for various classes of functional equations (see, for instance, [3-7]
and the references therein). Systematic approaches of the subject are given in [8,9].

The study of Hyers-Ulam stability for ordinary differential equations started with the papers of Obloza
[10], and Alsina and Ger [11]. Further, many interesting results were obtained for linear differential equa-
tions or systems of equations, in papers like [12-17], or for some special classes of differential equations in
[18,19]. Among the papers about partial differential equations, we mention [20-24]. An overall view of the
subject is provided in the book [25].

The present work is about a class of Volterra integro-differential equations. The study of Hyers-Ulam
stability for integral or integro-differential equations is not so extended as in the case of differential
equations, but we can mention several papers approaching this problem, by various methods: [26-30].

In this article, we use the Laplace transform method. In the context of Hyers-Ulam stability, this method
appeared first for linear differential equations, in the article by Rezaei et al. [31]. Then, the Laplace trans-
form was used to obtain stability results in several other articles: [32] for linear differential equations, [33]
for Laguerre differential equation and Bessel differential equation, [34] for the Mittag-Leffler-Hyers-Ulam

* Corresponding author: Daniela Inoan, Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului
Street, 400114, Cluj-Napoca, Romania, e-mail: daniela.inoan@math.utcluj.ro

Daniela Marian: Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114,
Cluj-Napoca, Romania, e-mail: daniela.marian@math.utcluj.ro

8 Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/dema-2022-0198
mailto:daniela.inoan@math.utcluj.ro
mailto:daniela.marian@math.utcluj.ro

2 —— Daniela Inoan and Daniela Marian DE GRUYTER

stability of a linear differential equation of first order, [35] for fractional differential equations, and [24] for
the convection partial differential equation.

In the following, inspired by [31] and continuing the research from [36], we will study a Volterra
integro-differential equation of order n with a convolution type kernel:

t
XO(E) + @y x®DE) + -+ aox(t) + Jg(t _ wx@du — f(6) = 0, 1.1)
0

x € C"(0, 00), ag, A1y..., A1 € C,neN,n > 1.

In the previous article [36], we obtained stability results for the integro-differential equation (1.1) of
order I. Those results will be extended here for a class of equations of order n. The outline of this article is
the following: In Section 2, we present the stability notion, properties of the Laplace transform, and some
auxiliary results. The main results are given in Section 3 and concern the semi-stability of the integro-
differential equation (1.1), for some particular cases of the function g.

2 Preliminary notions and results

In the rest of the article, we denote by R(s) the real part of a complex number s and by F the real field R or
the complex field C. Throughout the work, we assume that the functions f, g, x : (0, co) — [F are contin-
uous and of the exponential order.

The Laplace transform of the function f is denoted by £L(f) and is defined by

L)) = F(s) = If(t)e‘“dt,
0

on the open half plane {s € C|R(s) > o5}, where o7 is the abscissa of convergence of the function f. The
inverse Laplace transform of a function F is denoted by £7'(F). In the next section of the article, we will use
the following auxiliary results, proved in [31].

Lemma 2.1. [31] Let P(S) = a@,S" + @p_1S"! +---+ as + ap and Q(S) = bpS™ + bp_18™ 1 +---+ bis + by where
m, n are nonnegative integers with m < n and a;, b; are scalars, i € {0, 1, ...,n}. Then there exists an infinitely
differentiable function g : (0, co) — [F such that

Q(s)

L(g) = %, %(s) > Op

and

0, ke{0,1,...,n-m-2}
(k) -
§7(0) b—m,k:n—m—l,

an

where op = max{fR(s) : P(s) = 0}.

Lemma 2.2. [31] Given an integern > 1, let f : (0, c0) — [F be a continuous function and let P(s) be a complex
polynomial of degree n. Then there exists an n times differentiable function h : (0, co) — [F such that

L)

L =3 )’

A(s) > max{op, oy},

where gp = max{R(s) : P(s) = 0} and oy is the abscissa of convergence for f. It holds that h*)(0) = 0 for
every k € {0,1, ...,n — 1}.
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In the rest of the article, we write x(0), x'(0),..., x™(0) instead of the lateral limits x(0*), x'(0%),...,
x(M(0%), respectively.
Let € > 0 and consider the inequality

X)) + Ao x® (@) + -+ agx(t) + Ig(t —wx()du - f(t)| <&, (2.1)
0

t € (0, 00).

We say, as in [27], that equation (1.1) is semi-Hyers-Ulam-Rassias stable, if there exists a real number
¢ > 0 and a function k : (0, co) — (0, co) such that for each x that verifies the inequality (2.1), there exists a
solution xq of the equation (1.1) with

[x(t) — xo(t)| < c- k(t), Vte (0, 00). (2.2)

3 Stability results

We prove the stability results for the solution of equation (1.1) in some particular cases for the function g.

Theorem 3.1. Let g : (0, 00) — F, g(t) = t™, m € N. Then, for every function x : (0, co) — F satisfying the
inequality (2.1), for all t € (0, c0) and some € > 0, there exists a solution x, : (0, c0) — F of equation (1.1)
such that

IX() = Xo(t)] < %"(eaf ~1), Vte(0,00),

for all & > max{0, o, or}, where

2 Sm+1
B % [O (@ + Biyr+ml (f - fgo(a + BT+ m!‘ @
and o is defined in (3.2).
Proof. Let p : (0, ) — F,
p(t) = X)) + ap_ XV + -+ apx(t) + fg(t - wx()du - f(t), te(0,00). (3.1)

0

The Laplace transform of the function p is
L(P)=("+ @y 1S+t as + ag) L) = (ST + @y 18T+ +adx(0) = (ST + A gS"3 + - +a)x'(0)
— - =(s + @ XT2(0) - x"D(0) + L) L(g) - L(f).
Denoting
Bi=s"1+a,s""! +- v as+a, foriefo,1,..,n},
we can write
n
L(p) = Bo(9)LKX) = Y Bui(s)XTD(0) + L) L(g) - L(f).
i=1
We obtain

BLi(s)xE-D(0) + L e+ £(p).

L(x>=m2 o) + L(8) o) T 1@
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If g(t) = t™, then the Laplace image is £(g) = -~-. Hence,

gm+1*

sn+m+1 + anilsn+m + ..,+aosm+1 +m!

Bo(s) + L(g) =

gm+l ’
S0 we obtain
gm+1 n 1)
L) = By, i(s)xD(0)
smm+l L ogo s 44 qos™ ! 4+ ml l; ’
Sm+1
+ L(f)
sl g ST 4 oS 4+ ml
Sm+1
L(p).
Sn+m+1 + an,ls"”" + '--+(1()Sm+1 +m!
For eachi € {0, 1, ...,n}, we have
Sm+1Pn,i(S) Sn+m+1—i + an_lsmm—i + _,,+aism+l

Sn+m+1 + an,ls’”"’ + .__+aosm+1 +m! Sn+m+1 + anilsm—m + ___+aosm+1 + m!
1 ai_1S™ 4+ +aps™! + m!

st si(smmHl 4 gy ST+ aps™ ! + ml)

Let S, Sy, ..., Sprm+1 b€ the roots of the polynomial s™™*1 + @,_;S™™ + ...+ ags™*! + m!, and let
o = max{R(sj)lj € {1,2, ...,n + m + 1}}. (3.2
Let o5 be the abscissa of convergence for f.

By using Lemma 2.1, it follows that there exists an infinitely differentiable function h; such that

a;_1S™1 4+ aos™ ! + m!
si(sn+m+1 + QST+ .“+aosm+1 + m!)’

L) =

for every s with fR(s) > max{0, o}, and

hi(0) = h{(0) =---= h"(0),
for anyi € {0, 1, ...,n}. We also have
1 ti—l
-1 & — .
< (si) @{i-1!
Let us define
tifl h
(t) = - hi(t), ie{0,1,...,nk
fi®) 1 i(t) { }
We notice that
0,k+i-1
oy = 1O B
fi¥® k=i 1 ke{0,1,...,n -1}

By Lemma 2.1, there exists an infinitely differentiable function z such that

Sm+1

L(z) =

’
Sn+m+1 + an_ls"”“ + -~~+aos’"+1 +m!

for every s with JR(s) > max{0, ¢}, and z(0) = z'(0) =---= z("-2(0).
If we define f; as a convolution product, fo = f = z, then

L(fo) = L(f = 2) = L) L(2),
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t
fo0) = [ £ 2 - we
0
and from here f5(0) = 0. Also

t t
£ = 20) f(6) + jf(u)- 2(t - wdu = jf(u)- 2(t - udu,
e 5

0 0

and from here, f;(0) = 0. Analog, f(0) =---= f{"?(0) = 0. But
t
20 = [ e 202 - wdu,
0
and from here,

t
f(gn—l)(t) — Z(n—z)(o)f(t) + If(u) Z(n—l)(t _ u)du,
_—~7Z

0 0
hence, f{*2(0) = 0. In conclusion,
fP©0)=0, vke{0,1,..,n-1}.

Let us define

n

Xo(t) = Y XEDO)fi(t) + fo (D).

i=1

We have x{P(0) = x®(0), Vke€{0,1,...,n -1} and

gm+1 n .
L(x0) = B(s)xfY(0
(xo0) gn+m+l Ap_yS™HM +“_+aosm+1 +m! 1; "’1( ) 0 (0)
Sm+1
L(f),
stmEl g (S 4 @ps™H + m) )
for every s with fR(s) > max{0, o, o}.
We obtain
Sm+1 _L
L(x) - L(xp) = .
( ) ( 0) Sn+m+1 + a,,,ls"”" +___+aosm+1 +m! (p)
Since the Laplace transform of the function z : (0, c0) — [ is
Sm+1
L zZ) = )
@ Sl g ST 4+ @gS™ L+ ml
we obtain
L(x) - L(xo0) = L(2)L(p) = L(z * p).
Hence,

t t
X(t) - xo(8)] = |z % p(O)] < j|z(t W pldu < ej|z(t ~w)du.
0 0

Further on, from the formula for the inverse Laplace transform follows
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[ee]

1 e(a+/3i)(t—u)(a + l')m+1
2t - w) =| L e’ B | ap
27 J (a + B+ tag(a + B + m!
—00
2 Fym+1

< iea(t—u) J‘ (a + Bi)

21 (a + g™ 4. rag(a + B)™1 + m!
< cedlt-u),

for all @ > max{0, o, or}, where

[ee]

c—ij (a + By dB < oo
2t J [ (a + )™ 4 rag(a + B + m! ’
sincen € N, n > 1. It follows that
p t
Qa
x(t) - Xo(0)] < st‘e"‘(“”)du = EE feat — 1) = Egeat 1),
- a

0

Example 3.1. Let us consider m = 0, n = 2 and the following equation:
t
x"(t) + 3x'(t) + 3x(t) + Ix(u)du =t
0
Consider also € > 0 and the inequality

t
X'() + 3x(E) + 3x(6) + Jx(u)du _t| <.
0

K

DE GRUYTER

(3.3)

(3.4)

By applying Theorem 3.1, we obtain that for every function x : (0, co) — F satisfying the inequality (3.4),

there exists a solution xq : (0, c0) — F of equation (3.3) such that
IX(t) — xo(t)] < Zi(eaf ~1), Vte(0,00), Va>o.
174

Indeed, we have

sm+l S

@S 4 @ ST 4+ r@ps™ T+ m! s34+ 352+ 3s+1 0 (s+1)°

and
RSN N EL PR My R Y R R R R
21 (a + 1+ Bi) 2t ) (Ja+ 12+ g2y 2n ) (a+ 1)+ B2
=i 1 n<l, for all a > max{0, o} = 0,
2ma + 1 2

since

o = max{R(splj € {1,2,3}} = -1,

S1, Sy, S3 being the roots of the polynomial s3 + 3s? + 3s + 1.
Hence, by using Theorem 3.1, we obtain

IX(t) - xo(t)] < EE(et - 1) < zi(eaf ~1), Vte(0,00), Va>O0.
a (14

As in [31], a Corollary of Theorem 3.1 can be formulated.
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Corollary 3.1. Let g(t) = t™, for every t € (0, o). There exists ¢ > O such that, for every x : (0, c0) — F
verifying inequality (2.1), for all t € (0, co0) and some € > 0, there exists a solution xq : (0, c0) — [F of the
equation (1.1) such that

for all te(0,00), if max{0,0,0r}=0
or

[x(t) — xo(t)| < ecet,
forall t e (0,

1

— | if max{0, o, 07} > O.
max{o0, o, Uf}) f { 7}

Proof. Theorem 3.1 yields
() - xo(0)] < E-(ent - 1) < e,
a a
for all t > 0 and a > max{0, o, of}.

. . at . . o . . .
As a function of a, the expression £ attains its minimum for a = % Replacing a by% in the aforemen-
a

tioned inequality, we obtain
[x(t) — xo(t)] < ecte.

If max{0, o, or} = O, then the 1nequa11ty holds for anyt > 0. If max{0, o, g} > O, smce— = a > max{0, o, of},
the inequality holds only for t < —— m|

max{O a, Uf}

When the function g is an exponential function, we obtain the following result.
Theorem 3.2. Let g : (0, 00) — [F, g(t) = e, withw € R. Then, for every function x : (0, co) — F satisfying

the inequality (2.1), for all t € (0, co) and some € > 0, there exists a solution xq : (0, co) — [F of the equation
(1.1) such that

X(®) - x0(0)] < E5(e ~ 1), Ve € (0, c0),
a
for all a > max{0, o, o}, where
|
c=—
2

and o is defined in (3.5).

a+ fi-
(a+ fi — w)(a+ PO +-+ay(a + Bi) +ap) +1

>

Proof. In the same way and with the same notation as in Theorem 3.1, we obtain

1
L = P,” -1 - «(r s .
0= 25 L@)Z OHIO) + s S + L)

For g(t) = e, the Laplace image is £(g) = ﬁ Hence,

Buos) + £(g) = S Who® +1

s-w
so we obtain
. S-w (-1 . SsS-w _ SsS-w
= T B + 1ZP" O B 17 G- wig® s 157
For eachi € {0, 1, ...,n}, we have
(s —w)his) 1 (S - W)[sBi(s) ~Ro®)] -1 1 (s-w)ap+as +-+a s + 1

G-who®) +1 s SIS who®) +1] s sil(s — W)Byo(s) + 1]
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Let s1, Sy, ..., Sn+1 be the roots of the polynomial (s — w)P, o(s) + 1, and let
o = max{R(sylj € {1, 2, ...,n + 1}}.
According to Lemma 2.1, there exists an infinitely differentiable function h; such that

(s —w)ap + s +---+a ST + 1

L) = sil(s — w)Byo(s) + 1]

1)

for every s with fR(s) > max{0, o}, and

hi(0) = h/(0) =---= h{""%(0),
for anyi € {0, 1, ...,n}. We also have
i-1
fl(%) ) (it— n’
so we define
fit) = L - h(t), i€{0,1,...,n}
(i-1)

We notice that

0, k#i-1
o) = {2 _
fiP® {1’ koi_q kel ..n-1.

Using again Lemma 2.1, there exists an infinitely differentiable function z such that

L(z) =

S—w
(s — W)Byo(s) +1°

for every s with J(s) > max{0, ¢}, and z(0) = z'(0) =---= z("2(0).
Let

t
£t = j ) 2(t - ). du,
0

In the same way as in Theorem 3.1, we have that £(fy) = £(f)£L(z), and
fo(0) = f3(0) =---= f§"P(0) = 0.
Let us define
n
xo(t) = Y xEDO)fi(t) + fo(t).
i=1
We have x{(0) = x®(0), Vi € {0, 1, ...,n — 1} and

S—w
(s = wB,o(s) + 1

SRAN0) ¢ —S = p(p)

L(xo) = < (s = w)Bo(s) +1

for every s with 94(s) > max{0, o, or}.
We obtain
S-w

L) - L(Xo) = m-ﬁ(p) = L(2)L(p) = L(z*DP).

Hence,

t
X() — x0(®)] = |z % p(O)] < ej|z(t ~w)du.
0

DE GRUYTER

(3.5)
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But
1T e@ B0 (g + Bi - w)
- l=| o [ —— arfi-w)
2 (a+ i — w)((a + D" +--+a(a + i) + ap) +1
sie“(““) J‘ a+fi-w
2 (a+ fi — w)((a+ pD" +---+ag) +1
< Cea(t—u)’

for all @ > max{0, o, oy}, where

(ee]

1 a+fi-w
C=— J‘ " " R dB < 00,
2n (a+ fi — w)(a+ P +-+a(a+ pi) +ap) +1
sincen € N, n > 1. It follows that
p at
X(t) - Xo(t)] < £c j eat-wdy = E€ [eat _q) = E(pat _ ), O
-a a

0

A consequence similar to Corollary 3.1 can be also formulated in this case.
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