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Abstract: The Kirchhoff model is derived from the vibration problem of stretchable strings. This article
focuses on the long-time dynamics of a class of higher-order coupled Kirchhoff systems with nonlinear
strong damping. The existence and uniqueness of the solutions of these equations in different spaces are
proved by prior estimation and the Faedo-Galerkin method. Subsequently, the family of global attractors
of these problems is proved using the compactness theorem. In this article, we systematically propose
the definition and proof process of the family of global attractors and enrich the related conclusions of
higher-order coupled Kirchhoff models. The conclusions lay a theoretical foundation for future practical
applications.
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1 Introduction

In this study, we consider the dynamic behavior of the following higher-order coupled Kirchhoffmodels in a
bounded smooth domain RΩ n

⊂ :

u N u u M u v u g u v f x

v N v v M u v v g u v f x

Δ Δ , ,

Δ Δ , ,

tt
m m

t
m m m

tt
m m

t
m m m

1
2 2 2 2

1 1

2
2 2 2 2 2 2 2

2 2

1 1 1 2 1

2 2 1 2 2

⎧
⎨
⎩

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

+ ‖∇ ‖ − + ‖∇ ‖ + ‖∇ ‖ − + =

+ ‖∇ ‖ − + ‖∇ ‖ + ‖∇ ‖ − + =

(1)

under the following boundary conditions:

u x u i m m

v x v j m m

n

n

0, 0, 1, , 1, 1

0, 0, 1, , 2 1, 1,

i

i

j

j

1 1

2 2

( )

( )

=
∂

∂

= = … − >

=
∂

∂

= = … − >

(2)

and the following initial conditions:
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where Δ is the Laplace operator, N N,1 2 and M M,1 2 are scalar functions specified later, g g,1 2 are the given
source terms, and f f,1 2 are the given functions.

(1) is a set of important generalized higher-order quasi-linear wave equations. The proposed equation
in this article originated from Kirchhoff’s vibration problem of stretchable strings in 1883:
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where x L0 < < , t 0≥ , u u x t,( )= is the lateral displacement at space coordinate x and time coordinate t, E
represents the Young’s modulus, ρ represents the mass density, h represents the cross-sectional area, L
represents the length, and p0 represents the axial tension of the accident. The long-time behavior of various
forms of Kirchhoff equations have attracted the attention of many scholars in recent decades, and abundant
research results have been produced [1–13].

Chueshov [1] studied the well-posedness and long-time dynamical behavior of the following Kirchhoff
equation with a nonlinear strong damping term:

u σ u u ϕ u u f u h xΔ Δ .tt t
2 2( ) ( ) ( ) ( )+ ‖∇ ‖ − ‖∇ ‖ + = (5)

Lin et al. [2] studied the global dynamics of the following generalized nonlinear Kirchhoff-Boussinesq
equations with a strong damping:

u αu β u u g u u h u f xΔ Δ div Δ .tt t t
2 2( (∣ ∣ ) ) ( ) ( )+ − + = ∇ ∇ + + (6)

This article proved that the semi-group conformed to the squeezing property and demonstrated the
existence of the exponential attractor of the system. Then, the spectral interval theory was used to prove
that the system had an inertial manifold.

Ghisi and Gobbino [3] studied the global and local existence of solutions to the following Kirchhoff
model with strong damping:
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Nakao [4] proved the initial-boundary value problem of the quasi-linear Kirchhoff-type wave equation with
standard dissipation ut:
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With the advance of research, scholars began to turn their attention to the dynamics of the higher-order
Kirchhoff equations. Ye and Tao [14] studied the initial-boundary value problem of the following kind of
higher-order Kirchhoff-type equation with a nonlinear dissipation term:
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Lin and Zhu [15] studied the initial and boundary value problems of the following nonlinear nonlocal
higher-order Kirchhoff-type equations:

u M D u u β u g x u f xΔ Δ , .tt
m m m

t t
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This study demonstrated the existence and uniqueness of the solution, proved the existence of a global
attractor family of the problem through the compact method, and obtained the finite Hausdorff and Fractal
dimensions.

Originated from physics, system coupling is a measure where two entities depend on each other. With
suitable conditions or parameters, a connected system is coupled, and the potential energy of the system
can enable the combination of structural functions of different systems and generate new functions. As a
mathematical equation derived from physics, the Kirchhoff model is favorable for considering coupled
system. Scholars gradually considered the dynamics of coupled Kirchhoff equations. For example, Wang
and Zhang [16] studied the long-time dynamics problem of a class of coupled beam equations with strong
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damping under nonlinear boundary conditions. Lin and Zhang [17] studied the initial-boundary value
problem of the following Kirchhoff coupling group with strong damping and source terms:
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The finite Hausdorff dimension of the global attractor can be obtained in [17].
In recent years, Lin et al. [18–20] focused on the dynamics of a class of higher-order coupled Kirchhoff

equations and obtained a series of ideal results.
At present, few articles focus on the higher-order coupled Kirchhoff problems, and the problem of

higher-order beam-plate coupled with nonlinear strong damping has not been studied. The main difficulty
lies in the estimation and processing of the harmonic term and the nonlinear damping term and the
nonlinear damping when proving the uniqueness. Therefore, under reasonable assumptions, this article
overcomes these difficulties by using Holder’s inequality, Young’s inequality, Poincare inequality, and
Gagliardo-Nirenberg inequality and obtains the global solution of the problem and the family of global
attractors. This study could refine the definition and existence theorem of the family of global attractors.
The conclusions could fill the gap of the family of global attractors of higher-order coupled models (regard-
less of whether m1 is equal to m2) and lay the foundation for subsequent engineering applications.

This article is organized as follows. Section 2 presents the fundamentals for this work. Section 3 states
and proves the main results. Finally, conclusions of this article are presented in Section 4.

2 Preparatory knowledge
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Meanwhile, the general form of the Poincare inequality is as follows: λ u ur r
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eigenvalue of Δ− with a homogeneous Dirichlet boundary on Ω. In this article, Ci is a constant, and C( )⋅ is a
constant depending on the parameters in parentheses.
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Proof. Multiplying the first equation of (1) by y1 in H and the second one by y2 in H , we have
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By Holder’s inequality, Young’s inequality, and Poincare inequality, we have
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Inserting (18) and (19) into (17) gives
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t

X
μ μ

1 2
2

5

1
2

2
2

1 5
00 0

( )‖ ‖ ≤

′

+

+ ‖ ‖ + ‖ ‖

=

→∞
×

(25)

Therefore, there exist positive constants C R0( ) and t0 that when t t0≥ , we have

u y v y u y v y C R, , , .X
m m

1 2
2 2

1
2 2 2

2
2

00 0
1 2( ) ( )‖ ‖ = ‖∇ ‖ + ‖ ‖ + ‖∇ ‖ + ‖ ‖ ≤

×

(26)

Thus, Lemma 3 is proved. □

Lemma 4. Assume that assumptions (A1)–(A4) hold, if f V f V,k k1 2 21 2∈ ∈ , k m1, 2, ,1 1= … , k m1, 2, ,2 2= … , and
initial data u u v v X, , , k k0 1 0 1 1 2( ) ∈ × . Then for R 0k k1 2 >× , there exist positive constants C Rk k1 2( )× and tk k1 2× that
when t tk k1 2≥ × , u y v y, , ,1 2( ) determined by problems (1)–(3) satisfies

u y v y u y v y C R, , , ,X
m k k m k k

k k1 2
2 2

1
2 2 2 2 2

2
2

k k1 2
1 1 1 2 2 2

1 2( ) ( )‖ ‖ = ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ≤
+ +

×
×

(27)
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where y u εu y v εv,t t1 2= + = + .

Proof. Multiplying the first equation of (1) by yΔ k
11( )− , k m1, 2, ,1 1= … in H , the second one by yΔ k2

2
2( )− ,

k m1, 2, ,2 2= … in H , and then integrating over Ω, we have

t
y y M u v u v

εM u v u v ε y y

ε u y v y N u y

N v y εN u y u

εN v y v g u v y g u v y

u v
t

M u v f y f y

1
2

d
d

, ,

,

, , , Δ , , Δ

2
d
d

, Δ , Δ .

k k m m m k m k

m m m k m k k k

k k k k m m k

m m k m m k m k

m m k m k k k

m k m k
m m k k

1
2 2

2
2 2 2 2 2 2 2 2

2 2 2 2 2 2 2
1

2 2
2

2

2
1

2 2
2 1

2
1

2

2
2 2 2 2

2
2

1
2

1

2
2 2 2 2

2
2 2

1 1 2
2

2
2 2 2 2

2 2 2
1 1 2

2
2

1 2 1 2 1 1 2 2

1 2 1 1 2 2 1 2

1 1 2 2 1 1 1

2 2 2 1 1 1 1 1

2 2 2 2 2 1 2

1 1 2 2
1 2 1 2

[ ]

( ) ( ) ( ) ( )

( ( ) ( ( )

( )( )

( )( ) ( )

(( ) ( )) ( )

( ) ( )( )

( )( ) ( ) ( )

( ) ) )

‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖

+ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖ − ‖∇ ‖ + ‖∇ ‖

+ ∇ ∇ + ∇ ∇ + ‖∇ ‖ ‖∇ ‖

+ ‖∇ ‖ ‖∇ ‖ − ‖∇ ‖ ∇ ∇

− ‖∇ ‖ ∇ ∇ + − + −

=
‖∇ ‖ + ‖∇ ‖

‖∇ ‖ + ‖∇ ‖ + − + −

+ +

+ +

+

+ + +

+ +

+ +

(28)

According to Holder’s inequality, Young’s inequality, and Poincare inequality, we have

ε y y ε u y v y

ε ε y y ε u v

ε ε y y ε λ u ε λ v

, ,

2 2

2 2 2
,

k k k k k k

k k k k

k k m m k m m k

1
2 2

2
2 2

1
2 2

2

2

1
2 2

2
2

2
2 2 2

2

1
2 2

2
2

2

1
2

2

1
2 2 2 2

1 2 1 1 2 2

1 2 1 2

1 2 1 1 1 2 2 2

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) (( ) ( ))

( ) ( )

( )

− ‖∇ ‖ + ‖∇ ‖ + ∇ ∇ + ∇ ∇

≥ − − ‖∇ ‖ + ‖∇ ‖ − ‖∇ ‖ + ‖∇ ‖

≥ − − ‖∇ ‖ + ‖∇ ‖ − ‖∇ ‖ − ‖∇ ‖
− + − +

(29)

N u y N v y εN u y u

εN v y v

N u y N v y ε N u u

ε N v v

,

,

1
2

1
2 2

2
,

m m k m m k m m k m k

m m k m k

m m k m m k m m k

m m k

1
2

1
2

2
2 2 2 2

2
2

1
2

1

2
2 2 2 2

2
2 2

1
2

1
2

2
2 2 2 2

2
2

2
1

2 2

2
2

2 2 2 2 2

1 1 1 2 2 2 1 1 1 1 1

2 2 2 2 2

1 1 1 2 2 2 1 1 1

2 2 2

( ) ( ) ( )( )

( )( )

( ) ( ) ( )

( )

‖∇ ‖ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ − ‖∇ ‖ ∇ ∇

− ‖∇ ‖ ∇ ∇

≥ ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ − ‖∇ ‖ ‖∇ ‖

− ‖∇ ‖ ‖∇ ‖

+ + + +

+ +

+ + +

+

(30)

g u v y g u v y

g u v y g u v y

N y λ
N

g u v N y λ
N

g u v

, , Δ , , Δ

, ,

4
,

4
, ,

k k

k k

m k
k m

m k
k m

1 1 2
2

2

1
2

1 2
4

2

10
1

2 1

10
1

2 20 2 2
2

2 1
2 2

20
2

2

1 2

2 2

1 1
1 1

2 2
2 2

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )− + −

≤ ‖ ‖‖∇ ‖ + ‖ ‖‖∇ ‖

≤ ‖∇ ‖ + ‖ ‖ + ‖∇ ‖ + ‖ ‖
+

−

+

−

(31)

f y f y f y f y

y y f f

, Δ , Δ
1
2

1
2

1
2

1
2

,

k k k k k k

k k k k

1 1 2
2

2 1 1
2

2
2

2

1
2 2

2
2

1
2 2

2
2

1 2 1 1 2 2

1 2 1 2

( ( ) ( ( )) )− + − ≤ ‖∇ ‖‖∇ ‖ + ‖∇ ‖‖∇ ‖

≤ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖

(32)

and according to A3( ), we have

g u v g u v x

C u v x

C u v x

C u v

g u v C u v

, , d

1 d

1 d

1 ,

, 1 .

p q

p q

p
p

q
q

p
p

q
q

1
2

Ω

1
2

Ω

2
2

6

Ω

2 2

7 2
2

2
2

2
2

8 2
2

2
2

1 1

1 1

1
1

1
1

2
2

2
2

( ) ∣ ( )∣

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )

∫

∫ ( )

∫( )

( )

( )

‖ ‖ =

≤ + +

≤ + +

≤ + ‖ ‖ + ‖ ‖

‖ ‖ ≤ + ‖ ‖ + ‖ ‖

(33)
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Furthermore, on the basis of the Gagliardo-Nirenberg inequality, we can conclude that

u C u u

v C v v

,

.

p
p

j
m

q
q

j
m

2
2

9

2
2

10
2

j
j

n pj
m

m pj n pj
m

j
j

n qj
m

m qj n qj
m

1
1

1
2 1 1

1

2
1

2 2
4 2 1

2 2

⎧

⎨
⎩

( ) ( )

( ) ( )

‖ ‖ ≤ ‖∇ ‖ ‖ ‖

‖ ‖ ≤ ‖∇ ‖ ‖ ‖

− − −

− − −

Thus, we have

g u v g u v C R, , .1
2

2
2

0( ) ( ) ( )‖ ‖ + ‖ ‖ ≤ (34)

By inserting (29)–(32) and (34) into (28), we obtain

t
y y M u v u v

N u N λ ε ε
y

N v N λ ε ε

y εM u v ε N u ε λ u

εM u v ε N v ε λ v

u v
t

M u v f f C R λ

u v M u v

u u v v f f C R λ

C u v u v f f C R λ

1
2

d
d

2 2 4 2
4

2 2 4 2
4

2 2

2 2

2
d
d

1
2

1
2

,

, , 1
2

1
2

,

1
2

1
2

, .

k k m m m k m k

m m
k

m m

k m m m m m k

m m m m m k

m k m k
m m k k

m k m k m m

m m
t

m m
t

k k

m
t

m
t

m k m k k k

1
2 2

2
2 2 2 2 2 2 2 2

1
2

10 1
2

1
2 2

2 2
20 1

2 2

2
2

2 2 2 2
2

1
2

2

1
2

2 2 2
2

2
2 2

2

1
2 2 2 2

2 2 2 2
2 2 2

1
2 2

2
2

0 1

2 2 2 2 2 2 2

2 2
1

2 2
2

2
0 1

8
2 2 2 2 2

1
2 2

2
2

0 1

1 2 1 2 1 1 2 2

1 1
1

2 2

2 1 2 1 1 1 1

1 2 2 2 2 2

1 1 2 2
1 2 1 2

1 1 2 2 1 2

1 1 2 2 1 2

1 2 1 1 2 2 1 2

[ ]

( )

( )

( )

( )

( )

( )( )

( ) ( )

( ) ( )

( )

( ) ( )

(( ) ( ))

( )( )

( ( ) ) ( ( ) )

‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖

+

‖∇ ‖ − − − −

‖∇ ‖ +

‖∇ ‖ − − − −

× ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ − ‖∇ ‖ − ‖∇ ‖

+ ‖∇ ‖ + ‖∇ ‖ − ‖∇ ‖ − ‖∇ ‖

≤
‖∇ ‖ + ‖∇ ‖

‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ +

≤ ‖∇ ‖ + ‖∇ ‖ ′ ‖∇ ‖ + ‖∇ ‖

× ∇ ∇ + ∇ ∇ + ‖∇ ‖ + ‖∇ ‖ +

≤ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ +

+ +

− +

− +

+ +

+ +

+ +

(35)

Let H t y y M u v u vk k m m m k m k
2 1

2 2
2

2 2 2 2 2 2 2 21 2 1 2 1 1 2 2( ) ( )( )= ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖
+ + , and σ2 =

min , ,λ N ε ε λ N ε ε ε2 4 2
2

2 4 2
2 2

m m
1

1 10 2
1
2 2 20 2

{ }
− − − − − −

, we have

t
H t σ H t C u v H t f f C R λd

d
, .m

t
m

t
k k

2 2 2 9
2

2 1
2 2

2
2

0 11 2 1 2( ) ( ) ( ) ( )( )+ ≤ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + (36)

By taking the scalar product in H of (1) with u v,t t, we have

t
u v M τ τ J u v f u f v N u u

N v v

1
2

d
d

d 2 , 2 , 2 ,

0,

t t

u v

m m
t

m m
t

2 2

0

1 2 1
2 2

2
2 2 2 2

m m1 2 2 2 2

1 1

2 2

⎡

⎣

⎢
⎢

( ) ( ) ( ) ( )
⎤

⎦

⎥
⎥

∫ ( )

( )

‖ ‖ + ‖ ‖ + + − − + ‖∇ ‖ ‖∇ ‖

+ ‖∇ ‖ ‖∇ ‖ =

‖∇ ‖ +‖∇ ‖

(37)

and integrating (37) in td on t0,( ) derives

u τ v τ τ

N N
N u τ u τ N v τ v τ τ

N N
u v M τ τ J u v f u f v C

d

1
min ,

d

1
min ,

d 2 , 2 , 2 , ,

t

m
t

m
t

t

m m
t

m m
t

u v

0

2 2 2

10 20
0

1
2 2

2
2 2 2 2

10 20
1

2
1

2

0

0 0 1 0 2 0 10

m m

1 2

1 1 2 2

1 0 2 2 2 0 2

( ) ( )

{ }
( ) ( ) ( ) ( )

{ }

⎛

⎝
⎜⎜

( ) ( ) ( ) ( )
⎞

⎠
⎟⎟

∫( )

∫( ( ) ( ) )

∫

‖∇ ‖ + ‖∇ ‖

≤ ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖

≤ ‖ ‖ + ‖ ‖ + + − − ≤

‖∇ ‖ +‖∇ ‖

(38)

then, we have
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C u τ v τ τ σ t s ad
2

,
s

t

m
t

m
t9

2 21 2( ) ( ) ( )∫(( ))‖∇ ‖ + ‖∇ ‖ ≤ − + (39)

for t s 0> ≥ and some a 0> . Together with (36), (39), and Lemma 1, we can obtain that

H t C H C0 e .t
2 11 2 12

σ2
2( ) ( )≤ +

− (40)

According to A1( ), we have

H t y y M u v u v

C y y u v ,

k k m m m k m k

k k m k m k

2 1
2 2

2
2 2 2 2 2 2 2 2

13 1
2 2

2
2 2 2 2 2

1 2 1 2 1 1 2 2

1 2 1 1 2 2

( ) ( )( )

( )

≥ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖ + ‖∇ ‖

≥ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖

+ +

+ +

(41)

then,

u y v y y y u v

C H C
C

, , ,

0 e ,

X
k k m k m k

t

1 2
2

1
2 2

2
2 2 2 2 2

11 2 12

13

k k
σ

1 2
1 2 1 1 2 2

2
2

( )

( )

‖ ‖ = ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖

≤
+

+ +

−

×

(42)

i.e.,

u y v y Rlim , , , .
t

X k k1 2
2

k k1 2 1 2( )‖ ‖ ≤

→∞

×
×

(43)

Therefore, there exist positive constants C Rk k1 2( )× and tk k1 2× that when t tk k1 2≥ × , u y v y, , ,1 2( ) satisfies

u y v y y y u v C R
k m k m

, , , ,
1, 2, , , 1, 2, , .

X
k k m k m k

k k1 2
2

1
2 2

2
2 2 2 2 2

1 1 2 2

k k1 2
1 2 1 1 2 2

1 2( ) ( )‖ ‖ = ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ≤

= … = …

+ +

×
× (44)

Thus, Lemma 4 is proved. □

Theorem 1. Assume that assumptions (A1)–(A4) hold, if f V f V,k k1 2 21 2∈ ∈ and initial data u u v v X, , , k k0 1 0 1 1 2( ) ∈ × ,
k m k m0, 1, 2, , , 0, 1, 2, ,1 1 2 2= … = … , then problems (1)–(3) admit a unique solution u v,( ) satisfying

u L V

u L H L T V

v L V

v L H L T V

0, ; ;

0, ; 0, ; ;

0, ; ;

0, ; 0, ; .

m k

t k

m k

t k

2

2 2

2
2

1 1

1

2 2

2

( )

( )

( )

( )

( )

( )

∈ ∞

∈ ∞ ∩

∈ ∞

∈ ∞ ∩

∞

+

∞

∞

+

∞

Proof. According to [15] and the Faedo-Galerkin method, (1)–(3) have global solutions combining with
Lemmas 3 and 4.

Let u v,1 1 and u v,2 2 be two solutions of problems (1)–(3) corresponding to the same initial data,
respectively, w u u z v v,1 2 1 2

= − = − . Then, w z,( ) solves

w σ t w t w G u u v v t

z σ t z t z G u u v v t

1
2

Δ 1
2

Φ Δ , , , ; 0,

1
2

Δ 1
2

Φ Δ , , , ; 0,

tt
m

t
m

tt
m

t
m

12 12 1
1 2 1 2

34
2

12
2

2
1 2 1 2

1 1

2 2

⎧

⎨
⎪

⎩
⎪

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

+ − + − + =

+ − + − + =

(45)

where σ σ t σ t12 1 2( ) ( )= + , t t tΦ Φ Φ12 1 2( ) ( ) ( )= + , σ t N ui
m i

1
21( ) ( )= ‖∇ ‖ , t M u vΦi

m i m i2 2 21 2( ) ( )= ‖∇ ‖ + ‖∇ ‖ ,

i 1, 2= , σ σ t σ t34 3 4( ) ( )= + , σ t N v j, 3, 4j
m j

2
2 22( ) ( )= ‖∇ ‖ = , G u u v v t σ t σ t, , , ; Δ m

1
1 2 1 2 1

2 1 2 1( ) [ ( ) ( )]( ){= − −

u u t t u u g u v gΦ Φ Δ ,t t
m1 2

1 2
1 2

1 1 1 11( ) [ ( ) ( )]( ) ( ) ( )}+ + − − + + − u v,2 2( ), G u u v v t σ t σ t, , , ;2
1 2 1 2 1

2 3 4( ) [ ( ) ( )]{= −

v v t t v v g u v g u vΔ Φ Φ Δ , ,m
t t

m2 1 2
1 2

2 1 2
2 1 1 2 2 22 2( ) ( ) [ ( ) ( )]( ) ( ) ( ) ( )}− + + − − + + − .
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According to Lemma 3, σ C R u u σ C R v v,m
t

m
t

m
t

m
t12 0

1 2
34 0

2 1 2 21 1 2 2( ) ( )( ) ( )′ ≤ ‖∇ ‖ + ‖∇ ‖ ′ ≤ ‖∇ ‖ + ‖∇ ‖ .
By taking the scalar product in H of (45) with w z,t t, we can obtain that

t
w z w z σ t w σ t z

G u u v v t w G u u v v t z

1
2

d
d

1
4

Φ 1
2

1
2

, , , ; , , , , ; , 0.

t t
m m m

t
m

t

t t

2 2
0

2 2 2
12

2
34

2 2

1
1 2 1 2

2
1 2 1 2

1 2 1 2⎡
⎣

⎤
⎦

( ) ( )

( ( ) ) ( ( ) )

( )‖ ‖ + ‖ ‖ + ⋅ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖

+ + =

(46)

According to Lemma 3 and A1( ), M M C R H M, 00 0 1 1( ( ))≤ ≤ ≡ . When w z 0t
m md

d
2 2 21 2( )‖∇ ‖ + ‖∇ ‖ ≥ , MΦ 20 0= ;

otherwise MΦ 20 1= .
Let G u u v v t w G G G G u u v v t z G G G, , , ; , , , , , ; ,t t1

1 2 1 2
11 12 13 2

1 2 1 2
21 22 23( ( ) ) ( ( ) )= + + = + + , we have

G σ t σ t u u w

C R u u w w
σ w C R

σ
u u w

1
2

,

8
2 ,

m
t t

m
t

m
t

m
t

m m
t

m
t

m
t

m
t

m

11 1 2
1 2

0
1 2

120 2 0

120

1 2 2 2 2

1 1

1 1 1 1

1 1 1 1

( ( ) ( )) ( )

( )

( )

( )

( )

( )

= − ∇ + ∇

≤ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖‖∇ ‖

≤ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖

(47)

G t t u u w

C R w z w
σ w C R

σ
w z

1
2

Φ Φ ,

8
2 ,

m m
t

m m m
t

m
t

m m

12 1 2
1 2

0
2

120 2 0

120

2 2 2

1 1

1 2 1

1 1 2

( ( ) ( )) ( )

( )

( )

( )

( )

( )

= − ∇ + ∇

≤ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖

≤ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖

(48)

G g u v g u v w C R w w z, , , ,t t
m m

13 1 1 1 1 2 2 0
2 2 2 21 2( ( ) ( ) ) ( )( )= − ≤ ‖ ‖ + ‖∇ ‖ + ‖∇ ‖ (49)

G σ t σ t v v z

C R v v z z
σ z C R

σ
v v z

1
2

,

8
2 ,

m
t t

m
t

m
t

m
t

m m
t

m
t

m
t

m
t

m

21 3 4
2 1 2 2

0
2 1 2 2 2 2

340 2 2 0

340

2 1 2 2 2 2 2 2

2 2

2 2 2 2

2 2 2 2

( ( ) ( )) ( )

( )

( )

( )

( )

( )

= − ∇ + ∇

≤ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖‖∇ ‖

≤ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖

(50)

G t t v v z

C R w z z
σ z C R

σ
w z

1
2

Φ Φ ,

8
2 ,

m m
t

m m m
t

m
t

m m

22 1 2
2 1 2 2

0
2 2

340 2 2 0

340

2 2 2

2 2

1 2 2

2 1 2

( ( ) ( )) ( )

( )

( )

( )

( )

( )

= − ∇ + ∇

≤ ‖∇ ‖ + ‖∇ ‖ ‖∇ ‖

≤ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖

(51)

G g u v g u v z C R z w z, , , ,t t
m m

23 2 1 1 2 2 2 0
2 2 2 21 2( ( ) ( ) ) ( )( )= − ≤ ‖ ‖ + ‖∇ ‖ + ‖∇ ‖ (52)

where σ N σ N2 , 2120 10 340 20= = .
By inserting (46)–(52) into (45), we have

t
w z w z

C v v w z w z

1
2

d
d

1
4

Φ

1 1
4

Φ .

t t
m m

m
t

m
t t t

m m

2 2
0

2 2 2

14
2 1 2 2 2 2 2 2

0
2 2 2

1 2

2 2 1 2

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

( )

( ) ( )

‖ ‖ + ‖ ‖ + ⋅ ‖∇ ‖ + ‖∇ ‖

≤ + ‖∇ ‖ + ‖∇ ‖ ‖ ‖ + ‖ ‖ + ⋅ ‖∇ ‖ + ‖∇ ‖

(53)

Solving this differential inequality yields

w z w z

w z w z C v v s

1
4

Φ

1
4

Φ exp 1 d .

t t
m m

m m

t

m
t

m
t

2 2
0

2 2 2

1
2

1
2

0 0
2 2

0
2

0

14
2 1 2 2 2 2

1 2

1 2 2 2

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( ) ∫ ( )

‖ ‖ + ‖ ‖ + ⋅ ‖∇ ‖ + ‖∇ ‖

≤ ‖ ‖ + ‖ ‖ + ⋅ ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖

(54)
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Thus, the uniqueness of the solution is proved. □

Therefore, problems (1)–(3) possess a unique solution u v, . Theorem 1 is proved.
According to Theorem 1, we define a nonlinear operator S t t 0{ ( )} ≥ on space X S t u u v v: , , ,0 0 0 1 0 1( )( ) =×

u u v v, , ,t t( ), for all t 0≥ . Theorem 1 shows that S t t 0{ ( )} ≥ compose a continuous semi-group in X0 0× . Before
proving the family of global attractors, we first give their definition.

Definition 1. Let X0 be a Banach space, and S t t 0{ ( )} ≥ be a continuous operator semi-group, if there exist
compact sets Ak k1 2× that satisfies
(i) Invariance: all Ak k1 2× are invariant sets under the action of the semi-group S t t 0{ ( )} ≥ ,

S t A A t; for all 0.k k k k1 2 1 2( ) = ≥× ×

(ii) Attractiveness: all Ak k1 2× attract all bounded sets in X0, i.e., for any bounded B X0⊂ ,

S t B A S t x y tdist , sup inf 0, .k k
x B y A

X
k k

1 2
1 2

0( ) ( )( ) = ‖ − ‖ → → ∞×

∈
∈ ×

In particular, when t → ∞, all trajectories S t u0( ) from u0 converge to Ak k1 2× , i.e.,

S t u A tdist , 0, .k k0 1 2( )( ) → → ∞×

Then, compact sets Ak are all global attractors of the semi-group S t t 0{ ( )} ≥ . Let A X k m: 1, 2, , ,k k 0 1 11 2{= ⊂ = …×�

k m1, 2, ,2 2}= … be a family of subsets in X0. Finally, the family � is the family of global attractors in X0.

Theorem 2. Assume that assumptions (A1)–(A4) hold, if f V f V,m m1 2 21 2∈ ∈ and initial data u u v v X, , , m m0 1 0 1 1 2( ) ∈ × ,
then, problems (1)–(3) have a family of global attractors � in X0 0×

A A ω B S t B k m k m, , 1, 2, , , 1, 2, , ,k k k k k k
τ

t τ k k,0
0

,0 1 1 2 21 2 1 2 1 2 1 2( ){ } ( )= = = ⋂ ⋃ = … = …× × ×

≥

≥ ×�

where B u u v v X u u v v, , , : , , ,k k t t k k t t X,0
2

k k1 2 1 2 1 2
{( ) ( )= ∈ ‖ ‖× ×

×

= u u vm k k
t

m k2 2 2 2 21 1 1 2 2‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ +
+ + vk

t
2 22‖∇ ‖ ≤

C R C Rk k0 1 2( ) }( )+ × are bounded absorbing sets in X0 0× , Bk k ,01 2× are compact in X0 0× , A Xk k 0 01 2 ⊂× × .
(1) S t A Ak k k k1 2 1 2( ) =× × , (for all t 0≥ ),
(2) Ak k1 2× attract all bounded sets in X0 0× , i.e., for all B Xk k 0 01 2 ⊂× × are bounded sets in X0 0× , and

S t B A S t x y tdist , sup inf 0 ,k k k k
x B y A

X
k k k k

1 2 1 2
1 2 1 2

0 0( ) ( ) ( )( ) = ‖ − ‖ → → ∞× ×

∈
∈

×
×

×

where S t t 0{ ( )} ≥ is the solution semi-group generated by problems (1)–(3).

Proof. According to Lemma 3, for all R 00 > , u u v v R, , , X0 1 0 1 00 0( )‖ ‖ ≤
×

. Thus,

S t u u v v u u v v C R, , , X V t V V t V0 1 0 1
2 2 2 2 2

0m m0 0 1 0 2 2 0
( )( ) ( )‖ ‖ = ‖ ‖ + ‖ ‖ + ‖ ‖ + ‖ ‖ ≤

×

show that S t t 0{ ( )} ≥ are uniformly bounded in X0 0× ; further, B u u v v X u u v v, , , : , , ,k k t t k k t t X,0
2

k k1 2 1 2 1 2
{( ) ( )= ∈ ‖ ‖× ×

×

= u u v v C R C Rm k k
t

m k k
t k k

2 2 2 2 2 2 2
01 1 1 2 2 2

1 2( ) }( )‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ≤ +
+ +

× are bounded absorbing sets of the semi-
group S t t 0{ ( )} ≥ in X0 0× ; because X Xk k 0 01 2 ↪× × are compactly embedding, i.e., the bounded sets in Xk k1 2× are
compact sets in X0 0× , the solution semi-group S t t 0{ ( )} ≥ is a fully continuous operator.

To sum up, we obtained the family of global attractors Ak k1 2{ }= ×� of the solution semi-group S t t 0{ ( )} ≥

in X0 0× , and

A ω B S t B A X k m k m, , 1, 2, , , 1, 2, , .k k k k
τ

t τ k k k k,0
0

,0 0 0 1 1 2 21 2 1 2 1 2 1 2( )( )= = ⋂ ⋃ ⊂ = … = …× ×

≥

≥ × × ×

Theorem 2 is proved. □
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Note 1. Lemma 4 and Theorem 2 show that the bounded absorbing sets Bk k ,01 2× =
u u v v X u u v v, , , : , , ,t t k k t t X

2
k k1 2 1 2

{( ) ( )∈ ‖ ‖×
×

= u u v v C R C Rm k k
t

m k k
t k k

2 2 2 2 2 2 2
01 1 1 2 2 2

1 2( ) }( )‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ + ‖∇ ‖ ≤ +
+ +

×

are compact bounded absorbing sets in X0 0× . Therefore, based on condition 3 in Lemma 2, the operator
semi-group S t t 0{ ( )} ≥ only needs to be a continuous operator. According to Theorem 1, the semi-group
S t t 0{ ( )} ≥ is already a continuous semi-group. Thus, the family of global attractors Ak k1 2{ }= ×� of problems
(1)–(3) in X0 0× can also be obtained.

4 Conclusion

In this article, we studied a class of higher-order coupled Kirchhoff systems with nonlinear strong damping.
For the first time, we systematically defined the family of global attractors and proved the existence of the
family of global attractors of problems (1)–(3). The results enriched the related conclusions of higher-order
coupled Kirchhoff models and laid a theoretical foundation for future practical applications.
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