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Abstract: The question of whether there is a true isometry approximating the £-isometry defined in the
bounded subset of the n-dimensional Euclidean space has long been considered an interesting question. In
1982, Fickett published the first article on this topic, and in early 2000, Alestalo et al. and Vaisdla improved
Fickett’s result significantly. Recently, the second author of this article published a paper improving the
previous results. The main purpose of this article is to significantly improve all of the aforementioned
results by applying a basic and intuitive method.
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1 Introduction

We assume that (E, (-,-)) and (F, (-,-)) are real (or complex) Hilbert spaces and D is a nonempty subset of E.
Given € > 0, a function f: D — F is called an €-isometry if f satisfies the inequality

WD - fDI - Ix -yl < e

for all x, y € D. If there exists a positive constant K (independent of f and €) such that for each -isometry
f: D — F, there exists an isometry U : D — F satisfying the inequality ||f(x) — U(x)| < Ke for every x € D,
then the equation, [|f (x) — f(¥)Il = Ilx — yl, is said to have the Hyers-Ulam stability.

Hyers and Ulam [1] were the first mathematicians to publish a article on the stability of isometries.
Indeed, they were able to prove the Hyers-Ulam stability of surjective isometries defined on the entire space
by using properties of the inner product of Hilbert space. Readers interested in more literature on similar
subjects are referred to the papers [2-12] and the references cited therein.

The question of whether there is a true isometry approximating the £-isometry defined in the bounded
subset of the n-dimensional Euclidean space has long been considered an interesting question.

To our knowledge, Fickett [13] was the first mathematician who tried to study the Hyers-Ulam stability
of isometries whose domains are bounded subsets of R". After studying the stability of isometries in the
bounded domain, Fickett used this result to prove Ulam’s conjecture about the invariance of measures.
Indeed, the research results of the Hyers-Ulam stability of isometries in the bounded domain can be used in
various fields of application.
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Theorem 1.1. (Fickett) Given an integer n > 2, let D be a bounded subset of R™ and let € > O be given. If a
function f: D — R" is an e-isometry, then there exists an isometry U : D — R" such that

If(x) - UX)|l < 27€"/ 6)

for any x € D.

Comparing Theorem 1.1 with the definition of Hyers-Ulam stability mentioned earlier, although Fickett
did not prove Hyers-Ulam stability of isometries in a strict sense, it is obvious that his goal was to prove
Hyers-Ulam stability of isometries on the bounded domain.

For the same kind of inequalities as (1) concerning the stability of isometries, the speed of convergence
of the upper bounds of the inequalities seems to be most important when € goes to zero. From this point of
view, an obvious disadvantage of Fickett’s theorem is that the upper bound of inequality (1) decreases very
slowly to O as € approaches 0. Roughly speaking, the problem is that the speed of convergence is too slow.

Because Fickett’s theorem has this shortcoming, it justifies that the purpose of this article is to further
improve Fickett’s theorem.

In the 40 years since Fickett published his result, several mathematicians have constantly tried to
improve Fickett’s theorem. Unfortunately, however, most attempts do not appear to have significantly
improved Fickett’s theorem, with the exception of the two cases by Alestalo et al. [14] and Vdisdla [15].
Moreover, recently, the second author was stimulated by the two results just mentioned and succeeded in
further improving them (see [16]).

In this article, we will further improve Fickett’s theorem by applying the purely analytical method used in
[16]. The purely analytic method to be used in this article is completely different from the methods used in
[14,15]. Indeed, we prove the Hyers-Ulam stability of isometries defined on the bounded subsets of R" forn > 3.

The advantage of this article is that the intermediate process is more precisely refined, and better results
can be obtained compared to the previous paper [16], even though it assumes almost the same conditions as
in the previous paper. Indeed, according to Theorem 4.1 or Corollary 4.2, we will find that the upper bound
of the relevant inequality in this article is only less than half that of the previous paper [16].

2 Real version of QR decomposition

Throughout this article, we assume that n is a fixed integer not less than 3 and {ey, e,, ...,e,} is the standard
basis for the n-dimensional Euclidean space R". Furthermore, we assume that D, a subset of R", contains
{0, ey, e, ...,e,}. It does not matter at all whether D is a bounded set.

According to the real version of QR decomposition (see [16, Theorem 2.1]), for each function f : D — R",
there exists an orthogonal matrix Q such that we may express

i
f(e) = (e}, e, ...,e}, 0, ...,0)" = Zei}er
=1

with respect to the new basis {Qe;, Qe,, ...,Qe,} for R", where e}, > 0 for all i € {1, 2, ...,n}. Therefore, we

can assume that from now on we write f(e;) = (ef;, €, -..,€4, 0, ...,0) as row vectors for convenience,
where each e, is nonnegative.

3 A preliminary theorem

In the following theorem, we do not know in advance the exact values of ¢;. But we define ¢ as if we knew
the values of ¢; in advance, because we know that there is nothing wrong with doing so. However, by (20)
and (22), we note that
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j-1 n-1
6,481 + 3,504~/2
2 2 ’ ]
0 = max S= ) Chipi = n-1) =26.2302852(n - 1
25j§n; ji ; (i+1)i 436 ( ) ( )
and
min —— = 2+ Y109 _ 4 5505750,
1<i<n 2Cj 70

In practice, o defined in this article is the same as o given in the previous paper [16]. Moreover, we note

1} =Ll W6 1 _ 0.0381239ﬁ.

N S 1
min{—, mincjc,=— == —
that { 1sisnyg 0 6481+3,5042 n-1

g’ > 12
The proof of the following theorem is similar to the proof of [16, Theorem 3.1], but in many places, they
are quite different. Therefore, even if there is a overlap in a significant part of the proof, we consider it to be
inefficient to point out them one by one and to cite the proof of the previous article. Hence, we will proceed
with the proof of this theorem as far as possible without omission.
We remember that {ej, e,, ...,e,} is the standard basis for the n-dimensional Euclidean space R" and O
denotes the origin of R™.

Theorem 3.1. Given an integern > 3, let R" denote the n-dimensional Euclidean space and let D be a subset of
R" including the set {0, ey, e,, ...,en}. If a function f : D — R" satisfies f(0) = 0 and

WFOD = fFDI - Ix =yl < & @)

1

1 .
Pt E}’ where 0 is

. . 1 .
for all x,y € {0, ey, €5, ...,e,} and for some constant € with 0 < € < mln{;, min; .,

defined as o = masziSnZ{;llcizi and the c;’s and c(,1)’s will be determined by formulas (20) and (22), respec-
tively, then there exist positive real numbers ¢;’s, i,j € {1, 2, ...,n} with j <1, such that

A

—CjE < € < e (for i>}),
1-cig<e;<l1+¢e (fori=j)

and such that the cy’s satisfy the relations in (19) for alli,j € {1, 2, ...,n} with j < i.

Proof. (a) By using inequality (2) and assumption f(0) = 0, we have
feDl -1 <& and [If(er) - fle)l - V2| <€

for any j, k, € €{1,2, ...,n} with k < ¢. Since f(e) = (ej, ...,e}, 0, ...,0) for all je{1,2,...,n} and |-|
denotes the Euclidean norm on R", from the last inequalities, we obtain the following two inequalities,

which are equivalent to the inequality (2) for x, y € {0, e}, e, ...,en}:

j
1-e?<)el<(l+e) (4)
i=1
foreachj e {1, 2, ...,n} and
k k ¢
(N2 - e < Yeii - Y2ee; + Y e < (N2 +¢)? )
i=1 i=1 i=1

for every k, € € {1, 2, ...,n} with k < €. From now on, we will prove this theorem by using inequalities (4)
and (5) instead of inequality (2).

(b) We will apply the “main” induction to prove the array of equations presented in (19). Proving the
array in (19) is the most important and longest part of this proof.
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(b.1) According to the QR decomposition, e/, is a nonnegative real number, so setting j = 1in (4) gives
us the inequality, 1 — € < ef; < 1 + €, and we select ¢; = 1 as the smallest positive real number that satisfies
the following inequality:

l-qe<l-e<e;<1+e. (6)

This fact guarantees the existence of ¢;; satisfying the second condition of (3) fori =j = 1. If we set j = 2 in
(4) and substitute k = 1 and ¢ = 2 in (5) and then combine the resulting inequalities, then we obtain

—Qey+2+2V2)e + e, (4 +2V2)e + €2
<e < )

2(1 - Cllg) 2(1 - C11€)
. . 1 49 + 242 o
By using the conditions € < o and ¢;; = 1, we choose ¢ = e = 3.7700512 as the smallest positive real
— <
number that satisfies the rightmost inequality of
-0y + 2 + 242)e + cie? 22 2
e < —a Ve v GrnDere )
2(1 - ) 2(1 - ce)

(Indeed, ¢; = 3.7700512 is the “smallest” solution to the rightmost inequality in (7) when € = %.) This fact

confirms the existence of ¢; satisfying the first condition of (3) fori = 2 and j = 1.
Furthermore, if we set j = 3 in (4) and substitute k = 1and ¢ = 3 into (5) and then combine the resulting
inequalities, then we obtain the inner part of the following inequalities:

—Qay + 2+ 2V2)e + cier B 4 +242)e + €2

—C31€ < <eé3 <
o 2(1 - CHE)

< G318, 8
20~ ) 31 (8)

and we select ¢;; as the smallest positive real number that satisfies the outermost inequalities of (8).
By comparing inequalities (7) and (8), we choose ¢;; that satisfies ¢;; = ¢ = 3.7700512. In this way, we
can check the existence of c3; that satisfies the first condition in (3).

Moreover, the definition of ¢ and (4) with j = 2 imply the existence of a positive constant a that satisfies

Q1-ael<(l-el-e<(l-€?-02<(1-eP-Ge2<l-el-ef<el<(+e)? 9)
Now we want to select the smallest positive value of a that satisfies the first inequality of (9):
1-ae)’<(-¢)-e.
The previous inequality is transformed into the quadratic inequality with respect to a:
e’ -2a+(3-¢€)<0,
whose solution is given by

3-¢ 3-¢
<ac<

1++1-3e+¢&2 1-J1-3e+&2

Since we want the smallest possible value of a to satisfy the previous inequalities, we choose
3-¢

1+J1-3e+e2

. 1 . 1 1 . d . . 1
where 0 < € < mln{;, miny icns E}' Furthermore, since ga(s) > 0 for any € satisfying 0 < € < o a(e)
il

a=a(e) =

increases as € increases within such a small range of € and
a(%) =12 - J109 = 1.5596935.

In view of (9) and the previous argument, it holds that
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1- a(%)e <ep<l+e. (10)

Thus, (10) assures the existence of ¢; = a(%) =12 — 4109 = 1.5596935 satisfying the second condition of
3) fori=j=2.

In a similar way, substitute k = 2 and ¢ = 3 into (5) and using (4), a routine calculation shows the
existence of c3, satisfying the first condition of (3). For example, since —cze? < eyes; < cx€?, it holds that
ot < ~(4 +2J2)e + €2 - 232 PN CE 2V2)e + €2 + 2cke?

< <é3 < < G3€.
2(1 - C22€) 2 2(1 - C22£) »

Since é > 0 > cg, we have 2c5e? < 2e(che) < 2¢. Moreovet, since & < % and ¢ = 12 - /109, we obtain
1 6 73+2432
o) < Ti05 20 5.1215511.
Analogously, the definition of o and (4) with j = 3 implies the existence of a positive constant a that
satisfies

. Hence, we obtain ¢, =

(I-ae<(l-el-e<(Q-€?-02<(1-e2-(ch+ch)el<(1-¢€) - (el +e3) <el3<(1+e)

Repeating the same from (9) to (10), we obtain
l—a(i)s<e’ <l+e¢
2 33 < .

The last inequality assures the existence of ¢33 = a(%) =12 - /109 = 1.5596935 satisfying the second con-
dition of (3) fori =j = 3.

Therefore, all the constants ¢; considered in (b. 1) satisfy the conditions in (3) and (19) for n = 3.
By doing this, we start the induction (with m = 3).

(b.2) Induction hypothesis. Let m be some integer satisfying 3 < m < n. It is assumed that the smallest
positive real numbers ¢, i, j € {1, 2, ...,m} with j < i, were found by the methods we did in the subsection
(b. 1), and that these numbers satisfy the following inequalities:

{—ci,-e < e < CjE (for i >j),

1-ce<eij<l+e (fori=j)

as well as the array of equations:

Cm1 = Cim-1m = Cim-2:1 = ... = € = G = O
Cm2 = Cm-1)2 = Cim-2)2 = .. = G = Gy

3 = Cm-13 = C(m-2)3 = 0 = Gz

Cnm-3) = Cm-1Dm-3) = C(m-2)(m-3)

Cmm-2) = Cim-1)(m-2)»

Cm(m-1)-

The last line in the aforementioned array consisting of only ¢y,-1) means that there exists the smallest
possible positive constant cyn-1) that satisfies —cpn-1)€ < e,’,,(m_l) < Cm(m-1E-
(b. 3) We will now expand the equations in the direction of the arrows in the following equation.

— Cm1 = Cim-11 = Cm-2)1 = o= 0y = 61 = O
— Cm2 = Cim-1)2 = Cm-2)2 = 0= G = Gy
- Cm3 = Cim-1)3 = Cm-2)3 = ... = C43
1 : : : (11)
< GCnm-3) = Cm-1)(m-3) = C(m-2)(m-3)
— Cmm-2) = C(m-1)(m-2)
— Cm(m-1)-
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Weletj=m+ 1in (4) and £ = m + 1 in (5) to obtain

m+1
(1-€2< Y emayi< (1 +€) (12)
i1
and
k k m+1
(V2 - €)<Y el = Y 2e€miny + Y. €lmary < (N2 + €)? (13)
i1 i1 i1

forevery k € {1, 2, ...,m}.
Similar to what we did to obtain (7), the inequalities (6), (12), and (13) with k = 1 yield the inner ones of
the following inequalities:

—Qcy + 2+ 22)e + cie? PG 24J2)e + €2
2(1 - C11€) = Fmen1 = 2(1 - C118)

—Cm+10€ < < Cm+1)1Es (14)

and we find the smallest positive real number c¢n.1y satisfying the outermost inequalities of (14). By
comparing both inequalities (7) and (14), we may conclude that ¢gm+11 = ¢n, with which we initiate an

“inner” induction that is subordinate to the main induction. (We start the induction in the direction of the
arrow as shown in the following equation.)

Cm+D1 = Cm1 = Cim-1)1 = Cim-2)1 = .= 0y = G = Oy
l Cm2 = Cm-12 = Cm-22 = ... = Cio = Cp,
l Cni3 =  Cm-13 = Cm-23 = = Cy3
1 : : :
1 Cmm-3) = Cm-1)(m-3) = Com-2(m-3)»
! Cm(m-2) = Cim-1)(m-2)»
l Cm(m-1)-

(b.3.1) We choose some k € {2, 3, ...,m} and assume that —cgn. 1€ < e('mﬂ)i < Cm+1)i€ ANd Cim1)i = Ciri
foreachi € {1, 2, ...,k — 1}. This is the hypothesis for our inner induction on i that operates inside the main
induction on m. On the basis of hypothesis, we will prove that there exists a positive real number c(p. 1y that
satisfies —Cgnik€ < e(’m+1)k < Cons1pk€ as well as Cuns1yk = Crnk- Roughly speaking, we apply this inner
induction to horizontally expand each row to the left as shown in (11).

(b.3.2) It follows from (13) that

k k-1 1
\/5 2 12 2 [N & 12
(V2 =)= e + ) 2e0€imnyi — . Elmani
i=1 i=1 i=1
< —Zelike('mﬂ)k < (15)

k-1 m+1

k
2 2
(V2 + )%= e + ) 2e0€(mny — 2, €meni
i-1 i1 i-1

for any k € {2, 3, ...,m}. On the other hand, by (4) and (12), we have

k m+1
1-e?<)ei<1+e? and (1-€2< Y emoyi<(1+€)
i=1 i=1

for each k € {2, 3, ...,m}. Moreover, it follows from the hypotheses (b. 2) and (b. 3.1) that

k-1 k-1 k-1 k-1 k-1
! !
—ZZCkiC(i+1)i€2 = —ZZCkiC(mﬂ)i“-‘2 < Zzekie(mmi < ZzCkiC(m+1)i82 = ZzCkiC(m)iEz
i-1 i-1 i-1 i-1 i-1

forallk € {2,3, ...,m}.
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Since ¢y < % and ey, > 0 by (3), we use (15) and the last inequalities to obtain the inner ones of the
following inequalities:

k-1
1
~ComiDiE < 5 (—(4 +202)e+€2-2 ch,-c(,-+1),-£2)
Tk

i=1

< e(,erl)k < (16)

k-1

1

o ((4 +2y2e+2+2 chic(i+1)i82) < CamekE
Kk i1

for all k € {2, 3, ...,m}, and we select the smallest positive constant c(m.1x that satisfies the outermost
inequalities of (16).
Similarly, by (4) and (5) with £ = k + 1, a routine calculation yields

k-1
1
—Clk+DKE < ol (—(4 +2y2e+€2-2 chic(k+1)i£2)
Kk i=1

< (i < (17)

k-1
1
2! ((4 + 2\/5)8 +e2+2 chic(k+l)i€2) < Clk+DKE s
kk i=1

where c(.1)« is the smallest positive real number that satisfies the outmost conditions of (17). We note by
(b. 2) and (b. 3.1) that c. 1y = cg+1y for every integer i satisfying 0 < i < k. Comparing (16) and (17), we
conclude that ¢ns1yx = Cisni for each k € {2, 3, ...,m}. Furthermore, referring to the subsection (b. 3), we

see that cim+1x = C+1)k holds for all k € {1, 2, ...,m}, which proves the truth of the first column of the array

of equations in subsection (b. 3.3) below.
Moreover, inequality (4) with j = m + 1 yields

m m
2 2 2
(1-¢)?- Ze(/m+l)i < €minmeny < (1 + €)% - Ze(,m+1)i' (18)
i1 i1

Since inequality (4) holds for all j € {1, 2, ...,n}, the definition of 0 and (4) imply that there exists a positive
constant a such that
(1-ae)<-¢eP-e<(-¢g)?-oe?
<1-¢)7- (C(2rn+1)1 +oot C(2m+1)m)€2
<1-¢)7- (e(lrfl+1)1 +oet e(lrfl+1)m)

2
< e(,m+l)(m+1) < (1 + 8)2-

By repeating the same from (9) to (10), we obtain
1 ,
1-a E €<e(m+1)(m+1)31+€.

The previous inequality assures the existence of cim1)m+1) = a(%) =12 - V109 = 1.5596935 satisfying the

second condition of (3) fori=j=m + 1.
(b.3.3) We just proved in the subsections (b.2) to (b.3.2) that there exist positive real numbers c;;,
i,je{l,2,...,m+ 1} with j < i, such that

!

—Ci€ < e < e (for i>j),
l-ce<e;<l+e (fori=j),



8 =— Ginkyu Choi and Soon-Mo Jung DE GRUYTER

and the ¢;’s satisfy the array:

Cm+1 = Cm1 = Com-1m = 0= 0 o= G = O
Cm+12 = Cm2 = Cim-1)2 = w0 = G = Gy
Cm+13 = Cm3 = Cm-13 = ... = (43

1 . . .

Cm+1)(m-2) = Cmm-2) = C(m-1)(m-2)

Cm+1)(m-1) = Cm(m-1)»

C(m+Dm-

The last row in the aforementioned array consisting of only c(m.1y» means that there exists the smallest
positive real number cgy,.1)m that satisfies —c(mi1yme < e(’mﬂ)m < Clm+1)mE-

(b.4) Altogether, by the main induction conclusion on m (3 < m < n), we may conclude that there exist
positive constants ¢y, i, j € {1, 2, ...,n} with j < i, such that each inequality in (3) holds true and the c¢;’s
satisfy

Cu = Cun-mm = Cn-21 = ... = Cup = G = O
Co = Cun-12 = Cwm-22 = Cpp = Gy
3 = Cm-13 = Cn-23 = ... = (3
3 : : : (19)
Cnn-3) = Cm-Dn-3) = Cn-2)(n-3)»
Can-2) = Cn-1)(n-2)»
Cn(n—l)y

which completes the first part of our proof. We remark that the last row “cy(,-1)” in the aforementioned array
implies that there is a real number cy,_1) > O satisfying —c,n-1g < e,'l(n,l) < Cp(n-1)E-
(c) As we showed at the end of (b.3.2), it holds that

Gy =12 - J109 = 1.5596935 (20)

forall j € {1, 2, ...,n}. Now, all that remains is to estimate the positive real numbers c;_1) more efficiently

than the previous article [16] for k € {2, 3, ...,n}. From now on, we refine from (c) to the end of the proof of
[16, Theorem 3.1] more precisely so that the positive constants cy«-1) have smaller values.

We note that inequality (17) holds for every k € {1, 2, ...,n — 1}. And then, we choose the smallest
constant cg.1yx > O that satisfies the outermost inequalities of (17). Indeed, by inequalities (3) and (17),
we can choose the smallest positive real number cg. 1) as follows:

k-1

4+202 v+ ZZCkiC(k+1)i€ (21)
i=1

1
C, =
(k+1k 2(1 _ CkkS)

. 1 1 .
forke{1,2,...,n-1}. Since0 < € < o> We see that e < 1. Further, since ¢y = Cges)i = Civ)i fOr any
ie{l,2,...,k-1and0 <e< %, we know that Zf;llckic(kﬂ)ie < o€ < 1. Thus, since 0 < € < %, we substitute

€= % and ¢y = 12 - /109 in (21) to obtain

73 + 242
C = ——— = 5,1215511 22
(k+ Dk 54100 (22)
foreveryk € {1,2, ...,n — 1}. |

Remark 3.1. The inequality (2) is a sufficient condition for inequalities in (3), and the inequalities in (3) are
necessary conditions for the inequality (2).
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4 Hyers-Ulam stability of isometries on bounded domains

As mentioned earlier, {e;, e, ...,e,} denotes the standard basis for the n-dimensional Euclidean
space R" and O denotes the origin of R". As already explained in Section 2, we can assume that
f(e) = (e}, e, ....ef, 0, ...,0) is written in row vector, where e;; > O for each i € {1, 2, ...,n}. We denote
by B4(0) the closed ball of radius d and centered at the origin of R", i.e., B4(0) = {x € [R” 2l < d}.

In the previous article [16], we restricted the values of ¢;s to positive integer values only. On the other
hand, we were able to significantly reduce the sizes of the c;s in Theorem 3.1 by allowing them to have
positive real numbers in this article.

The following theorem is practically identical to [16, Theorem 4.1], with only a few different assump-
tions. Slight differences between the two theorems are shown in the following table.

. 13 » 1
In [16]: integers o= Z:l e (21+1)1

. . . “ ” 1.2
In this article: real numbers o= maXZSjani=1C]l

These small differences do not affect the proof of the following theorem, so the proof proceeds the same
as the proof of [16, Theorem 4.1]. Therefore, the proof of the following theorem is omitted.

Theorem 4.1. Given a fixed integer n > 3, let D be a bounded subset of the n-dimensional Euclidean space R"
such that {0, e, e, ...,ey} ¢ D c B4(0) for some d > 1. If a function f: D — R" satisfies f(0) = O and the

inequality (2) for all x,y € D and for some constant € satisfying 0 < € < mm{ m1n1<1<n22 %}, where

o= max2<,<,,zl 1Gii 2 and the ¢js are positive real numbers estimated in Theorem 3.1, then there exists an
isometry U : D — R" such that

. 22
If ) = Ul < Z[[Z + Zcij](d +1)+ 2] € (23)
i=1 j=1

for all x € D.

By using (19), (20), and (22), we obtain

(73 + 242 )JW
218

-1 +15-4109 = A - 1) + B,

34 ) C=3+Cu+Cntot Gop + Gy =
j=1

where we set

(73 + 24+/2)4/109
218

A= =5.1215511 and B =15 - /109 = 4.5596935.

Furthermore, for n > 3, we have

z[[ , z]< D ] z( 5 ] @y

i=1 j=1

2
i B—é)n2+ i—AB+BZn(d+1)2
3 2 6
2
A é)713+l i—AB+B2n3'(d+1)2
2 9\ 6

= E(SAZ + 6AB + 3BY)(d + 1)n3.
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Then inequality (23) is transformed into

. 271/2
If(x) - UM < Z[(z + Zci,-](d +1)+ 2] €< [2i7(5A2 + 6AB + BBZ)]I/Z(d + Dnyne

i=1 j=1

for all x € D.
From Theorem 4.1 and the explanations described earlier, we obtain the following corollary.

Corollary 4.2. Given a fixed integer n > 3, let D be a bounded subset of the n-dimensional Euclidean space R"

such that {0, e, e, ...,en} ¢ D c B4(0) for some d > 1. If a function f: D — R" satisfies f(0) = 0 and the
inequality (2) for all x,y € D and for some constant € satisfying 0 < € < min{%, minlgign%ﬁ, %}, where
o= mangjgnZZ;fcjzi and the czs are positive real numbers estimated in Theorem 3.1, then there exists an
isometry U : D — R™" that satisfies

If(x) — UX)| < 3.5152581(d + 1)n/n €

for all x € D.

5 Examples

Theorem 4.1 and Corollary 4.2 in this article can be applied only when n > 3. However, in a recent paper
[17], the Hyers-Ulam stability of local isometries for n € {2, 3} was studied in detail. We introduce examples
inferred from this result.

Example 5.1. Let D = {x € R?: ||x|| < d} for some d > 1 and let f : D — R? be a function satisfying f(0) = 0
and the inequality (2) for all x, y € D and some constant € with 0 < € < % ~ 0.0769231. According to [17,
Theorem 3.2], there exists an isometry U : D — R? that satisfies

IfF G — UGN < (8d + 4)e

for all x € D.

Example 5.2. Let D = {x ¢ R3: |x| < d} for some d > 1and let f : D — R3 be a function satisfying f(0) = 0
and the inequality (2) for all x, y € D and some constant € with 0 < € < % ~ 0.0769231. According to [17,

Theorem 3.4], there exists an isometry U : D — R? that satisfies
If (x) = UCOIl < (16d + 5)

for all x € D.
Now, we introduce some examples made by substituting n € {4, 5} in Corollary 4.2.

Example 5.3. Let D = {x € R*: ||x|| < d} for somed > 1and let f : D — R* be a function satisfying f(0) = 0
and the inequality (2) for all x, y € D and some constant € with 0 < € < 0.0127079. According to Corollary
4.2, there exists an isometry U : D — R* that satisfies

IF(0) = UG < 28.1220649(d + 1)e

for all x € D.
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Example 5.4. Let D = {x € R®: |x|| < d} for some d > 1and let f: D — R® be a function satisfying f(0) = 0
and the inequality (2) for all x, y € D and some constant € with 0 < € < 0.0095309. According to Corollary
4.2, there exists an isometry U : D — R° that satisfies

IF(x) — UK < 39.3017804(d + 1)e

for all x € D.

6 Discussion and conclusion

We completed the following table by referring to the table presented in Section 6 of [16] and using the
formula presented in Corollary 4.2.

i 1 2 3 4 5

c*(1, 1) 4 >79 >799 >7990 >79900
8(d + Divi — — <84 128 <179
3.5152581(d + 1)i/i — — <37 <57 <79

The values in the first row of the aforementioned table were obtained by substituting ¢ = 1 in the
formula presented in the proof of [15, Theorem 4.1]. The values in the second row and the last row are
due to the formulas given in [16, Corollary 4.2] and Corollary 4.2 of this article with d = 1, respectively.
Comparing the values in the three rows of the aforementioned table, we see that our present result is more
efficient than those of Viisalad and [16].

We emphasize that we greatly improved Fickett’s theorem by using a purely intuitive method. It follows
from Theorem 4.1 or Corollary 4.2 that if a function f: D — R" satisfies f(0) = 0 and inequality (2) for any
X,y € D and for some small constant € > 0, then there exists an isometry U : D — R" and a constant K > O
such that the inequality ||[f(x) — U(x)| < Ke holds true for all x € D. Unfortunately, however, it seems
impossible to derive this useful conclusion using Fickett’s theorem. From this point of view, we dare to
say that we have significantly improved Fickett’s theorem in this article.

The second author informed very recently that Vestfrid had obtained similar results [16]. It will be
interesting to compare Vestfrid’s results [18] with those of [16] and this article. Research on finding a
smaller upper bound in the inequality of Corollary 4.2 seems necessary, and this kind of research will be
an interesting task in the future.
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