
Research Article

Ahmed Alsaedi, Madeaha Alghanmi, Bashir Ahmad*, and Boshra Alharbi

Uniqueness of solutions for a ψ-Hilfer
fractional integral boundary value problem
with the p-Laplacian operator

https://doi.org/10.1515/dema-2022-0195
received July 26, 2022; accepted January 5, 2023

Abstract: In this article, we discuss the existence of a unique solution to a ψ-Hilfer fractional differential
equation involving the p-Laplacian operator subject to nonlocal ψ-Riemann-Liouville fractional integral
boundary conditions. Banach’s fixed point theorem is the main tool of our study. Examples are given for
illustrating the obtained results.
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1 Introduction

Fractional differential operators are found to be of great utility in the mathematical modeling of natural and
engineering phenomena, for example, see [1–6] and the references cited therein. In contrast to the integer-
order differential operators, these operators are nonlocal in nature and account for the history of the
physical phenomena under consideration. In the literature, there do exist several kinds of fractional
integrals and derivatives, for instance, see [7–10]. Hilfer in [11] proposed a generalized fractional derivative
of order α and type β, which is known as the Hilfer fractional derivative, and it interpolates between the
Riemann-Liouville and Caputo derivatives. This two-parameter fractional derivative operator appeared in
the modeling of diffusion models, dielectric relaxation in glass-forming materials, etc. [12,13]. For some
recent works on Hilfer fractional differential equations, we refer the reader to the articles [14–18]. In [19],
Sousa and Capelas de Oliveira generalized the Hilfer fractional derivative by introducing the concept of
ψ-Hilfer fractional derivative. One of the advantages of this derivative is that it covers a wide class of
fractional derivatives, which can be fixed by choosing the function ψ appropriately. Later, this derivative
gained much attention, and many researchers turned to investigate it, for example, see [20–26].

On the other hand, differential equations with the p-Laplacian operator appeared for the first time
when Leibenson [27] was attempting to derive an accurate formula to model turbulent flow in the porous
medium. Keeping in mind the application of differential equations involving the p-Laplacian operator in
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the areas of mechanics, nonlinear dynamics, glaciology, nonlinear elasticity, flow through porous media,
and so on, many authors focused on this topic. For details and examples, one can see the article [28–32]. As
far as we know, there is no work dealing with ψ-Hilfer fractional differential equations with the p-Laplacian
operator.

The objective this study is to investigate a ψ-Hilfer fractional boundary value problem involving the
p-Laplacian operator ( )⋅ϕp and ψ-Riemann-Liouville fractional integral boundary conditions given as

follows:
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I σ ψ
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,i is theψ-Riemann-Liouville fractional integral operator of order >σ 0i , and

� �[ ] × →f : 0, 1 is a continuous function.
The rest of the article is organized as follows: Section 2 presents the background material related to our

work, Section 3 contains the main results for problem (1), and Section 4 presents examples to illustrate the
obtained results.

2 Preliminaries

Let �([ ] )C a b, , denote the Banach space of all continuous functions from [ ]a b, into � endowed with the
supremum norm ∣ ( )∣[ ]‖ ‖ =

∈

y y tsupt a b, . Let �([ ] )C a b, ,n be the class all n-times continuously differential
functions from [ ]a b, into � .

In the forthcoming analysis, it is assumed that ψ is an increasing and positive monotone function on
( ]0, 1 possessing a continuous derivative ( )′ ≠ψ t 0 on ( )0, 1 .

Definition 1. [7] For >α 0 and −∞ ≤ < ≤ ∞a b , the left-sided ψ-Riemann-Liouville fractional integral of
an integrable function f on [ ]a b, is defined as follows:
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Definition 2. [7] Let ( [ ] )− ≤ < = +n α n n α1 1 , the left-sided ψ-Riemann-Liouville fractional derivative of
a function �([ ] )∈f C a b, , is given as follows:
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Definition 3. [33] Let ( [ ] )− ≤ < = +n α n n α1 1 , the left-sided ψ-Caputo fractional derivative of a function
�([ ] )∈f C a b, ,n is defined as follows:
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Definition 4. [19] For [ ]> = +α n α0, 1, [ ]∈β 0, 1 , and −∞ ≤ < < ≤ ∞a x b , the left-sided ψ-Hilfer frac-
tional derivative for a function �([ ] )∈f C a b, ,n is defined as follows:
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In the following lemma, we solve the linear variant of problem (1).

Lemma 2. For [ ] ( )< < ∈ = + −α β γ α β α1 2, 0, 1 , 2 , and �([ ] )∈h C 0, 1 , , the integral representation of the
solution for the following linear ψ-Hilfer p-Laplacian fractional integral boundary value problem:
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is as follows:
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where it is assumed that
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Proof. Setting ( ( )) ( )=
+
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Solving (11), we obtain ( ) ( )∫= −θ t h s sd
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where c0 and c1 are arbitrary constants. Using the condition ( ) =y 0 0 in (13) yields =c 00 . Then, from (13),
we have
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Substituting the values of c0, c1, and ( ) ( )∫= −θ t h s sd
t

0
in (13), we obtain the solution (10). This completes the

proof. □

The following lemma provides bounds for the p-Laplace operator, which can easily be proved by using
the mean value theorem when the function ( ) ∣ ∣=

−ϕ k k kp
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3 Main results

This section is devoted to the uniqueness results for problem (1) for different values of p. Consider the
following composition operator:
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Clearly � �([ ] ) ([ ] )→� C C: 0, 1 , 0, 1 , is a continuous operator. For computational convenience, we set
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Now, we present our main results, which will be proved with the aid of the Banach contraction mapping
principle and Lemma 2.

Theorem 1. Assume that < ≤p1 2 and the following conditions hold:
(A1) There exist a nonnegative integrable function g on [ ]0, 1 and a positive constant M such that
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Consequently, we obtain
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which, on taking the norm for [ ]∈t 0, 1 , yields ‖ ‖ ≤�y r. Because ∈y Br is an arbitrary element, we
obtain ⊂�B Br r.
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+
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−

+

+

−

+

+
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−

−

−

=

−

+ −

− −

−

−

=

−

+ −

−

+ −

=

− +

−

� � � � � �

� �

� �

� �

y t z t y t z t

α
ψ τ ψ t ψ τ y τ z τ τ ψ t ψ

γ

α
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a
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a
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1
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Taking the norm of the above inequality for [ ]∈t 0, 1 , we obtain

( )( ) ( )( ) ( )‖ − ‖ ≤ −

−� �y t z t k q M1 Ω,q 2

which together with the condition (21) implies that the operator � is a contraction. Hence, by the Banach’s
contraction mapping principle, the operator � has a unique fixed point. Hence, problem (1) has a unique solution
on [ ]0, 1 . This completes the proof. □

Theorem 2. Assume that >p 2 and the following conditions hold:

(A3) There exist constants >m 0 and δ with < ≤

−

δ0 q
1

2 such that

�( ) ( ) [ ]≥ ∈ ×

−f t y mδt for t y, , , 0, 1 ;δ 1

(AA) There exists a constant >k 0 such that

�∣ ( ) ( )∣ ∣ ∣ ( ) [ ]− ≤ − ∈ × =f t y f t z k y z for t y i, , , , 0, 1 , 1, 2.i

If

( )
< <

−

−

k
q m

0 1
1 Ω

,q 2 (22)

where Ω is given by (20), then there exists a unique solution to the boundary value problem (1) on [ ]0, 1 .

Proof. By ( )A3 , we have

( ( ))
∫ ∫

≥ =

−f s y s s mδs s mt, d d .
t t

δ δ

0 0

1

Choosing
{ }

≥

−

−

r̄ max ,f
k

f
k

1 Ω
1 Ω

0 0 , where ∣ ( )∣[ ]=

∈

f f tmax , 0t0 0,1 , we define �{ ([ ] ) }= ∈ ‖ ‖ ≤B y C y r0, 1 , : ¯r̄ and
show that ⊂�B Br r¯ ¯, where the operator � is defined by (17). Using the definition of ( )⋅ϕq and the values of r̄
and q, we have for ∈y Br̄ that

∣( )( )∣
⎛

⎝

⎜⎜
( ( ))

⎞

⎠

⎟⎟

⎛

⎝

⎜
⎜

( ( ))
⎞

⎠

⎟
⎟

⎛

⎝

⎜⎜
[∣ ( ( )) ( )∣ ∣ ( )∣]

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
[ ]

⎞

⎠

⎟⎟
( ) ( )

∫ ∫

∫

∫

= =

≤ − +

≤ ‖ ‖ + ≤ + ≤ +

−

� y t ϕ f s y s s ϕ f s y s s

ϕ f s y s f s f s s

ϕ k y f s kr f kr f

, d , d

, , 0 , 0 d

d ¯ ¯ .

q

t

q

t

q

t

q
q

1

0 0

0

0

1

0 0
1

0

As in the previous theorem, one can obtain

( )( ) ( )‖ ‖ ≤ + ≤�y t kr f r¯ Ω ¯,0

which means that ‖ ‖ ≤�y r̄. Thus, ∈�y Br̄. Because ∈y Br̄ is an arbitrary element, we obtain ⊂�B Br r¯ ¯.
Next, it will be shown that � is a contraction. Let ([ ])∈y z C, 0, 1 . Because >p 2 implies < <q1 2, by

Lemma (3), we obtain

∣( )( ) ( )( )∣
⎛

⎝

⎜⎜
( ( ))

⎞

⎠

⎟⎟

⎛

⎝

⎜⎜
( ( ))

⎞

⎠

⎟⎟

( )( ) ( ( )) ( ( ))

( ) ( )( )

∫ ∫

∫ ∫

− = −

≤ − −

≤ − ‖ − ‖ ≤ − ‖ − ‖

−

− − + −

� �y t z t ϕ f s y s s ϕ f s z s s

q mt f s y s s f s z s s

k q m t y z k q m y z

, d , d

1 , d , d

1 1 .

q

t

q

t

δ q

t t

q δ q q

1 1

0 0

2

0 0
2 2 1 2
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Consequently, we have

⎜

⎟

∣( )( ) ( )( )∣ ∣( )( ) ( )( )∣

( )
( )( ( ) ( )) (( )( ) ( )( ))
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⎨
⎩
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⎠
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+

+
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−
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+

−

+

+
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−

−

−

=

−

+ −
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−
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=

−
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−
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=

− +

−

� � � � � �
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� �
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α
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γ

α
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a
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γ

α
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a
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a
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Γ
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1
Γ

d
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Γ
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ΛΓ
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Γ

1 d
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Γ

d

1 1 0
Γ 1
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t
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α

i
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i
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i
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t
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γ
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i

m
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i
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i
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q
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i

m

i
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i
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i
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1 1
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1
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1

1 2 1

1

1
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2
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i
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which, on taking norm for [ ]∈t 0, 1 , yields ( ) ( ) ( )‖ − ‖ ≤ − ‖ − ‖

−� �y z k q m y z1 Ω .q
1 1

2 Thus, it follows from
condition (22) that the operator � is a contraction. Hence, by Banach’s contraction principle, the operator �

has a unique fixed point, which is indeed a unique solution to problem (1) on [ ]0, 1 . This finishes the
proof. □

Theorem 3. Let >p 2. Assume that ( )A4 and the following condition are satisfied:

(A5) There exist a number >m 0 and < ≤

−

δ0 q
1

2 such that

�( ) ( ) [ ]≤ − ∈ ×

−f t y mδt for t y, , , 0, 1 .δ 1

Then, the boundary value problem (1) has a unique solution on [ ]0, 1 if k satisfies

( )
< <

−

−

k
q m

0 1
1 Ω

.q 2

Proof. Since the proof is similar to that of the last theorem, we omit it. □

4 Examples

Consider the following problem:
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⎧

⎨
⎩

( ( ( ))) ( ( ))

( ) ( ) ( ) ( ) ( )

′ + =

= = = ∕ ∕ + ∕

∕ ∕

∕ ∕

+

∕

+

∕

+

+

ϕ D y x f t y t

y D y y I y I y

, 0,

0 0 0, 1 1 4 1 2 3 3 4 ,
p

ψH

ψH
0
3 2,1 2,

0
3 2,1 2,

0
5 3

0
4 5

(23)

where = ∕α 3 2, = ∕β 1 2, = ∕σ 5 31 , = ∕σ 4 52 , = ∕μ 1 21 , = ∕μ 3 42 , = ∕a 1 41 , =a 32 , and ( ) = +ψ t t t2 . We will fix p and
( ( ))f t y t, later.

For illustrating Theorem 3.1, let us take

⎜ ⎟( ) ⎡

⎣
⎢

⎛

⎝

∣ ∣

∣ ∣
⎞

⎠

⎤

⎦
⎥

=

+

+

+

+f t y
t

e y y
y

t, 1
400

sin
1

cos ,t (24)

and = ∕p 4 3, which implies that =q 4. From the given data, we find that =γ 1.75 and =Ω 7.222698841.

Condition ( )A1 is satisfied with ( ) =

+

+

g t e t
t

2 cos
400

t
, and so =M 0.2137530673. In addition, ( )A2 and (21) are

satisfied with =k 0.2718281828. Thus, all the conditions of Theorem 3.1 are satisfied, and hence, its con-
clusion implies that problem (23) with = ∕p 4 3 and ( )f t y, given by (24) has a unique solution on [ ]0, 1 .

Next, we illustrate Theorem 3.2 by choosing

⎜ ⎟( ) ⎛

⎝

∣ ∣

∣ ∣
⎞

⎠
=

+

+f t y e y
y

, 2
3 12

1 ,
t

(25)

and = ∕p 7 2, which means that = ∕q 7 5. Let us take ( )= ∕ < ∕ −δ q4 3 1 2 and = ∕m 1 2. Then, ( ) ≥ ∕f t y, 2 3
=

∕ −t δ m tδ1 3 1, that is, ( )A3 is satisfied. In addition, ( )A4 and (22) hold true with =k 0.1510156571. Thus, it
follows by the conclusion of Theorem 3.2 that problem (23) with = ∕p 7 2 and ( )f t y, given by (25) has a

unique solution on [ ]0, 1 .

5 Conclusion

We have presented the uniqueness results for a ψ-Hilfer fractional differential equation involving the
p-Laplacian operator complemented with nonlocal ψ-Riemann-Liouville fractional integral boundary con-
ditions with the aid of Banach’s contraction mapping principle. Our first result deals with the case < ≤p1 2,
while the second and third results are obtained under different conditions on the nonlinear function ( )f t y,
involved in the given problem when >p 2. Our results are new in the given configuration and enrich the
literature on the p-Laplacian fractional order boundary value problems.
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