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Abstract: The aim of this article is to investigate the neutrosophic Nérlund I -statistically convergent
sequence space. We present some neutrosophic normed spaces (NNSs) in N6érlund convergent spaces. In
addition, we also examine various topological and algebraic properties of these convergent sequence
spaces. Theorems are proved in light of the NNS theory approach. Results are obtained via different
perspectives and new examples are produced to justify the counterparts and show the existence of the
introduced notions. The results established in this research work supply an exhaustive foundation in NNS
and make a significant contribution to the theoretical development of NNS in the literature. The original
aspect of this study is the first wholly up-to-date and thorough examination of the features and imple-
mentation of neutrosophic Norlund 7 -statistically convergent sequences in NNS, based upon the standard
definition.
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1 Introduction

Fuzzy theory has made a significant progress on the mathematical underpinnings of fuzzy set (FS) theory,
which was pioneered by Zadeh [1] in 1965. Zadeh [1] mentioned that an FS assigns a membership value to
each element of a given crisp universe set from [0, 1]. FSs cannot always overcome the absence of knowl-
edge of membership degrees. Because of that, Atanassov [2] examined the intuitionistic FS (IFS), which is
an extension of FS. Kramosil and Michalek [3] defined fuzzy metric space (FMS) by using the concepts of
fuzzy and probabilistic metric spaces. For more information on FMSs and IF-normed spaces (IFNS), we refer
the reader to [4—8]. Intuitionistic fuzzy fixed-point theory has become a subject of great interest for expert in
fixed-point theory because this branch of mathematics has covered new possibilities for summability
theory. In intuitionistic fuzzy metric space (IFMS), Mohamad [9] established the Banach fixed-point the-
orem. For more information on fixed point theory in FMS and IFMS, we refer the reader to [10-13]. The
concept of neutrosophy implies impartial knowledge of thought, and then neutral describes the basic
difference between neutral, fuzzy, intuitive FSs and logic. After the introduction of neutrosophic set (NS)
by Smarandache [14], which is a generalization of the classical set, FS, and IFS, Maji [15] has introduced the
combined concept of neutrosophic soft set (NSS). Taking everything into account, Smarandache applied the
IFS theory by defining a new component, namely, the indeterminacy membership function. NS is deter-
mined as a set where every component of the universe has a degree of T, F, and I. In IFSs, the “degree of
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non-belongingness” is not independent, but it is dependent on the “degree of belongingness.” FSs can be
thought of as a remarkable case of an IFS where the “degree of non-belongingness” of an element is
absolutely equal to “1-degree of belongingness.” Uncertainty is based on the belongingness degree in
IFSs, whereas the uncertainty in NS is considered independently from T and F values. Since there are
not any limitations among the degree of T, F, and I, NSs are actually more general than IFS. Consequently,
several mathematicians have produced their research works in different mathematical structures, for
example, Bera and Mahapatra [16—18]. The neutrosophic soft linear space was worked out by Bera and
Mahapatra [16]. Afterward, in [17,18], the conception of neutrosophic soft normed linear set (NSNLS) was
investigated, and various properties of NSNLS were proposed.

On the other hand, the notions of statistical convergent and 7 -convergent were further investigated
from the sequence space point of view and linked with the summability theory by Fast [19] and Kostyrko
et al. [20], respectively. Statistical convergence in the IFNS was presented by Karakus et al. [21]. For
extensive study in this topic, one may refer to the works of [22-44]. Kirisci and Simsek [45] investigated
neutrosophic metric space (NMS) with continuous ¢-norms and continuous t-conorms. Kirisci and Simsek
[46] proposed neutrosophic normed space (NNS) and statistical convergence in NNS. For more details on
statistical convergence and ideal convergence, one may refer to [47-55].

The idea of convergence of sequence is important in the fundamental theory of mathematics. There are
numerous convergence ideas in summability theory, such as classical measure theory, fuzzy theory,
approximation theory, and probability theory, and the links between them are investigated. This study
will do more research into the mathematical properties of Norlund convergent spaces in light of this.
Section 2 recalls some known definitions and theorems in neutrosophic and summability theory. In
Section 3, we investigate the neutrosophic Noérlund 7 -statistically convergent sequence space. In addition,
we present some NNS in N6rlund convergent spaces. Moreover, we also examine various topological and
algebraic properties of these convergent sequence spaces.

2 Preliminaries

This section will serve to gather all the necessary results and techniques on which we will rely to accom-
plish our main results. First, we will go over some key terms. All along the article, let 7 be an admissible
ideal, H = (?, Q, R) be a neutrosophic norm (NN), N/ be a Nérlund matrix, and N f,(@)) be Nf -transform of
the sequence © = (B,) € l.

Triangular norms (t-norms) were investigated by Menger [56]. In the problem of computing the distance
between two elements in space, Menger presented utilizing probability distributions instead of utilizing
numbers for distance. T-norms are applied to generalize with the probability distribution of triangle
inequality in metric space conditions. Triangular conorms (t-conorms) are identified as dual operations
of t-norms.

Definition 1. [46] Let F be a vector space, N = {{a, P(a), Q(a), R(a)) : a € F} be a normed space so that
N:F xR*— [0,1]. Assume A and < demonstrate the continuous t-norm and continuous t-conorm,
respectively. While following conditions supply, V = (F, N, A, <) is named to be NNS. For all a, 83 € F
and x, @ > 0 and for each p # O,

@ 0<P(a,x)<1,0<Q(a, k) <1,0 <R(a, x) <1Vk € RY,

) P(a, x) + Qa, k) + R(a, k) < 3 (for k € R"),

(c) P(a,x) =1 (forx > 0) iffa = 0O,

(d) Plpa, k) = P(a, I/JLI)’

(e) Pla,m) A PB,x) <Pla+f,m + k),
(f) P(a, -) is non-decreasing continuous function,
(8) limy_P(a, x) =1,
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(h) Q(a, x) =0 (forx > 0) iffa = O,
@) Qpa, ) = Q(a, |p_|)’
() Qla, @) ¢ QB k) = Qa+ B, m + k),
(k) Q(a, -) is non-decreasing continuous function,
1) lim,_Q(a, x) =0,
(m) R(a, x) =0 (for x > 0) iffa = 0,
(n) R(pa, x) = R(a, ITI)’
(0) R(a, @) & R(B, k) = R(a + B, @ + k),
(p) R(a,.) is non-decreasing continuous function,
(@) limyR(a, k) =0,
(r) Ifx < 0, then P(a, x) = 0, Q(a, x¥) = 1 and R(a, x) = 1.

Then, H = (P, Q, R) is an NN.

Statistical convergence and ideal convergence in NNS were proposed by Kirisci and Simsek [45] and
Kisi [55], respectively, by using the concept of NN.

Norlund sequence space was investigated by Wang [57] as follows:

o P

Nf={®=(®m)eloo: D

k
i ka—mgm <00, 1l<pc< 00};
Akm:O

where Ay = Z’,‘nzofm. The spaces l,(N/) and I,(N/) consist of all sequences whose Nérlund transforms are in
the spaces I, and l,, where 1 < p < oo.
Wang [57] used the N&érlund matrix A/ in the theory of sequence space for the first time. Recall that in

[58], assume f = (f,) be a non-negative sequence of real numbers and T; = anzofm for each j € N with
fo > 0. At that time, the Norlund matrix N/ = (a}{n) w.r.t. the sequence f = (fy,,) is determined as follows:

fi-m
s

f _
ajm_ ’I}

if0o<mc<j
o, if m>j

forall j,m e N,

Wang [57] utilized the Norlund matrix to determine the sequence space l,(N/) as the domain of
N6rlund mean N/-transform are in the space l,,. Tug and Basar [59] investigated the sequence spaces
co(NF) and c(N¥) as the set of all sequences with N in the spaces ¢y and c, respectively. In addition, Tug
and Basar [59] identified the sequence N é(@) to indicate the N'f-transform of the sequence (0,,) € w, where

the sequence NQ(G)) is determined as follows:

p
N{;(G)) = Ti Z fp—mem 4y
P m=0
for each p € N.

Recently, by using the concepts of the domain of Nérlund matrix N/ and 7 -convergence, Khan et al.
[60] presented the space of Noérlund 7 -convergent sequences.

Ideal convergence in IFNS was determined with the help of membership and non-membership func-
tions. Unlike prior works, this research considers the indeterminacy function while studying ideal conver-
gence. The aim of this study is to put forward several recent advancements in NNS. For sequences, ideal
convergence is known to be more general than statistical convergence. This has concentrated us to inves-
tigate the Norlund 7 -statistical convergence of sequences in NNS. In a recent work, we proposed significant
properties of this new type of convergence. In addition, it is denoted that Norlund 7 -statistical convergence
in NNS is generally dissimilar from 7 -statistical convergence in classical normed space (CNS), because
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there is no “A” function in CNS. But, it is obvious that when particular conditions are met, all CNS can be
NNS. When the NN is an additive positive integer, our conceptions and theorems yield the theoretical
results of [20,23]. Since any crisp norm can generate an NN, the results found here are more general
than the corresponding results for normed spaces. Several of the outcomes in this article either run parallel
with classical ones or they are in the identical direction as the similar studies in this topic; however, in most
conditions, the proofs use a different technique.

3 Main results

Throughout the article, we assume that the sequences © = (0,,) € I, and N é(@m) are connected as demon-
strated in (1) and 7 is an admissible ideal of a subset of N. In this section, by utilizing a domain of Nérlund
matrix, which is used in [60] and 7 -convergence w.r.t. NN H = (P, Q, R) [55], we identify new Norlund

sequence spaces as follows.

Definition 2. A sequence © = (0,,) € I, is said to be Norlund 7 -statistically convergent to § € R, provided
that, for each n, y > 0.

1
A1={peN:;I{msp:INé(Gm)—Blzn}lZV}EI-

Definition 3. A sequence © = (0,,) € L, is said to be N6rlund 7 -statistically Cauchy, provided that, for each
1,y > 0, there is an r € N such that

1
A = {p eN: ;I{m <p: INJOW - N©@w] = 1}l = V} €l

Definition 4. A sequence 0 = (0,,) € l, is said to be neutrosophic Norlund I -statistically convergent to
B eR wart. NN H = (P, Q, R), provided that, for each g,y > 0 and 1 € (0, 1),

Klzz{peN:%l{msp:‘P(Ng(@m)—,B,o)gl—n or

QNL(®R) - B, 0) = 1, RIN)(Om) - B, 0) = n}| = y} €l

. . . (P,Q,R) g
Symbolically, we write N {, - I -stlim@, =B or(®, = BEHD).

Definition 5. A sequence © = (0,,) € L is said to be neutrosophic Noérlund 7 -statistically Cauchy w.r.t. NN
H = (P, Q, R), provided that, for each o,y > 0 and n € (0, 1), there is anr € N such that the set K, belongs
to 7, where

1
K= {p eN: ;|{m <p: PINN(OR) - Nl(On),0) <1-1 or

QINY(©m) - NI(Om), 0) 21,  RINKO) — NL(©y), 0) > n}f > y} el

Now, we present the following sequence spaces:
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Né‘”m) = {G) =0 €ly: {p eN: %l{m <p: P(Né(@m), 0)<1-n or
QN}Om), 0) 21, RINL(OR), 0) > n}| = y} € I},
N{;H = {G) =(On) €ly: {p €N : forsome 8 € R, l|{m <p: P(N{,(@m) -B,0)<1-n or
(€3] p
QNI©m) - B,0) 21, RINLO) - B,0) =1}l > y} € I},
N{;H o = {G) =(0Op) €ly: {p eN:3(e(0,1), l|{m <p: P(N{,(@m),a) <1-{ or
) p

QN Om), 0) = ¢, RN} Om), 0) = {} = V} € f}-

We identify an open ball and closed ball with center at © and radius o > O w.r.t. the parameters of
fuzziness n € (0, 1) and y > 0 demonstrated by 8(0, g, n, y) and B[0, o, 11, y] as follows:

1
B(0,0,1,y) = {q = (Gm) € loo : {p eN: ;I{m <p: PINNOR - Ni(g),0) <1-n or

QNN O - Ni(@), 0) 21, RINYOw) - Nb, 0) 2 n}| 2 Y} € f}
and

1
B[O, 0,1,y] = {q = (Gm) € lo : {p eN: ;I{m <p: PINN(OR - N(g),0) <1-n or

QNYO) - M@, 0) > 1, RINKOW - Ni(@), 0) > 1} > y} € f}-

H
When (0,,) € Ng,H o then (0,,) 7 -statistically converges to some 8 € R, indicated by (6,,) S B, and

in that case, we obtain N{, - I - stlim@, = B.

NE

Theorem 1. The inclusion relation N, c Nt ST

(1) s © supplies.

Proof. It is obvious that NQH I € NQH o Then, we have to denote that N’;.H o € Ng.H Ty Contemplate
0.

0 =(0,) € NQH(D. At that time, there is an 8 € R such that Ng — I — stlim®,, = . So, for each n € (0, 1)

and o, y > 0, the set

K:z{peN:l‘{msp:?(Né(@m)—B,%)>l—nand
p

Q(N{,(@m) - B, %) <n, R(N{,(Gm) - B %) < rz}

< y} e F(I).

Assume P(ﬁ, %) =p, Q(B, %) =g, and R(,B, %) =r forall o > 0. Since p, q,r € (0, 1) and 1 € (0, 1), there
are s, 52,53 € (0, 1) suchthat(1 -n) Ap>1-s,n ¢ g < s, and n & r < s3. So, we obtain
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PNI(Om), 0) = PINL(O) - B + B, 0)

> @(N{,(@m) ) %) A 50(/3, 3)

2
>(1-nAp
>1-5,

QINY(Om), 0) = QINL(©,) - B + B, 0)

< Q(N{,(@m) - B, %) o Q(B, %)
<n<q
< Sy,

RNLOR), 0) = RIN)(©) - B + B, 0)

<R(NOm - £.7) o %(8. %)
<nor
< S5

When we have s = {s;, S5, S3}, we obtain the set
{p eN:3se(0,1), l|{m <p: PINKO),0) >1 -5 and QIN/(O), 0) <5, RINL®O), 0) < i} < s}
b

e F(I).

— f ic oi f f
Hence, © = (O),) € Nsﬂ(]m). This gives that Ns’”(f) C NS(H(I"O)' O
The converse of the inclusion relation does not supply. We establish the following example in support
of our claim.

Example 1. Assume (R, ||.||) be a normed space such that ||©]| = sup|®p|, u A v =min{u, v}, andu ¢ v =
max{u, v}, Yu, v € (0, 1). Now, we determine the norms H = (P, QT'R) on R? x (0, co) as follows:

_ 9 q@,0--%_ a4 w0 - 101

o+ 0] o+ O] o

Then, (R, H, A, $) is an NNS. Contemplate the sequence (¥, = {1}. It can be easily examined that
(¥ € N, and N} - T - st limO,, = 1 but (8,) ¢ N/

P(0,0) =

s"w Ngeny
f f ;
Theorem 2. The spaces N (1) and N s are linear spaces.
Proof. It is obvious that N gﬂ . C N gﬂ o At that time, we have to demonstrate the result for N/ g,, o The
0.
proof of linearity of the space N g,H - follows similarly. Assume sequences © = (0,,) and ¥ = (¥,) € N gH o
0.

Then, there are B, 8, € R such that (6,) and (¥,) neutrosophic I -statistically converge to 8, and §,,
respectively.

N - I -stlim®, =B, and N, -I-stlim¥,=p,.

We should denote that, for any scalars A and p, the sequence (A0,, + p¥,) I -statistically converges to
AB, + pB,. For o,y > 0 and 1 € (0, 1), take the following subsequent sets:

K = peN:l
p

o

Q(Ni(@)m) - Bl’ M) 2 )’1, R(N{J(em) - ﬁl’ ﬁ) 2 rl} | 2 Y} € I;

o

<1-
zw) et

{m <p: P(N{,(@m) - B,
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G = pEN:l
p

( p( m) Bz’ m) n, R(N{)(Wm) ﬁzy m) n}

Kf::[peN:l‘{mSP:P( L©m) - B,
p

{m <p: P(N{,(\I’m) B,, —) <l-nor

2|p|
zy}e

)>1—nand

So, we can write

2(A|

f f
Q(Np(Gm) By, 2IAI)<U’ R(Np(®m) By ZIAI) n}

V} € F(I);

>1-n and
2lp I)

f i f i
Q(Np(‘}’m) B> I |) 1 ﬂ(Np(‘}’m) B> I |) ’l}

Therefore, the set K = K{ n K5 is non-empty and K € (7). Let r € K, then

PNIAOy + p¥) — (AB, + pB,), 0) = P(AN{ (Om) - AB,, %) A P(pN,f (%) - pB,, %)

=P(Nf(®m> J m)AP(N((%) B Tpl)

>A-npAad-n
>1-n.

So, we obtain P(N/(A0,, + p¥y) — (AB; + pB,), ) > (1 — n). In addition,

QNI (ABm + p) — (AB, + pBy), 0) < Q(/\Nf(@m) - ABys %) N Q(erf(\I"m) - pB,, %)

K;::[peN:%‘{msp:P( p(qjm) B>,

< y] e F(I).

_ f o f _p 9
Q(Np(Gm) B, Ml)oa(N,,(w B, lel)

<nén
<n.

Then, we have QINI(A0,, + p¥,) - (AB; + pB,), 0) < n. Furthermore,
RONI(AO + p¥) — (AB, + pB,), 0) < R(/uv{(em) - 28, %) o R(pN,f (%) - pBs, %)

_R(N (Gm) Bp zl/\l) ( r( m) ﬁz’ 2|P|)

<non
<n.

Therefore, we acquire R(N{(/l@)m +p¥n) — (AB, + pB,), 0) < 1. So,

€ {p eN: %{m <p: P(N{D(A@m +p¥) - (AB, + pB,),0) >1 - n and

Q(N{a(}l@m +p¥) - (/‘ﬁ1 + pﬁz): 0)<n, R(Né(/‘@m +p¥) - (Aﬁ1 + pﬁz)’ 0) < rl}}

—_ 7
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Hence,

Kc {p eN: l{m < p: PINY(AO, + p¥y) — (AB, + pB,), 0) > 1 -1 and
)4

Q(N{;(Aem +p¥) - (Aﬁl + pﬁz): o)<n, R(N{;(Aem +p¥) - (AB1 + pﬁz)» 0) < I’l}}
Since K € ¥(7), according to the definition of filter, we acquire

{p eN: Lm<p: PINIAO, + p¥y) — (A, + pB,), 0) > 1 — 1 and
p

QN)ABy + p¥) — (ABy + pB,), 0) <1, RIN)ABm + p¥) — (A, + pB,), 0) < r]}} ¢ F(D),

which means that the sequence (A10,, + p¥,) neutrosophic 7 -statistically converges to AB, + pf3,. So,
ABp, + pY) e N ’SF(H o As a result, we obtain N g,, D is a linear space. O
Theorem 3. Every open ball with center at © and radius 0 > 0 w.r.t. the parameters of fuzziness y > 0,
n € (0, 1), i.e., B(O, g, n,y) is an open set in Né”(D w.r.t. NN H = (P, Q, R).

Proof. Assume B(0, 0,1, y) be an open ball with center at ©® and radius ¢ > 0 w.r.t. the parameters of
fuzziness y > 0, n € (0, 1),

1
B(0,0,1,y) = {q = (gm) € Lo {p eN: El{m <p: PINN(©R) - NI(g),0) <1-1n or

QNNOR) - Ni(@), 0) 21, RINYOm) - Ni(@), 0) = i} = y} € I}-
Then,

1
BYO,0,1,y) = {q = (gm) € Lo {p eN: ;I{m <p: PINOR) - NN(g),0) >1-1n and

QNY(®m) = N(@), 0) <1, RINJOm) - Ni(@), 0) < m}l <y} e T’(D}-

Presume q = (gn) € B0, g, n, y). Then, for
PINYO) - Ni(q), 0) >1 -1 and QN)O) - N)@), 0) <1,  RIN®) - N(@), 0) <,

there exists gy € (0, 0) so that

PINYO) = NU(@), 00) > 1 -1 and QUN)O) - Ni(@), 00) <1, RIN|(O) = N§(a), o) < 1.
Putting 1, = P(N)(©) - N/(q), 0p) implies n, > 1-1n. Then, 3r € (0,1) such that n,>1-r>1-17.
For n,>1-r, we obtain n,n,,n;€(0,1) such that nyAn>1-r, 1-n)<¢A-n)<r, and

(1-ny ¢ (1 - ny) <r. Take n, = max{n,, n,, n;}. Now, contemplate the open ball 80, 0 — 0o, 1 — 1, y).
We have to denote that

B4O,0 - 00,1 -1,,y) CcB(O,0,1,Y).
Take a = (ap) € B(q, 0 — 0,1 — 1, y). Then,
PINY@) - Ni@), 0 - 6o) > 1, and QIN)(q) - N(@), 0 - 0p) <1 -1,
RINI(q) - Ni(), 0 - 0p) <1 - n,.
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So, we obtain
PINYO) - Ni@), 0) = PINY(O) = N}(q), 00) & P(N}(q) = N(@), 0 — 00)
2N, AN, 2N A >1-r>1-n,
QINL(®) - Nl(a), 0) < QINL©) - NI(q), 00) ¢ QIN)(@) - N(@), 0 - 00) <y A, <y A, <r <,
and
RINI(O) - Ni(), 0) < RINK®) - NI(@), 00) & RINN(q) — Ni(@), 0 - 00) <y A, <My Ay <r<n.

Therefore, we obtain

{p eN: il{m <p: P(N{,(@m) - leg(a), 0)>1-n and

QN®) - Ni@), 0) < 1, RIN}(Om) - N)(@), 0) < m}| < v} € F(D.

Hence, a = (an) € 84O, 0,1, y). As a result, we obtain 840, ¢ - 0y, 1 - 1, ¥) ¢ 80, 0, 1, ¥). O
Now, we identify a collection T of a subset of N/ s 85 follows:
- {Tc N forall ® = (©,) € T there exist

sHo T ON
o,y >0 and n € (0, 1) such that 8(©,0,n,y) c T}.

Then, 7/

S determines a topology on the sequence space N/, The collection given by

M@y

B ={BO,0,n,y): 0 e N/ o,y >0 and n € (0, 1)}

sy

is a base for the topology 7%, _ on the space N’;H o

S”(D

Theorem 4. The topology T, H o on the space of N%,, _is first countable.

s"(@

1

Proof. For all © = (0,,) € Ns”(J) consider the set K = {B(@ 7 5 5) :q=1,2,3, ...¢, which is a coun-

table local base at ® = (0,,). Hence, the topology T %, H s On the space of N {;H D is first countable. O

and N7,

Theorem 5. The spaces N, $H(Z0)

D are Hausdorff spaces.

Proof. It is obvious that N/ s” - c N Sy We have to demonstrate the result for only NQH o Assume
=(0Op) and ¥ = (¥, € N 1 SO that © # W. Then, for all p € N and ¢ > 0, we obtain

0< P(N{,(@) - NP, 0) <1, 0<QNKO) - N(P),0) <1,
0 < RIN(©) - NJ(P), 0) < 1.

We have

= PIN}O) - NL(W), 0), 1, = QIN/(O) - N[(W), 0),
= RIN}©) - N[(P), 0),

andn = max{n,, 1 - n,, 1 - n,}. At that time, for all n, € (1, 1), there aren,, 15, 17, € (0, 1) so thatn, A n, = n,,
A-n)¢A-n)<sl-npand(1-n) ¢ A -1y <1-1, Again we take 1, = max{n,,1 - 1, 1 - 1.} and
contemplate the open balls (0, 1 - 7,, %, y) and B(‘I’, 1- M 5> y) centered at © and V¥, respectively. Then, it

is obvious that
o
a0 1, Zp) 08w -0, 20) -0
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If possible assume a = (ay,) € BC<®, 1-n,, %, y) N BC(\I’, 1-n,, %, y). Then, we obtain
= PNKO) - NI(P), 0)
o o
> P(N{,(@) - Ni(a), E) A P(N{;(a) - NP, 5)

>, Ay
2?14A1’14
>y > 1y

= QUINY(O) - N[(¥), 0)
< Q(N{,(@) - N, %) & Q(N{,(a) - NLw), %)

<Q-n) o A-n)
<SA-n)<¢A-n)
<=1y <my

and
;= RIN}(©) = Nj(P), 0)
< R(N@(@) - N, %) & R(N{,(a) - N, %)

<A-n) ¢ d-ny)
<1 -ng ¢ A-ny)
<1 -ny) <1

From the above equations, we obtain a contradiction. So,
BC(G), 1- n7, %, y) n BC("Py 1- n7y %) y) = J.
Hence, the space N/ é(,, D is a Hausdorff space. O

Theorem 6. Let T S{)Qf( n be a topology on an NNS Nf;H o then a sequence © = (0,,) € N’SC,H - such that
P, Q,R) - limBy, = BIFP(N}O) - B, 0) —» 1L,AIN(®) - B, 0) — 0,andR(IN}(®) - B, 0) — Oasp — o.

Proof. Assume (P, Q, R) — lim0,, =  and take gy > 0. Then, for n € (0, 1), Img € N, (0,,) € B(O, 0,1, y),
v¥m > my and fora o > 0,

B(©,0,n,y) = {8 =(Om) €l : {p eN: %I{m <p: PIN)OR) - B,0) <1-nor

QNL©OW - B, ) =1, RIN|Om) - B, 0) = n}l 2 Y},

so B0, y, 0) € F(I). Then,

1-PNYOm) - B,0) <, QIN)Om) - B,0) <1, RIN}Om) - B,0) < 1.
Hence,

PNI(Om) - B, 0) - 1, QINY(O) - B, 0) — 0 and RIN/(©,,) - B,0) — 0

as p — oo.
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Conversely, if, for each 0 > 0,
PINIO) - B,0) > 1, QWN/O) - B,0) - 0, and RINY(®) - B,0) - 0
as p — oo, then, for all n € (0, 1), 3mg € N such that
1-PINJ©) - B,0) <n, QNK®)-B,0)<n, RINO)-B,0)<n, Vm=my.
Hence, we acquire
PINKO®) - B,0)>1-1, QNNO)-B,0)<n, RWNKO)-B,0)<n, VYm=mo.

So, ® = (0, € B(0O, 0,1, y) Vm > my, and as a result, (P, Q, R) — limO,, = .

1

O

Theorem 7. Take © = (©,,) € N/, When a sequence © = (0,,) is neutrosophic Norlund I -statistically

s*ay
convergent, then N{, — I — stlim®,, is unique.

Proof. Assume O = (O,,) is neutrosophic Noérlund 7 -statistically convergent. Let, on the contrary, that f3,
and p, are two different elements so that N/, — I - st1im®,, = B, and N/, - T — st 1im®,, = B,. For a given
n e (0,1),selectr >0sothat(1-r) A(1-r)>1-n,r % r<n Foro> 0, we have to denote 8, = §,. We

determine the subsequent sets as follows:

K = {peN:%I{msp:P(N{,(G)m)—ﬁpo)sl—n or

Q(N{;(@m) -Bpo)=n, R(Né(em) -Bo)2nl =2 }’} €7;

K = {peN:%Hmsp:P(N{,(@m)—ﬁz,o)s1—11 or

QN}Om) - By, 0) 21, RIN|Op) - By, 0) = il = V} €l
So, we can write
KE = {p €N : %l{m <p: PNYOn) - B, 0) > 1 - nand
QINL®) - B, o) <n,  RINOR) - By, 0) < M}l < v} € F(I);
K5 = {p eN: %Hm <p: P(N{,(G)m) -pB,,0)>1-nand

QINY(®w) - B,,0) <, RINL(O) - B,, 0) < M}l <y} € F(D).

If we take K = K; N K;, then K € . So, K¢ € #(Z). Then, we obtain K¢ = K{ n K5 + &. Taking s € K{ n K5,

which means that
P(Nﬁ(@m) - By %) >1-r, P(Nﬁ(@m) - B, %) >1-r.
Therefore, we obtain

PP, - By, 0) 2 P(Nﬁ(@m) - B %) A P(Ng(@)m) - B, %) >A-rnNad-r>1-n.

Since n > 0 was arbitrary, P(8, - B,,0) =1 for all n > 0. As a result, we obtain S, = §,, which is a

contradiction.
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If s € K¢, then we have

Q(Ng(@m) ~ B, %) <n, Q(Ng(em) B, %) <.

Therefore, we have
o o
QB, - B, 0) < Q(N£(®m) - B, 5) o Q(N§(®m) B, E) <roren.
Since n > 0 was arbitrary, Q(B, — ,, 0) = 0 for all n > 0. As a result, we obtain B, = ,, which is a

contradiction.
If s € K¢, then we have

R(N©Om - B ) <. R(Ni@w - £, T) <
Therefore, we have
f g f g
R(Bl_BZ’O)SR Ns(@m)_ﬁl,E <>R NS(@m)_BZ’E <r <>r<r[.

Since n > 0 was arbitrary, R(8; — B,, 0) = 0 for all > 0. As a result, we obtain §; = f,, which is a contra-
diction. For all cases, we obtain f8; = f,. We demonstrate that N/, — 7 - st lim®,, is unique. O

Theorem 8. A sequence © = (0,,) is neutrosophic Norlund I -statistically convergent w.r.t. NN'H = (P, Q, R)
iff it is neutrosophic Norlund I -statistically Cauchy w.r.t. the same norms.

Proof. Assume © = (0,,) be neutrosophic Norlund I -statistically convergent w.r.t. NN H = (P, Q, R) so that
Ng — I — stlim®,, = B. For a givenn € (0, 1), there existsn; € (0, 1) such that(1 -n) A (1-n) >1-nand
n ¢ n < n.Since N}, - I - st1lim®,, = B, therefore, for each o,y > 0,

K = {p eN: %Hm <p: P(Né(@m) -B,0)<1-nor
QN}Om) = B,0) =1, RN}Om) - B,0) = 1}| >y} € I;
which implies
Kf = {p eN: l|{m <p: P(N{,(G)m) -B,0)>1-n and
p

QNYOR) - B,0) <1, RINJOR) - B,0) < 1}l < y} € F(I).
For s € K{, we obtain
PNLOy) - B,0)>1-n and QINL(O,) - B,0) <n, RINLOn) - B,0) <n.

For fix s € K7, let

K = {p eN: %l{m <p: PINKOR - NL(Op),0) <1 -1 or

QINLO) ~ N@), o) 21, RINYOW ~ NL(©On), 0) = n}| = Y} €l

We have to demonstrate that K, ¢ K. Take p € K;, then we obtain
PINYOm) - NL(On),0) <1-n or QIN}On) - NL(Bp), 0) = 1,

RINYOm) = NL(Om), 0) > 1.
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We obtain the following possible cases.
Initially, consider P(N/(©,) — N{(0,), 0) <1 - 1. Then P(Né(@)m) - B, %) <l-n.

If possible, assume P(N {,((E)m) - B, %) > 1 - . Then, we can write

1-n2PNLO) - N(On), 0)

(o

> P(Ng(em) ~B, %) A so(/vg(@m) ~B, 3)

>A-nAd-n)
>1-n,

which is a contradiction. So, P(N{,(@m) -8, %) <1 - n, holds.
In the same way, consider QN}(©) ~ N(Oy), 0) > n. Then, Q(N}©m) - B, %) = 1.

If possible assume Q(N 1(©m) - B, %) < 1. Then, we can write
< QN[®n) - NL(®y), 0) < Q(N{,(@m) - B, %) & Q(N§(®m) ~B, %) <hon<n,
which is a contradiction. So, Q(Nﬁ(@m) - B, %) > nr, supplies.
Similarly, consider RIN/(©) - NL(€,), @) > 1. Then, R(N{,(@m) - B, g) > 7.
If possible, let R(N {,((E)m) -8, %) < n. Then, we can write

1 < RNUOm) — N1(@), 0) < R(N{,((a,u B, %) o R(st(em) B, %) <non<n,

o

which is a contradiction. So, R(Ng(@m) - B, 5) > n, holds. So, for p € K;, we obtain

PNI(Om) — B,0) <1-n or QINL(On) - B,0) 21, RINLO) - B,0) > 1.

13

Therefore, p € K;. Hence, K, ¢ K. Since K; € I, we obtain K; € 7. As a result, © = (0,,) is neutrosophic

Norlund 1 -statistically Cauchy w.r.t. NN H = (P, Q, R).

Conversely, assume the sequence © = (0,,) is neutrosophic Norlund 7 -statistically Cauchy w.r.t. NN
H = (P,Q, R). Let, on the contrary, the sequence © = (0,,) is not neutrosophic N6érlund I -statistically

convergent indicated by S,. Then, there exists s € N so that

S = {p eN: %Hm <p: PINKOR - NL(©p),0) <1 -1 or

QN)Om) - NL(Ow), 0) 21, RN)Om) - N(On), 0) 2 1}| 2 y} el
Let, on the contrary,

Sz::{peN;1‘{mgp:P(N}f,(G)m)—B,%)>l—rland
p

<y]e].

> P(N{,(@m) _ B, %) A P(Ng(em) - B, %)

>A1-nAd-n)
>1-n,

Q(N{,(em) ) %) <n, R(N{,(@m) ) %) < rl}

So, we have

1-n>PNLO) - N(©n), 0)
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which is a contradiction. Now

N < QN}(©) - NL(©), 0) < Q(N{,(@m) s %) & Q(Ng(em) - B, %) <ndn<n
which is a contradiction. Furthermore,

n < RNL@) - NL(O), 0) < R(N{,(em) - B, %) & R(Ng’(@m) _ B, %) <non<n,

which is a contradiction. So, S, € ¥(Z) and thus © = (0,,) is neutrosophic Norlund 7 -statistically conver-
gent w.r.t. NN H = (P,Q, R). a

Theorem 9. A sequence © = (0,,) € N’Sr(,, D is neutrosophic Norlund I -statistically convergent w.r.t. NN
H = (P, Q, R). Then, for some € R, N{, — I — stlim®,, = B iff for each n € (0, 1) and o,y > 0, there are
positive integers T = T(0, o, n, y) such that

{p eN: %l{m <p: ‘P(Né(@,n) - N%(@m), 0)<1l-nor

QINI(©1) = NJ(Op), 0) 21, RIN(OR) - Nj(Ow), 0) > 1} > y} eI

Proof. Assume Né — I — stlim®,, = B, for some B € R. For given r > 0, there exists n € (0, 1) such that
A-na@-r)y»>1-nandr$r<n. SinceN{,—I—stlim@mzﬁ, forallo,y > 0,

ﬂz[peN:l‘{mgp:P(Ng(Gm)—,B,%)sl—ror
b
2y}e[,

{m <p: P(N{,(@m) - B, %) >1-rand

o

Q(N{D(@m) - B, 5) >, R(N{,(@m) - B, %) > r}

?lcz{peN:

Q(N{,(@m) _B, %) <r, R(Ng(@m) _B, %) < r}

which means that

SR

< y] € F(I).

Selecting a natural number T € A€, we obtain
f ol f g f ol
P NT(G)m)—ﬁ,E >1-r and Q NT(Gm)—ﬁ,E <r,R NT(Gm)—ﬁ,E <r.

We denote that there is a positive integer T = T(O, o, 17, y) such that
B = {p eN: %Hm <p: P(N{,(@m) - N{(@m), o)<l-nor
QN}Om) - NJ(OR), 0) 21,  RN)Om) - N(O), 0) 2 n}| 2 y}-

So, for ® = (B, € Né’”(z)’ we have to denote that 8 € A.
Let, on the contrary, 8 ¢ A. Then, there exists g € 8; however, q ¢ A. Hence,
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PINLOm) - Nf(©p), 0) <1 -1 and P(N{,(em) - B, %) S1-r.
Especially, P(N;(@m) - B, %) > 1 - r. So, we obtain
1- 12 PO — NIOw, ) = P(N{,(@m) _ B, %) A P(N{(em) _ B, %) sA-PNA(d-N>1-7,
which is a contradiction. In the same way,
QN}(©,) - N(Or), 0) =  and Q(N{,(@m) - B, %) <r.
In particular, Q(N;(G)m) - B, %) < r. Hence, we acquire
N < QINL(O,) - Ni @), 0) < Q(N{,(@m) - B, %) & Q(N;(@m) ~ B, %) <réor<n,
which is a contradiction. Similarly,
RNLO) — Ni(Ou), 0) = 1 and R(N{,(em) ) %) <.

Particularly, R(N{(G)m) -8, %) < r. Therefore, we obtain

1< ROVY©On) - MO, ) < R(WJ(m) - £.2) & RO - 8. 5) <1 0 1<,

which is a contradiction. Hence, we have 8 ¢ A and since A € I, so we obtain 8 € 7.
Conversely, let, on the contrary, © = (6,,) is not neutrosophic Nérlund 7 -statistically convergent w.r.t.
NN H = (P, Q, R) and B holds, then

Mz{peN;l‘{msp:?(Nﬁ(@m)—B,%)>1—n and
p

<y}e],

which implies that Y¢ € #(J). Since 8 holds, then there is an T = T(0, g, y) so that

B = pEN:l
p

Q(N;(@m) - Ni©p), %) >, R(Né((am) - Nj(Om), %) = n}

Q(Ng;(em) - B, %) <, R(N{,(@m) - B %) < n}

{m <p: P(N{,(@m) - Ni®©,), %) <l1-nor

2y]e].

As
PIN(On) - NE©O), 0) 2 ZP(N{D(G),,,) _ B, %) s1-7
QIN(O,) - NE©O), 0) < 2Q(N{,(em) B, %) <7 and
ROVYBR) - NJ(Bn). 0) < 2R( (O - Nf@w. ) < 1,
then

P(Ng(em) _ B, %) S 1_7’7 Q(N{D(em) _ B, %) <1 and R(N@(em) _ N©w, %) <L

So, we obtain B¢ € I. Equivalently, 8 € #(J), which is a contradiction, as 8 holds. O
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Now L?(N/) shows the space of all sequences, whose N/ -transform is neutrosophic bounded sequence.
N{;o{o(S(])) denotes the space of all sequences, whose N/-transform is neutrosophic bounded and
neutrosophic I -statistically convergent sequence.

Theorem 10. N {%O(S(I)) is closed linear space of I3(NT).
Proof. It is obvious that N{;.?(S(D) c I2(NT). We have to demonstrate that N{W(S(I)) is closed, i.e.,
N[}O?(S(I)) = N{%O(S(J)) (where N{%(S(z)) shows the closure of N{ZO(S(I))). It is clear that N{ZO(S(])) c
W. Conversely, we denote thatm C N{?(S(I)). Let® = (O, € W Then, 8(0, 0,1,y) N
N {ZO(S(])) #+ @ for all open ball 8(0, 0, 11, y) of any radius n > 0 and o, y > O centered at O.

So, take ® € B(0,0,1n,y) N leﬁ(S(I)). Forr e (0,1)andn € (0,1),select(1 - r) A(1-r)>1-nand

r & r<n.Since ¥ € 8(0,0,1,y) N N{?(S(])), there is a subset T of N such that T € #(7), and for each
p € T, we obtain

P(N{,(G)) - Nw), %) >1-71, Q(N{,«a) - NiW), %) <r and R(Ng(e) - NiW), %) <r

and
gD(N{J(\p) - B, %) >1-r, Q(Ng(\lf) - B, %) <r and R(Né(‘l’) - B, %) <.
So, for all p € T, we have
PNO) - B, 0) = PINL(©) - N{(¥) + NiW) - B, 0)
£@) - Nwy. & fopy - g 2
> p(N©) - Wi, ) a p(Njew) - 5.2

>A-rnNAa@-r
>1-n,

QINI(©) — NI(P), 0) = QINE©) - NI(®) + NI(P) - B, 0)

< Q(N{,(e) - Niw), %) & Q(N{,(\I’) B, %)

<ror
<r,

and

RINI(O) - NI(W), 0) = RIN(©) - N(¥) + N(¥) - B, 0)
fe) - Nfewy & fopy - g 2
< R(Np(@) NP, 2) & R(Np(‘P) Bs 2)

<ror
<r.

As a result, we obtain

Tc{peN:ll{mgp:P(Né(G)m)—ﬁ,a)>1—n and
p

QN Om) - B, 0) <1, RINKO) - B, ) <}l < Y}-

Since T € #(I), we obtain
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{peN:%|{msp:P(N£(®m)—ﬁ,a)>1—nand

QINL©w) - B,0) <1, RINY(OR) - B,0) <}l < y} e F(D).

S0, © € N[(S(D)). Hence, N[o(S(D)) = N[o(S(D)). O

Theorem 11. Assume O = (0,,) € l,, be a sequence. If there is a sequence ¥ = () € Ném so that
N{,(G)m) = N{,(‘Pm) for almost all p relative to neutrosophic I, then © = (0,,) € Ngm.

Proof. Consider N/(6,,) = N/(¥,) for almost all p relative to neutrosophic 7. Then,
{p eN: N(©,) + N(H} € T,
which implies
{p e N : N(On) = N(¥)} € F(D).
So, for all p € #(J) for all o > 0, we obtain

P(Ng(e) - Nw), %) =1, Q(N{,(@) - Nw), %) -0 and R(N{,(@) - Niw), %) - 0.

Since ¥ = (¥,) € Ng(n, suppose N/, — T — stlim,¥ = B. Then, for all o,y > 0 and 57 € (0, 1),

K1=[peN:l‘{msp:P(N{,(‘{’m)—ﬁ,%)>l—n and
p

QN - B.5) <n. R(NC) - B.F) < n}

< y} e F(I).
Consider the following set:

Kzz{peN:ll{msp:P(N{,(G)m)—,B,a)>1—n and
b

QNLOw) - B,0) <1, RINY(O) - B, 0) < | < y}-

We denote that K; ¢ K. So, for all p € K, we obtain
PN On) =B, 0) 2 P(Ni(g) - N, %) A P(Né(‘l’m) - B, %) >1A@Q-p=1-n,
QNY(®n) - B 0) < Q@) - N, 5) 0 QN - B T ) <r &
and
RN} (Om) - B, 0) < R(N{,(G)) - NiW), %) g R(Né(‘{lm) - B, %) <rér<r.

This means that p € K; and thus K; ¢ K. Since K; € F(7), we obtain K; € F(7). Asaresult® = (0,,) € Ném. O
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4 Conclusion

NS was first introduced in 1998 by Smarandache [14]. A unified idea of the NSS has been developed by Maji
[15]. The notion of NSNLS was then examined, and some of its features were suggested in [17,18]. The
NMS was studied by Kiris¢i and Simsek [45] using continuous t-norms and continuous t-conorms.
NNS and statistical convergence in NNS were proposed by Kirisci and Simsek [46]. Even though certain
features in neutrosophic Norlund convergent sequence spaces have been examined, it is yet open to
explore further properties in neutrosophic Norlund 7 -statistically convergent sequence spaces, such as
N g( N £( N gm( 7+ S0, the main results of the present article fill up the gap in the existing literature. On
the basis of this idea, we anticipate further research on probabilistic metric spaces employing neutrosophic
probability.

Acknowledgments: The authors are greatly indebted to the editors and anonymous reviewers for their
valuable comments and suggestions for improving the article.

Funding information: Not applicable.

Author contributions: This study was carried out in collaboration with equal responsibility. All authors read
and approved the final manuscript.

Conflict of interest: The authors declare that they have no competing interest.

Data availability statement: Not applicable.

References

[1] L. A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), no. 3, 338-353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-X.

[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), no. 1, 87-96, DOI: https://doi.org/10.1016/S0165-
0114(86)80034-3.

[3] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika. 11 (1975), no. 5, 336-344.

[4] 0. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215-229, DOI: https://doi.org/10.1016/
0165-0114(84)90069-1, 336-344.

[5] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395-399, DOI: https://
doi.org/10.1016/0165-0114(94)90162-7.

[6] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997), 365-368,
DOI: https://doi.org/10.1016/S0165-0114(96)00207-2.

[7] ). H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), 1039-1046, DOI: https://doi.org/10.1016/
j.cha0s.2004.02.051.

[8] F. Lael and K. Nourouzi, Some results on the IF-normed spaces, Chaos Solitons Fractals 37 (2008), 931-939, DOI: https://
doi.org/10.1016/j.chaos.2006.10.019.

[9] A. Mohamad, Fixed-point theorems in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 34 (2007), no. 5,
1689-1695, DOI: https://doi.org/10.1016/j.cha0s.2006.05.024.

[10] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1988), 385-389.

[11] C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 29 (2006),
no. 5, 1073-1078, DOI: https://doi.org/10.1016/j.cha0s.2005.08.066.

[12] C. Alaca, D. Turkoglu, and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces, Chaos
Solitons Fractals 29 (2006), no. 5, 1073-1078, DOI: https://doi.org/10.1016/j.chaos.2005.08.066.

[13] C. Alaca, D. Turkoglu, and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces,
Southeast Asian Bull. Math. 32 (2008), 21-33.

[14] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. ). Pure Appl. Math. 24 2005,
287-297.

[15] P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inform. 5 (2013), no. 1, 157-168.


https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/0165-0114(84)90069-1
https://doi.org/10.1016/0165-0114(84)90069-1
https://doi.org/10.1016/0165-0114(94)90162-7
https://doi.org/10.1016/0165-0114(94)90162-7
https://doi.org/10.1016/S0165-0114(96)00207-2
https://doi.org/10.1016/j.chaos.2004.02.051
https://doi.org/10.1016/j.chaos.2004.02.051
https://doi.org/10.1016/j.chaos.2006.10.019
https://doi.org/10.1016/j.chaos.2006.10.019
https://doi.org/10.1016/j.chaos.2006.05.024
https://doi.org/10.1016/j.chaos.2005.08.066
https://doi.org/10.1016/j.chaos.2005.08.066

DE GRUYTER Certain aspects of Nérlund Z-statistical convergence of sequences in neutrosophic normed spaces = 19

(16]
(17]
(18]
(19]
(20]
(21]

(22]
(23]

(25]
(26]
(27]
(28]
(29]

(30]

(31]

(38]

(39]

(40]

(43]

(44]

(45]

(46

(47]
(48]

T. Bera and N. K. Mahapatra, Neutrosophic soft linear spaces, Fuzzy Inform. Eng. 9 (2017), 299-324.

T. Bera and N. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets Syst. 23 (2018), 52-71.

T. Bera and N. K. Mahapatra, Continuity and convergence on neutrosophic soft normed linear spaces, Intl. ). Fuzzy Comp.
Model 3 (2020), no. 2, 156-186.

H. Fast, Sur la convergence statistique, Collog. Math. 2 (1951), 241-244, DOI: https://doi.org/10.4064/cm-2-3-4-241-244.
P. Kostyrko, T. Salat, and W. Wilczynsski, I -convergence, Real Anal. Exchange 26 (2000), no. 2, 669-686.

S. Karakus, K. Demirci, and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons
Fractals 35 (2008), 763-769.

A. A. Nabiev, S. Pehlivan, and M. Giirdal, On I -Cauchy sequences, Taiwanese J. Math. 11 (2007), no. 2, 569-566.

P. Das, E. Savas, and S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24
(2011), 1509-1614, DOI: https://doi.org/10.1016/j.aml.2011.03.036.

E. Savas and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826-830, DOI: https://
doi.org/10.1016/j.aml.2010.12.022.

M. Giirdal, On ideal convergent sequences in 2-normed spaces, Thai ). Math. 4 (2012), no. 1, 85-91.

U. Yamanci and M. Giirdal, I -statistical convergence in 2-normed space, Arab J. Math. Sci. 20 (2014), no. 1, 41-47.

S. A. Mohiuddine and Q. M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space,
Chaos Solitons Fractals 42 (2009), 1731-1737, DOI: https://doi.org/10.1016/j.chaos.2009.03.086.

S. A. Mohiuddine, B. Hazarika, and M. A. Alghamdi, /deal relatively uniform convergence with Korovkin and Voronovskaya
types approximation theorems, Filomat 33 (2019), no. 14, 4549-4560, DOI: https://doi.org/10.2298/FIL1914549M.

M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed
space, ). Comput. Appl. Math. 233 (2009), no. 2, 142-149, DOI: https://doi.org/10.1016/j.cam.2009.07.005.

M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces,
Chaos Solitons Fractals 41 (2009), 2414-2421, DOI: https://doi.org/10.1016/j.cha0s.2008.09.018.

M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012), no. 1,
49-62, DOI: https://doi.org/10.2478/s12175-011-0071-9.

M. Mursaleen, S. A. Mohiuddine, and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy
normed spaces, Comput. Math. Appl. 59 (2010), 603-611.

F. Basar, Summability Theory and its Applications, 2rd ed., CRC Press/Taylor & Francis Group, New York, 2022.

H. Roopaei and F. Basar, On the spaces of Cesaro absolutely p-summable, null, and convergent sequences, Math. Methods
Appl. Sci. 44 (2021), no. 5, 3670-3685, DOI: https://doi.org/10.1002/mma.6973.

M. Mursaleen and A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca 61 (2011), no. 6, 933-940,
DOI: https://doi.org/10.2478/s12175-011-0059-5.

M. Mursaleen and F. Basar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group
Series: Mathematics and Its Applications, Boca Raton, London, New York, 2020.

C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219
(2013), 9821-9826, DOI: https://doi.org/10.1016/j.amc.2013.03.115.

B. Hazarika, A. Alotaibi, and S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued
functions, Soft Computing 24 (2020), 6613-6622, DOI: https://doi.org/10.1007/s00500-020-04805-y.

U. Kadak and S. A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which
includes the (p, q)-Gamma function and related approximation theorems, Results Math. 73 (2018), no. 9, 1-31, DOI:
https://doi.org/10.1007/s00025-018-0789-6.

S. A. Mohiuddine and B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with
associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math.
113 (2019), no. 3, 1955-1973, DOI: https://doi.org/10.1007/s13398-018-0591-z.

S. A. Mohiuddine, A. Asiri, and B. Hazarika, Weighted statistical convergence through difference operator of sequences of
fuzzy numbers with application to fuzzy approximation theorems, Int. ). Gen. Syst. 48 (2019), no. 5, 492-506, DOI: https://
doi.org/10.1080/03081079.2019.1608985.

E. Savas and M. Giirdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Sci. Asia 41 (2015),
289-294, DOI: https://doi.org/10.2306/scienceasial513-1874.2015.41.289.

E. Savas and M. Giirdal, Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, ). Intell.
Fuzzy Syst. 27 (2014), no. 4, 2067-2075, DOI: https://doi.org/10.3233/IFS-141172.

E. Savas and M. Giirdal, Certain summability methods in intuitionistic fuzzy normed spaces, ). Intell. Fuzzy Syst. 27 (2014),
no. 4, 1621-1629, DOI: https://doi.org/10.3233/IFS-141128.

M. Kirisci and N. Simsek, Neutrosophic metric spaces, Math. Sci. 14 (2020), 241-248, DOI: https://doi.org/10.1007/
$40096-020-00335-8.

M. Kirisci and N. Simsek, Neutrosophic normed spaces and statistical convergence, ). Anal. 28 (2020), 1059-1073, DOI:
https://doi.org/10.1007/s41478-020-00234-0.

N. Sim&ek and M. Kiriici, Fixed point theorems in neutrosophic metric spaces, Sigma J. Eng. Nat. Sci. 2 (2019), 221-230.
M. Kiri&ci, N. Sim3ek, and N. Akyigit, Fixed point results for a new metric space, Math. Meth. Appl. Sci. 44 (2020), no. 9,
7416-7422, DOI: https://doi.org/10.1002/mma.6189.


https://doi.org/10.4064/cm-2-3-4-241-244
https://doi.org/10.1016/j.aml.2011.03.036
https://doi.org/10.1016/j.aml.2010.12.022
https://doi.org/10.1016/j.aml.2010.12.022
https://doi.org/10.1016/j.chaos.2009.03.086
https://doi.org/10.2298/FIL1914549M
https://doi.org/10.1016/j.cam.2009.07.005
https://doi.org/10.1016/j.chaos.2008.09.018
https://doi.org/10.2478/s12175-011-0071-9
https://doi.org/10.1002/mma.6973
https://doi.org/10.2478/s12175-011-0059-5
https://doi.org/10.1016/j.amc.2013.03.115
https://doi.org/10.1007/s00500-020-04805-y
https://doi.org/10.1007/s00025-018-0789-6
https://doi.org/10.1007/s13398-018-0591-z
https://doi.org/10.1080/03081079.2019.1608985
https://doi.org/10.1080/03081079.2019.1608985
https://doi.org/10.2306/scienceasia1513-1874.2015.41.289
https://doi.org/10.3233/IFS-141172
https://doi.org/10.3233/IFS-141128
https://doi.org/10.1007/s40096-020-00335-8
https://doi.org/10.1007/s40096-020-00335-8
https://doi.org/10.1007/s41478-020-00234-0
https://doi.org/10.1002/mma.6189

20

[49]

[50]

[51]

(52]

(53]
[54]

[55]
[56]
(571
[58]
[59]

[60]

——  Omer Kisi et al. DE GRUYTER

H. Wang, F. Smarandache, Y. Q. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct. 4
(2010), 410-413.

). Ye, A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, |. Intell. Fuzzy
Syst. 26 (2014), 2459-2466.

P. Majumdar, Neutrosophic sets and its applications to decision making, Comput. Intell. Big Data Anal. 19 (2015), 97-115,
DOI: https://doi.org/10.1007/978-3-319-16598-1_4.

S. Das, R. Das, and B. C. Tripathy, Multi-criteria group decision making model using single-valued neutrosophic set, Log.
Forum 16 (2020), no. 3, 421-429.

R. Das and B. C. Tripathy, Neutrosophic multiset topological space, Neutrosophic Sets Syst. 35 (2020), 142-152.

R. Das and B. C. Tripathy, Pairwise neutrosophic-b-open set in neutrosophic bitopological spaces, Neutrosophic Sets Syst.
38 (2020), 135-144.

0. Kisi, Ideal convergence of sequences in neutrosophic normed spaces, ). Intell. Fuzzy Syst. 41 (2021), no. 2, 2581-2590,
DOI: https://doi.org/10.3233/JIFS-201568.

K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. 28 (1942), no. 12, 535-537.

C. S. Wang, On Nérlund sequence spaces, Tamkang J. Math. 9 (1978), no. 1, 269-274.

G. H. Hardy, Divergent series, Amer. Math. Soc. 334 (2000), 1-400.

O Tug and F. Basar, On the spaces of Norlund null and Norlund convergent sequences, TWMS ). Pure Appl. Math. 7 (2016),
no. 1, 76-87.

V. A. Khan, S. A. A. Abdullah, and K. M. A. S. Alshlool, A study of Norlund ideal convergent sequence spaces, Yugosl.

J. Oper. Res. 31 (2021), no. 4, 483-494, DOI: https://doi.org/10.2298/YJOR200716044K.


https://doi.org/10.1007/978-3-319-16598-1_4
https://doi.org/10.3233/JIFS-201568
https://doi.org/10.2298/YJOR200716044K

	1 Introduction
	2 Preliminaries
	3 Main results
	4 Conclusion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


