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Abstract: The aim of this article is to investigate the neutrosophic Nörlund �-statistically convergent
sequence space. We present some neutrosophic normed spaces (NNSs) in Nörlund convergent spaces. In
addition, we also examine various topological and algebraic properties of these convergent sequence
spaces. Theorems are proved in light of the NNS theory approach. Results are obtained via different
perspectives and new examples are produced to justify the counterparts and show the existence of the
introduced notions. The results established in this research work supply an exhaustive foundation in NNS
and make a significant contribution to the theoretical development of NNS in the literature. The original
aspect of this study is the first wholly up-to-date and thorough examination of the features and imple-
mentation of neutrosophic Nörlund �-statistically convergent sequences in NNS, based upon the standard
definition.
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1 Introduction

Fuzzy theory has made a significant progress on the mathematical underpinnings of fuzzy set (FS) theory,
which was pioneered by Zadeh [1] in 1965. Zadeh [1] mentioned that an FS assigns a membership value to
each element of a given crisp universe set from [ ]0, 1 . FSs cannot always overcome the absence of knowl-
edge of membership degrees. Because of that, Atanassov [2] examined the intuitionistic FS (IFS), which is
an extension of FS. Kramosil and Michalek [3] defined fuzzy metric space (FMS) by using the concepts of
fuzzy and probabilistic metric spaces. For more information on FMSs and IF-normed spaces (IFNS), we refer
the reader to [4–8]. Intuitionistic fuzzy fixed-point theory has become a subject of great interest for expert in
fixed-point theory because this branch of mathematics has covered new possibilities for summability
theory. In intuitionistic fuzzy metric space (IFMS), Mohamad [9] established the Banach fixed-point the-
orem. For more information on fixed point theory in FMS and IFMS, we refer the reader to [10–13]. The
concept of neutrosophy implies impartial knowledge of thought, and then neutral describes the basic
difference between neutral, fuzzy, intuitive FSs and logic. After the introduction of neutrosophic set (NS)
by Smarandache [14], which is a generalization of the classical set, FS, and IFS, Maji [15] has introduced the
combined concept of neutrosophic soft set (NSS). Taking everything into account, Smarandache applied the
IFS theory by defining a new component, namely, the indeterminacy membership function. NS is deter-
mined as a set where every component of the universe has a degree of T , F , and I . In IFSs, the “degree of
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non-belongingness” is not independent, but it is dependent on the “degree of belongingness.” FSs can be
thought of as a remarkable case of an IFS where the “degree of non-belongingness” of an element is
absolutely equal to “1-degree of belongingness.” Uncertainty is based on the belongingness degree in
IFSs, whereas the uncertainty in NS is considered independently from T and F values. Since there are
not any limitations among the degree ofT , F , and I , NSs are actually more general than IFS. Consequently,
several mathematicians have produced their research works in different mathematical structures, for
example, Bera and Mahapatra [16–18]. The neutrosophic soft linear space was worked out by Bera and
Mahapatra [16]. Afterward, in [17,18], the conception of neutrosophic soft normed linear set (NSNLS) was
investigated, and various properties of NSNLS were proposed.

On the other hand, the notions of statistical convergent and �-convergent were further investigated
from the sequence space point of view and linked with the summability theory by Fast [19] and Kostyrko
et al. [20], respectively. Statistical convergence in the IFNS was presented by Karakuş et al. [21]. For
extensive study in this topic, one may refer to the works of [22–44]. Kirişçi and Şimşek [45] investigated
neutrosophic metric space (NMS) with continuous t-norms and continuous t-conorms. Kirişci and Şimşek
[46] proposed neutrosophic normed space (NNS) and statistical convergence in NNS. For more details on
statistical convergence and ideal convergence, one may refer to [47–55].

The idea of convergence of sequence is important in the fundamental theory of mathematics. There are
numerous convergence ideas in summability theory, such as classical measure theory, fuzzy theory,
approximation theory, and probability theory, and the links between them are investigated. This study
will do more research into the mathematical properties of Nörlund convergent spaces in light of this.
Section 2 recalls some known definitions and theorems in neutrosophic and summability theory. In
Section 3, we investigate the neutrosophic Nörlund �-statistically convergent sequence space. In addition,
we present some NNS in Nörlund convergent spaces. Moreover, we also examine various topological and
algebraic properties of these convergent sequence spaces.

2 Preliminaries

This section will serve to gather all the necessary results and techniques on which we will rely to accom-
plish our main results. First, we will go over some key terms. All along the article, let � be an admissible

ideal, � � � �( )= , , be a neutrosophic norm (NN), � f be a Nörlund matrix, and � ( )Θp
f be � f -transform of

the sequence ( )= ∈
∞

lΘ Θ .m
Triangular norms (t-norms)were investigated by Menger [56]. In the problem of computing the distance

between two elements in space, Menger presented utilizing probability distributions instead of utilizing
numbers for distance. T -norms are applied to generalize with the probability distribution of triangle
inequality in metric space conditions. Triangular conorms (t-conorms) are identified as dual operations
of t-norms.

Definition 1. [46] Let F be a vector space, � � �{ ( ) ( ) ( ) }= ⟨ ⟩ ∈N α α α α α F, , , : be a normed space so that
� [ ]× →

+N F: 0, 1 . Assume △ and ♢ demonstrate the continuous t-norm and continuous t-conorm,
respectively. While following conditions supply, ( )= △ ♢V F N, , , is named to be NNS. For all ∈α β F,
and >κ ϖ, 0 and for each ≠ρ 0,
(a) �( )≤ ≤α κ0 , 1, �( )≤ ≤α κ0 , 1, ��( )≤ ≤ ∀ ∈

+α κ κ0 , 1 ,
(b) � � �( ) ( ) ( )+ + ≤α κ α κ α κ, , , 3 (for �∈

+κ ),
(c) �( ) =α κ, 1 (for >κ 0) iff =α 0,

(d) � �( )
∣ ∣( )

=ρα κ α, , κ
ρ ,

(e) � � �( ) ( ) ( )△ ≤ + +α ϖ β κ α β ϖ κ, , , ,
(f) �( )⋅α, is non-decreasing continuous function,
(g) �( ) =

→∞
α κlim , 1,κ
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(h) �( ) =α κ, 0 (for >κ 0) iff =α 0,

(i) � �( )
∣ ∣( )

=ρα κ α, , κ
ρ ,

(j) � � �( ) ( ) ( )♢ ≥ + +α ϖ β κ α β ϖ κ, , , ,
(k) �( )⋅α, is non-decreasing continuous function,
(l) �( ) =

→∞
α κlim , 0κ ,

(m) �( ) =α κ, 0 (for >κ 0) iff =α 0,

(n) � �( )
∣ ∣( )

=ρα κ α, , κ
ρ ,

(o) � � �( ) ( ) ( )♢ ≥ + +α ϖ β κ α β ϖ κ, , , ,
(p) �( )α, . is non-decreasing continuous function,
(q) �( ) =

→∞
α κlim , 0κ ,

(r) If ≤κ 0, then � �( ) ( )= =α κ α κ, 0, , 1 and �( ) =α κ, 1.

Then, � � � �( )= , , is an NN.
Statistical convergence and ideal convergence in NNS were proposed by Kirişçi and Şimşek [45] and

Kişi [55], respectively, by using the concept of NN.
Nörlund sequence space was investigated by Wang [57] as follows:

�
⎧

⎨
⎩

( )
⎫

⎬
⎭

∑ ∑= = ∈ < ∞ ≤ < ∞
∞

=

∞

=

−
l

A
f pΘ Θ : 1 Θ , 1 ,f

m
k k m

k

k m m

p

0 0

where = ∑

=

A fk m
k

m0 . The spaces �( )
∞

l f and �( )lp
f consist of all sequences whose Nörlund transforms are in

the spaces
∞

l and lp, where ≤ < ∞p1 .
Wang [57] used the Nörlund matrix � f in the theory of sequence space for the first time. Recall that in

[58], assume ( )=f fm be a non-negative sequence of real numbers and = ∑

=

T fj m
j

m0 for each �∈j with

>f 00 . At that time, the Nörlund matrix � ( )= af
jm
f w.r.t. the sequence ( )=f fm is determined as follows:

⎧

⎨

⎩

=

≤ ≤

>

−

a
f
T

m j

m j

, if 0

0, if
jm
f

j m

j

for all �∈j m, .
Wang [57] utilized the Nörlund matrix to determine the sequence space �( )

∞
l f as the domain of

Nörlund mean � f -transform are in the space
∞

l . Tuğ and Başar [59] investigated the sequence spaces
�( )c f

0 and �( )c f as the set of all sequences with � f in the spaces c0 and c, respectively. In addition, Tuğ
and Başar [59] identified the sequence � ( )Θp

f to indicate the � f -transform of the sequence ( ) ∈ wΘm , where

the sequence � ( )Θp
f is determined as follows:

� ( ) ∑≔

=

−T
fΘ 1 Θp

f

p m

p

p m m
0

(1)

for each �∈p .
Recently, by using the concepts of the domain of Nörlund matrix � f and �-convergence, Khan et al.

[60] presented the space of Nörlund �-convergent sequences.
Ideal convergence in IFNS was determined with the help of membership and non-membership func-

tions. Unlike prior works, this research considers the indeterminacy function while studying ideal conver-
gence. The aim of this study is to put forward several recent advancements in NNS. For sequences, ideal
convergence is known to be more general than statistical convergence. This has concentrated us to inves-
tigate the Nörlund �-statistical convergence of sequences in NNS. In a recent work, we proposed significant
properties of this new type of convergence. In addition, it is denoted that Nörlund �-statistical convergence
in NNS is generally dissimilar from �-statistical convergence in classical normed space (CNS), because
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there is no “� ” function in CNS. But, it is obvious that when particular conditions are met, all CNS can be
NNS. When the NN is an additive positive integer, our conceptions and theorems yield the theoretical
results of [20,23]. Since any crisp norm can generate an NN, the results found here are more general
than the corresponding results for normed spaces. Several of the outcomes in this article either run parallel
with classical ones or they are in the identical direction as the similar studies in this topic; however, in most
conditions, the proofs use a different technique.

3 Main results

Throughout the article, we assume that the sequences ( )= ∈
∞

lΘ Θm and � ( )Θp
f

m are connected as demon-
strated in (1) and � is an admissible ideal of a subset of �. In this section, by utilizing a domain of Nörlund
matrix, which is used in [60] and �-convergence w.r.t. NN � � � �( )= , , [55], we identify new Nörlund
sequence spaces as follows.

Definition 2. A sequence ( )= ∈
∞

lΘ Θm is said to be Nörlund �-statistically convergent to �∈β , provided
that, for each >η γ, 0.

� � �
⎧

⎨
⎩

∣{ ∣ ( ) ∣ }∣
⎫

⎬
⎭

= ∈ ≤ − ≥ ≥ ∈A p
p

m p β η γ: 1 : Θ .p
f

m1

Definition 3. A sequence ( )= ∈
∞

lΘ Θm is said to be Nörlund �-statistically Cauchy, provided that, for each
>η γ, 0, there is an �∈r such that

� � � �
⎧

⎨
⎩

∣{ ∣ ( ) ( )∣ }∣
⎫

⎬
⎭

= ∈ ≤ − ≥ ≥ ∈A p
p

m p η γ: 1 : Θ Θ .p
f

m r
f

m2

Definition 4. A sequence ( )= ∈
∞

lΘ Θm is said to be neutrosophic Nörlund �-statistically convergent to
�∈β w.r.t. NN � � � �( )= , , , provided that, for each >σ γ, 0 and ( )∈η 0, 1 ,

� � �

� � � � �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ , 1 or

Θ , , Θ , .

p
f

m

p
f

m p
f

m

1

Symbolically, we write � �− − =st βlimΘp
f

m or �
� � �

�( ) ( ( ))
( )

→ β SΘm
, ,

.

Definition 5. A sequence ( )= ∈
∞

lΘ Θm is said to be neutrosophic Nörlund �-statistically Cauchy w.r.t. NN
� � � �( )= , , , provided that, for each >σ γ, 0 and ( )∈η 0, 1 , there is an �∈r such that the set K2 belongs
to � , where

� � � �

� � � � � � �

⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣
⎫

⎬
⎭

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p σ η

σ η σ η γ

: 1 : Θ Θ , 1 or

Θ Θ , , Θ Θ , .

p
f

m r
f

m

p
f

m r
f

m p
f

m r
f

m

2

Now, we present the following sequence spaces:
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�

� �

�

� � �

� � � � �

� � �

� � � � �

� � �

� � � � �

�

�

�

�

�

�

⎧

⎨
⎩

( )
⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

⎫

⎬
⎭

⎧

⎨
⎩

( )
⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

⎫

⎬
⎭

⎧

⎨
⎩

( )
⎧

⎨
⎩

( ) ∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

⎫

⎬
⎭

( )

( )

( )

≔ = ∈ ∈ ≤ ≤ −

≥ ≥ ≥ ∈

≔ = ∈ ∈ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

≔ = ∈ ∈ ∃ ∈ ≤ ≤ −

≥ ≥ ≥ ∈

∞

∞

∞∞

l p
p

m p σ η

σ η σ η γ

l p β
p

m p β σ η

β σ η β σ η γ

l p ζ
p

m p σ ζ

σ ζ σ ζ γ

Θ Θ : : 1 : Θ , 1 or

Θ , , Θ , ,

Θ Θ : : for some , 1 : Θ , 1 or

Θ , , Θ , ,

Θ Θ : : 0, 1 , 1 : Θ , 1 or

Θ , , Θ , .

S
f

m p
f

m

p
f

m p
f

m

S
f

m p
f

m

p
f

m p
f

m

S
f

m p
f

m

p
f

m p
f

m

0

We identify an open ball and closed ball with center at Θ and radius >σ 0 w.r.t. the parameters of
fuzziness ( )∈η 0, 1 and >γ 0 demonstrated by �( )σ η γΘ, , , and �[ ]σ η γΘ, , , as follows:

�� � � �

� � � � � � �

( )
⎧

⎨
⎩

( )
⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

⎫

⎬
⎭

≔ = ∈ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

∞
σ η γ q q l p

p
m p q σ η

q σ η σ η γ

Θ, , , : : 1 : Θ , 1 or

Θ , , Θ ,

m p
f

m p
f

p
f

m r
f

p
f

m p
f

and

�� � � �

� � � � � � �

[ ]
⎧

⎨
⎩

( )
⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣
⎫

⎬
⎭

⎫

⎬
⎭

≔ = ∈ ∈ ≤ − < −

− > − > > ∈

∞
σ η γ q q l p

p
m p q σ η

q σ η q σ η γ

Θ, , , : : 1 : Θ , 1 or

Θ , , Θ , .

m p
f

m p
f

p
f

m r
f

p
f

m p
f

When �
�

�( )
( )

∈Θm S
f , then �( )Θm -statistically converges to some �∈β , indicated by

��

( )
( )

→ βΘm
S

, and

in that case, we obtain � �− − =st βlimΘp
f

m .

Theorem 1. The inclusion relation � � �
� � �

� � �( ) ( ) ( )
⊂ ⊂

∞S
f

S
f

S
f

0
supplies.

Proof. It is obvious that � �
� �

� �( ) ( )
⊂

S
f

S
f

0
. Then, we have to denote that � �

� �
� �( ) ( )

⊂
∞S

f
S
f . Contemplate

�
�

�( )
( )

= ∈Θ Θm S
f . At that time, there is an �∈β such that � �− − =st βlimΘp

f
m . So, for each ( )∈η 0, 1

and >σ γ, 0, the set

� � �

� � � � 	 �

⎧

⎨
⎩

⎧

⎨
⎩

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎫

⎬
⎭

⎫

⎬
⎭

( )

≔ ∈ ≤ − > −

− < − < < ∈

K p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ ,
2

1 and

Θ ,
2

, Θ ,
2

.

p
f

m

p
f

m p
f

m

Assume �
( )

=β p, σ
2 , �

( )
=β q, σ

2 , and �
( )

=β r, σ
2 for all >σ 0. Since ( )∈p q r, , 0, 1 and ( )∈η 0, 1 , there

are ( )∈s s s, , 0, 11 2 3 such that ( )− △ > −η p s1 1 1, ♢ <η q s2, and ♢ <η r s3. So, we obtain
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� � � �

� � �

( ( ) ) ( ( ) )

⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

( )

= − +

≥ − △

≥ − △

> −

σ β β σ

β σ β σ

η p
s

Θ , Θ ,

Θ ,
2

,
2

1
1 ,

p
f

m p
f

m

p
f

m

1

� � � �

� � �

( ( ) ) ( ( ) )

⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

= − +

≤ − ♢

< ♢

<

σ β β σ

β σ β σ

η q
s

Θ , Θ ,

Θ ,
2

,
2

,

p
f

m p
f

m

p
f

m

2

� � � �

� � �

( ( ) ) ( ( ) )

⎛
⎝

( ) ⎞
⎠

⎛
⎝

⎞
⎠

= − +

≤ − ♢

< ♢

<

σ β β σ

β σ β σ

η r
s

Θ , Θ ,

Θ ,
2

,
2

.

p
f

m p
f

m

p
f

m

3

When we have { }=s s s s, ,1 2 3 , we obtain the set

� � � � � � �

	 �

⎧

⎨
⎩

( ) ∣{ ( ( ) ) ( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

( )

∈ ∃ ∈ ≤ > − < < <

∈

p s
p

m p σ s σ s σ η s: 0, 1 , 1 : Θ , 1 and Θ , , Θ ,

.

p
f

p
f

p
f

Hence, �
�

�( )
( )

= ∈
∞

Θ Θm S
f . This gives that � �

� �
� �( ) ( )

⊂
∞S

f
S
f . □

The converse of the inclusion relation does not supply. We establish the following example in support
of our claim.

Example 1. Assume �( ∥ ∥), . be a normed space such that ∥ ∥ ∣ ∣=Θ sup Θ
m

m , { }△ =u v u vmin , , and ♢ =u v
{ }u vmax , , ( )∀ ∈u v, 0, 1 . Now, we determine the norms � � � �( )= , , on � ( )× ∞0,2 as follows:

� � �( )
∥ ∥

( )
∥ ∥

∥ ∥
( )

∥ ∥
=

+

=

+

=σ σ
σ

σ
σ

σ
σ

Θ,
Θ

, Θ, Θ
Θ

and Θ, Θ .

Then, � �( )△ ♢, , , is an NNS. Contemplate the sequence ( ) { }=Ψ 1m . It can be easily examined that
�

�
�( )

( )
∈Ψm S

f and � �− − =st limΘ 1p
f

m but �
�

�( )
( )

∉Θm S
f

0
.

Theorem 2. The spaces �
�

� ( )S
f

0
and �

�
� ( )S

f are linear spaces.

Proof. It is obvious that � �
� �

� �( ) ( )
⊂

S
f

S
f

0
. At that time, we have to demonstrate the result for �

�
� ( )S

f . The

proof of linearity of the space �
�

� ( )S
f

0
follows similarly. Assume sequences ( )=Θ Θm and �

�
�( )

( )
= ∈Ψ Ψm S

f .

Then, there are �∈β β,1 2 such that ( )Θm and ( )Ψm neutrosophic �-statistically converge to β1 and β2,
respectively.

� � � �− − = − − =st β st βlimΘ and limΨ .p
f

m p
f

m1 2

We should denote that, for any scalars λ and ρ, the sequence �( )+λ ρΘ Ψm m -statistically converges to
+λβ ρβ1 2. For >σ γ, 0 and ( )∈η 0, 1 , take the following subsequent sets:

� � �

� � � � �

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨
⎩

⎧

⎨
⎩

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎫

⎬
⎭

⎫

⎬
⎭

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p β σ
λ

η

β σ
λ

η β σ
λ

η γ

: 1 : Θ ,
2

1 or

Θ ,
2

, Θ ,
2

;

p
f

m

p
f

m p
f

m

1 1

1 1
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� � �

� � � � �

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨
⎩

⎧

⎨
⎩

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎫

⎬
⎭

⎫

⎬
⎭

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p β σ
ρ

η

β σ
ρ

η β σ
ρ

η γ

: 1 : Ψ ,
2

1 or

Ψ ,
2

, Ψ ,
2

.

p
f

m

p
f

m p
f

m

2 2

2 2

So, we can write

� � �

� � � � 	 �

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨
⎩

⎧

⎨
⎩

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎫

⎬
⎭

⎫

⎬
⎭

( )

≔ ∈ ≤ − > −

− < − < < ∈

K p
p

m p β σ
λ

η

β σ
λ

η β σ
λ

η γ

: 1 : Θ ,
2

1 and

Θ ,
2

, Θ ,
2

;

c
p
f

m

p
f

m p
f

m

1 1

1 1

� � �

� � � � 	 �

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎧

⎨
⎩

⎧

⎨
⎩

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎫

⎬
⎭

⎫

⎬
⎭

( )

≔ ∈ ≤ − > −

− < − < < ∈

K p
p

m p β σ
ρ

η

β σ
ρ

η β σ
ρ

η γ

: 1 : Ψ ,
2

1 and

Ψ ,
2

, Ψ ,
2

.

c
p
f

m

p
f

m p
f

m

2 2

2 2

Therefore, the set = ∩K K Kc c
1 2 is non-empty and 	 �( )∈K . Let ∈r K , then

� � � � � �

� � � �⎜ ⎟⎜ ⎟

( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

( ) ( )

( )

+ − + ≥ − △ −

= − △ −

> − △ −

> −

λ ρ λβ ρβ σ λ λβ σ ρ ρβ σ

β σ
λ

β σ
ρ

η η
η

Θ Ψ , Θ ,
2

Ψ ,
2

Θ ,
2

Ψ ,
2

1 1
1 .

r
f

m m r
f

m r
f

m

r
f

m r
f

m

1 2 1 2

1 2

So, we obtain � �( ( ) ( ) ) ( )+ − + > −λ ρ λβ ρβ σ ηΘ Ψ , 1r
f

m m 1 2 . In addition,

� � � � � �

� � � �⎜ ⎟⎜ ⎟

( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

+ − + ≤ − ♢ −

= − ♢ −

< ♢

<

λ ρ λβ ρβ σ λ λβ σ ρ ρβ σ

β σ
λ

β σ
ρ

η η
η

Θ Ψ , Θ ,
2

Ψ ,
2

Θ ,
2

Ψ ,
2

.

r
f

m m r
f

m r
f

m

p
f

m p
f

m

1 2 1 2

1 2

Then, we have � �( ( ) ( ) )+ − + <λ ρ λβ ρβ σ ηΘ Ψ ,r
f

m m 1 2 . Furthermore,

� � � � � �

� � � �⎜ ⎟⎜ ⎟

( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

⎛

⎝
( )

∣ ∣
⎞

⎠

+ − + ≤ − ♢ −

= − ♢ −

< ♢

<

λ ρ λβ ρβ σ λ λβ σ ρ ρβ σ

β σ
λ

β σ
ρ

η η
η

Θ Ψ , Θ ,
2

Ψ ,
2

Θ ,
2

Ψ ,
2

.

r
f

m m r
f

m r
f

m

r
f

m r
f

m

1 2 1 2

1 2

Therefore, we acquire � �( ( ) ( ) )+ − + <λ ρ λβ ρβ σ ηΘ Ψ ,r
f

m m 1 2 . So,

� � �

� � � �

⎧

⎨
⎩

{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }
⎫

⎬
⎭

∈ ∈ ≤ + − + > −

+ − + < + − + <

r p
p

m p λ ρ λβ ρβ σ η

λ ρ λβ ρβ σ η λ ρ λβ ρβ σ η

: 1 : Θ Ψ , 1 and

Θ Ψ , , Θ Ψ , .

p
f

m m

p
f

m m p
f

m m

1 2

1 2 1 2
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Hence,

� � �

� � � �

⎧

⎨
⎩

{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }
⎫

⎬
⎭

⊂ ∈ ≤ + − + > −

+ − + < + − + <

K p
p

m p λ ρ λβ ρβ σ η

λ ρ λβ ρβ σ η λ ρ λβ ρβ σ η

: 1 : Θ Ψ , 1 and

Θ Ψ , , Θ Ψ , .

p
f

m m

p
f

m m p
f

m m

1 2

1 2 1 2

Since 	 �( )∈K , according to the definition of filter, we acquire

� � �

� � � � 	 �

⎧

⎨
⎩

{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }
⎫

⎬
⎭

( )

∈ ≤ + − + > −

+ − + < + − + < ∈

p
p

m p λ ρ λβ ρβ σ η

λ ρ λβ ρβ σ η λ ρ λβ ρβ σ η

: 1 : Θ Ψ , 1 and

Θ Ψ , , Θ Ψ , ,

p
f

m m

p
f

m m p
f

m m

1 2

1 2 1 2

which means that the sequence ( )+λ ρΘ Ψm m neutrosophic �-statistically converges to +λβ ρβ1 2. So,
�

�
�( )

( )
+ ∈λ ρΘ Ψm m S

f . As a result, we obtain �
�

� ( )S
f is a linear space. □

Theorem 3. Every open ball with center at Θ and radius >σ 0 w.r.t. the parameters of fuzziness >γ 0,
( )∈η 0, 1 , i.e., �( )σ η γΘ, , , is an open set in �

�
� ( )S

f w.r.t. NN � � � �( )= , , .

Proof. Assume �( )σ η γΘ, , , be an open ball with center at Θ and radius >σ 0 w.r.t. the parameters of
fuzziness >γ 0, ( )∈η 0, 1 ,

�� � � �

� � � � � � �

( )
⎧

⎨
⎩

( )
⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣
⎫

⎬
⎭

⎫

⎬
⎭

≔ = ∈ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

∞
σ η γ q q l p

p
m p q σ η

q σ η q σ η γ

Θ, , , : : 1 : Θ , 1 or

Θ , , Θ , .

m p
f

m p
f

p
f

m p
f

p
f

m p
f

Then,

�� � � �

� � � � � � 	 �

( )
⎧

⎨
⎩

( )
⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣ } ( )
⎫

⎬
⎭

≔ = ∈ ∈ ≤ − > −

− < − < < ∈

∞
σ η γ q q l p

p
m p q σ η

q σ η q σ η γ

Θ, , , : : 1 : Θ , 1 and

Θ , , Θ , .

c
m p

f
m p

f

p
f

m p
f

p
f

m p
f

Presume �( ) ( )= ∈q q σ η γΘ, , ,m
c . Then, for

� � � � � � � � �( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) )− > − − < − <q σ η q σ η q σ ηΘ , 1 and Θ , , Θ , ,p
f

p
f

p
f

p
f

p
f

p
f

there exists ( )∈σ σ0,0 so that

� � � � � � � � �( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) )− > − − < − <q σ η q σ η q σ ηΘ , 1 and Θ , , Θ , .p
f

p
f

p
f

p
f

p
f

p
f

0 0 0

Putting � � �( ( ) ( ) )= −η q σΘ ,p
f

p
f

0 0 implies > −η η10 . Then, ( )∃ ∈r 0, 1 such that > − > −η r η1 10 .
For > −η r10 , we obtain ( )∈η η η, , 0, 11 2 3 such that △ > −η η r10 1 , ( ) ( )− ♢ − <η η r1 10 2 , and
( ) ( )− ♢ − <η η r1 10 3 . Take { }=η η η ηmax , ,4 1 2 3 . Now, contemplate the open ball � ( )− −σ σ η γΘ, , 1 ,c

0 4 .
We have to denote that

� �( ) ( )− − ⊂σ σ η γ σ η γΘ, , 1 , Θ, , , .c c
0 4

Take �( ) ( )= ∈ − −α α q σ σ η γ, , 1 ,m
c

0 4 . Then,

� � � � � �

� � �

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ) )

− − > − − < −

− − < −

q α σ σ η q α σ σ η

q α σ σ η

, and , 1

, 1 .
p
f

p
f

p
f

p
f

p
f

p
f

0 4 0 4

0 4
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So, we obtain

� � � � � � � � �( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) )− ≥ − △ − −

≥ △ ≥ △ > − > −

α σ q σ q α σ σ

η η η η r η

Θ , Θ , ,

1 1 ,
p
f

p
f

p
f

p
f

p
f

p
f

0 0

0 4 0 1

� � � � � � � � �( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) )− ≤ − ♢ − − ≤ △ ≤ △ < <α σ q σ q α σ σ η η η η r ηΘ , Θ , , ,p
f

p
f

p
f

p
f

p
f

p
f

0 0 0 4 0 2

and

� � � � � � � � �( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) )− ≤ − ♢ − − ≤ △ ≤ △ < <α σ q σ q α σ σ η η η η r ηΘ , Θ , , .p
f

p
f

p
f

p
f

p
f

p
f

0 0 0 4 0 3

Therefore, we obtain

� � � �

� � � � � � 	 �

⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣ } ( )

∈ ≤ − > −

− < − < < ∈

p
p

m p α σ η

α σ η α σ η γ

: 1 : Θ , 1 and

Θ , , Θ , .

p
f

m p
f

p
f

m p
f

p
f

m p
f

Hence, �( ) ( )= ∈α α σ η γΘ, , ,m
c . As a result, we obtain � �( ) ( )− − ⊂σ σ η γ σ η γΘ, , 1 , Θ, , ,c c

0 4 . □

Now, we identify a collection
�

�
� ( )

τ
S

f
of a subset of �

�
� ( )S

f as follows:

�

�

�

�

�
� �{ ( )

( ) ( ) }

( ) ( )
= ⊂ = ∈

> ∈ ⊂

τ T T

σ γ η σ η γ T

: for all Θ Θ there exist

, 0 and 0, 1 such that Θ, , , .
S S

f
m

f

Then,
�

�
� ( )

τ
S

f
determines a topology on the sequence space �

�
� ( )S

f . The collection given by

� � �
�

�{ ( ) ( )}
( )

= ∈ > ∈σ η γ σ γ ηΘ, , , : Θ , , 0 and 0, 1
S
f

is a base for the topology
�

�
� ( )

τ
S

f
on the space �

�
� ( )S

f .

Theorem 4. The topology
�

�
� ( )

τ
S

f
on the space of �

�
� ( )S

f is first countable.

Proof. For all �
�

�( )
( )

= ∈Θ Θm S
f , consider the set �

{ }( )
= = …K qΘ, , , : 1, 2, 3,q q q

1 1 1 , which is a coun-
table local base at ( )=Θ Θm . Hence, the topology

�

�
� ( )

τ
S

f
on the space of �

�
� ( )S

f is first countable. □

Theorem 5. The spaces �
�

� ( )S
f and �

�
� ( )S

f
0
are Hausdorff spaces.

Proof. It is obvious that � �
� �

� �( ) ( )
⊂

S
f

S
f

0
. We have to demonstrate the result for only �

�
� ( )S

f . Assume

( )=Θ Θm and �
�

�( )
( )

= ∈Ψ Ψm S
f so that ≠Θ Ψ. Then, for all �∈p and >σ 0, we obtain

� � � � � �

� � �

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ) )

< − < < − <

< − <

σ σ

σ

0 Θ Ψ , 1, 0 Θ Ψ , 1,

0 Θ Ψ , 1.
p
f

p
f

p
f

p
f

p
f

p
f

We have

� � � � � �

� � �

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ) )

= − = −

= −

η σ η σ

η σ

Θ Ψ , , Θ Ψ , ,

Θ Ψ , ,
p
f

p
f

p
f

p
f

p
f

p
f

1 2

3

and { }= − −η η η ηmax , 1 , 11 2 3 . At that time, for all ( )∈η η, 10 , there are ( )∈η η η, , 0, 14 5 6 so that △ ≥η η η4 4 0,
( ) ( )− ♢ − ≤ −η η η1 1 15 5 0, and ( ) ( )− ♢ − ≤ −η η η1 1 16 6 0. Again, we take { }= − −η η η ηmax , 1 , 17 4 5 6 and
contemplate the open balls �

( )
− η γΘ, 1 , ,σ

7 2 and �
( )

− η γΨ, 1 , ,σ
7 2 centered atΘ and Ψ, respectively. Then, it

is obvious that

� �⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− ∩ − = ∅η σ γ η σ γΘ, 1 ,
2

, Ψ, 1 ,
2

, .c c
7 7
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If possible assume � �( )
( ) ( )

= ∈ − ∩ −α α η γ η γΘ, 1 , , Ψ, 1 , ,m
c σ c σ

7 2 7 2 . Then, we obtain

� � �

� � � � � �

( ( ) ( ) )

⎛
⎝

( ) ( ) ⎞
⎠

⎛
⎝

( ) ( ) ⎞
⎠

= −

≥ − △ −

> △

≥ △

≥ >

η σ

α σ α σ

η η
η η
η η

Θ Ψ ,

Θ ,
2

Ψ ,
2

,

p
f

p
f

p
f

p
f

p
f

p
f

1

7 7

4 4

0 1

� � �

� � � � � �

( ( ) ( ) )

⎛
⎝

( ) ( ) ⎞
⎠

⎛
⎝

( ) ( ) ⎞
⎠

( ) ( )

( ) ( )

( )

= −

≤ − ♢ −

< − ♢ −

≤ − ♢ −

< − <

η σ

α σ α σ

η η
η η
η η

Θ Ψ ,

Θ ,
2

Ψ ,
2

1 1
1 1
1 ,

p
f

p
f

p
f

p
f

p
f

p
f

2

7 7

5 5

0 2

and

� � �

� � � � � �

( ( ) ( ) )

⎛
⎝

( ) ( ) ⎞
⎠

⎛
⎝

( ) ( ) ⎞
⎠

( ) ( )

( ) ( )

( )

= −

≤ − ♢ −

< − ♢ −

≤ − ♢ −

< − <

η σ

α σ α σ

η η
η η
η η

Θ Ψ ,

Θ ,
2

Ψ ,
2

1 1
1 1
1 .

p
f

p
f

p
f

p
f

p
f

p
f

3

7 7

6 6

0 3

From the above equations, we obtain a contradiction. So,

� �⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− ∩ − = ∅η σ γ η σ γΘ, 1 ,
2

, Ψ, 1 ,
2

, .c c
7 7

Hence, the space �
�

� ( )S
f is a Hausdorff space. □

Theorem 6. Let
�

�
� ( )

τ
S

f
be a topology on an NNS �

�
� ( )S

f , then a sequence �
�

�( )
( )

= ∈Θ Θm S
f such that

� � �( ) − = β, , limΘm iff� �( ( ) )− →β σΘ , 1p
f ,� �( ( ) )− →β σΘ , 0p

f ,and� �( ( ) )− →β σΘ , 0p
f as → ∞p .

Proof. Assume � � �( ) − = β, , limΘm and take >σ 00 . Then, for ( )∈η 0, 1 , �∃ ∈m0 , �( ) ( )∈ σ η γΘ Θ, , ,m ,
∀ ≥m m0 and for a >σ 0,

�� � �

� � � �

( )
⎧

⎨
⎩

( )
⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) )
⎫

⎬
⎭

∣
⎫

⎬
⎭

≔ = ∈ ∈ ≤ − ≤ −

− ≥ − ≥ ≥

∞
σ η γ l p

p
m p β σ η

β σ η β σ η γ

Θ, , , Θ Θ : : 1 : Θ , 1 or

Θ , , Θ , ,

m p
f

m

p
f

m p
f

m

so � 	 �( ) ( )∈γ σΘ, ,c . Then,

� � � � � �( ( ) ) ( ( ) ) ( ( ) )− − < − < − <β σ η β σ η β σ η1 Θ , , Θ , , Θ , .p
f

m p
f

m p
f

m

Hence,

� � � � � �( ( ) ) ( ( ) ) ( ( ) )− → − → − →β σ β σ β σΘ , 1, Θ , 0 and Θ , 0p
f

m p
f

m p
f

m

as → ∞p .
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Conversely, if, for each >σ 0,

� � � � � �( ( ) ) ( ( ) ) ( ( ) )− → − → − →β σ β σ β σΘ , 1, Θ , 0, and Θ , 0p
f

p
f

p
f

as → ∞p , then, for all ( )∈η 0, 1 , �∃ ∈m0 such that

� � � � � �( ( ) ) ( ( ) ) ( ( ) )− − < − < − < ∀ ≥β σ η β σ η β σ η m m1 Θ , , Θ , , Θ , , .p
f

p
f

p
f

0

Hence, we acquire

� � � � � �( ( ) ) ( ( ) ) ( ( ) )− > − − < − < ∀ ≥β σ η β σ η β σ η m mΘ , 1 , Θ , , Θ , , .p
f

p
f

p
f

0

So, �( ) ( )= ∈ ∀ ≥σ η γ m mΘ Θ Θ, , ,m 0, and as a result, � � �( ) − = β, , limΘ .m □

Theorem 7. Take �
�

�( )
( )

= ∈Θ Θm S
f . When a sequence ( )=Θ Θm is neutrosophic Nörlund �-statistically

convergent, then � �− − st limΘp
f

m is unique.

Proof. Assume ( )=Θ Θm is neutrosophic Nörlund �-statistically convergent. Let, on the contrary, that β1
and β2 are two different elements so that � �− − =st βlimΘp

f
m 1 and � �− − =st βlimΘp

f
m 2. For a given

( )∈η 0, 1 , select >r 0 so that ( ) ( )− △ − > −r r η1 1 1 , ♢ <r r η. For >σ 0, we have to denote =β β1 2. We
determine the subsequent sets as follows:

� � �

� � � � �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ , 1 or

Θ , , Θ , ;

p
f

m

p
f

m p
f

m

1 1

1 1

� � �

� � � � �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ , 1 or

Θ , , Θ , .

p
f

m

p
f

m p
f

m

2 2

2 2

So, we can write

� � �

� � � � 	 �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣ } ( )

≔ ∈ ≤ − > −

− < − < < ∈

K p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ , 1 and

Θ , , Θ , ;

c
p
f

m

p
f

m p
f

m

1 1

1 1

� � �

� � � � 	 �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣ } ( )

≔ ∈ ≤ − > −

− < − < < ∈

K p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ , 1 and

Θ , , Θ , .

c
p
f

m

p
f

m p
f

m

2 2

2 2

If we take = ∩K K K1 2, then �∈K . So, 	 �( )∈Kc . Then, we obtain = ∩ ≠ ∅K K Kc c c
1 2 . Taking ∈ ∩s K Kc c

1 2 ,
which means that

� � � �⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

− > − − > −β σ r β σ rΘ ,
2

1 , Θ ,
2

1 .s
f

m s
f

m1 2

Therefore, we obtain

� � � � �( ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

( ) ( )− ≥ − △ − > − △ − > −β β σ β σ β σ r r η, Θ ,
2

Θ ,
2

1 1 1 .s
f

m s
f

m1 2 1 2

Since >η 0 was arbitrary, �( )− =β β σ, 11 2 for all >η 0. As a result, we obtain =β β1 2, which is a
contradiction.

Certain aspects of Nörlund I-statistical convergence of sequences in neutrosophic normed spaces  11



If ∈s Kc, then we have

� � � �⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

− < − <β σ η β σ ηΘ ,
2

, Θ ,
2

.s
f

m s
f

m1 2

Therefore, we have

� � � � �( ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

− ≤ − ♢ − < ♢ <β β σ β σ β σ r r η, Θ ,
2

Θ ,
2

.s
f

m s
f

m1 2 1 2

Since >η 0 was arbitrary, �( )− =β β σ, 01 2 for all >η 0. As a result, we obtain =β β1 2, which is a
contradiction.

If ∈s Kc, then we have

� � � �⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

− < − <β σ η β σ ηΘ ,
2

, Θ ,
2

.s
f

m s
f

m1 2

Therefore, we have

� � � � �( ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

− ≤ − ♢ − < ♢ <β β σ β σ β σ r r η, Θ ,
2

Θ ,
2

.s
f

m s
f

m1 2 1 2

Since >η 0 was arbitrary, �( )− =β β σ, 01 2 for all >η 0. As a result, we obtain =β β1 2, which is a contra-
diction. For all cases, we obtain =β β1 2. We demonstrate that � �− − st limΘp

f
m is unique. □

Theorem 8. A sequence ( )=Θ Θm is neutrosophic Nörlund �-statistically convergent w.r.t. NN � � � �( )= , ,
iff it is neutrosophic Nörlund �-statistically Cauchy w.r.t. the same norms.

Proof. Assume ( )=Θ Θm be neutrosophic Nörlund �-statistically convergent w.r.t. NN � � � �( )= , , so that

� �− − =st βlimΘp
f

m . For a given ( )∈η 0, 1 , there exists ( )∈r 0, 11 such that ( ) ( )− △ − > −r r η1 1 11 1 and

♢ <r r η1 1 . Since � �− − =st βlimΘp
f

m , therefore, for each >σ γ, 0,

� � �

� � � � �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣ }

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p β σ r

β σ r β σ r γ

: 1 : Θ , 1 or

Θ , , Θ , ;

p
f

m

p
f

m p
f

m

1 1

1 1

which implies

� � �

� � � � 	 �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣ } ( )

≔ ∈ ≤ − > −

− < − < < ∈

K p
p

m p β σ r

β σ r β σ r γ

: 1 : Θ , 1 and

Θ , , Θ , .

c
p
f

m

p
f

m p
f

m

1 1

1 1

For ∈s K c
1 , we obtain

� � � � � �( ( ) ) ( ( ) ) ( ( ) )− > − − < − <β σ r β σ r β σ rΘ , 1 and Θ , , Θ , .s
f

m s
f

m s
f

m1 1 1

For fix ∈s K c
1 , let

� � � �

� � � � � � �

⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣
⎫

⎬
⎭

≔ ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

K p
p

m p σ η

σ η σ η γ

: 1 : Θ Θ , 1 or

Θ Θ , , Θ Θ , .

p
f

m s
f

m

p
f

m s
f

m p
f

m s
f

m

2

We have to demonstrate that ⊂K K2 1. Take ∈p K2, then we obtain

� � � � � �( ( ) ( ) ) ( ( ) ( ) )− ≤ − − ≥σ η σ ηΘ Θ , 1 or Θ Θ , ,p
f

m s
f

m p
f

m s
f

m

� � �( ( ) ( ) )− ≥σ ηΘ Θ , .p
f

m s
f

m

12  Ömer Kişi et al.



We obtain the following possible cases.

Initially, consider � � �( ( ) ( ) )− ≤ −σ ηΘ Θ , 1p
f

m s
f

m . Then � � ( )
( )

− ≤ −β ηΘ , 1p
f

m
σ
2 .

If possible, assume � � ( )
( )

− > −β rΘ , 1p
f

m
σ
2 1. Then, we can write

� � �

� � � �

( ( ) ( ) )

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

( ) ( )

− ≥ −

≥ − △ −

> − △ −

> −

η σ

β σ β σ

r r
η

1 Θ Θ ,

Θ ,
2

Θ ,
2

1 1
1 ,

p
f

m s
f

m

p
f

m s
f

m

1 1

which is a contradiction. So, � � ( )
( )

− ≤ −β rΘ , 1p
f

m
σ
2 1 holds.

In the same way, consider � � �( ( ) ( ) )− ≥σ ηΘ Θ ,p
f

m s
f

m . Then, � � ( )
( )

− ≥β ηΘ ,p
f

m
σ
2 .

If possible assume � � ( )
( )

− <β rΘ ,p
f

m
σ
2 1. Then, we can write

� � � � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

≤ − ≤ − ♢ − < ♢ <η σ β σ β σ r r ηΘ Θ , Θ ,
2

Θ ,
2

,p
f

m s
f

m p
f

m s
f

m 1 1

which is a contradiction. So, � � ( )
( )

− ≥β rΘ ,p
f

m
σ
2 1 supplies.

Similarly, consider � � �( ( ) ( ) )− ≥σ ηΘ Θ ,p
f

m s
f

m . Then, � � ( )
( )

− ≥β ηΘ ,p
f

m
σ
2 .

If possible, let � � ( )
( )

− <β rΘ ,p
f

m
σ
2 1. Then, we can write

� � � � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

≤ − ≤ − ♢ − < ♢ <η σ β σ β σ r r ηΘ Θ , Θ ,
2

Θ ,
2

,p
f

m s
f

m p
f

m s
f

m 1 1

which is a contradiction. So, � � ( )
( )

− ≥β rΘ ,p
f

m
σ
2 1 holds. So, for ∈p K2, we obtain

� � � � � �( ( ) ) ( ( ) ) ( ( ) )− ≤ − − ≥ − ≥β σ r β σ r β σ rΘ , 1 or Θ , , Θ , .p
f

m p
f

m p
f

m1 1 1

Therefore, ∈p K1. Hence, ⊂K K2 1. Since �∈K1 , we obtain �∈K2 . As a result, ( )=Θ Θm is neutrosophic
Nörlund �-statistically Cauchy w.r.t. NN � � � �( )= , , .

Conversely, assume the sequence ( )=Θ Θm is neutrosophic Nörlund �-statistically Cauchy w.r.t. NN
� � � �( )= , , . Let, on the contrary, the sequence ( )=Θ Θm is not neutrosophic Nörlund �-statistically
convergent indicated by 
2. Then, there exists �∈s so that

�
 � � �

� � � � � � �

⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣
⎫

⎬
⎭

= ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

p
p

m p σ η

σ η σ η γ

: 1 : Θ Θ , 1 or

Θ Θ , , Θ Θ , .

p
f

m s
f

m

p
f

m s
f

m p
f

m s
f

m

1

Let, on the contrary,

�
 � �

� � � � �

⎧

⎨
⎩

⎧
⎨⎩

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎫

⎬
⎭

⎫

⎬
⎭

≔ ∈ ≤ − > −

− < − < < ∈

p
p

m p β σ r

β σ r β σ r γ

: 1 : Θ ,
2

1 and

Θ ,
2

, Θ ,
2

.

p
f

m

p
f

m p
f

m

2 1

1 1

So, we have

� � �

� � � �

( ( ) ( ) )

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

( ) ( )

− ≥ −

≥ − △ −

> − △ −

> −

η σ

β σ β σ

r r
η

1 Θ Θ ,

Θ ,
2

Θ ,
2

1 1
1 ,

p
f

m s
f

m

p
f

m s
f

m

1 1
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which is a contradiction. Now

� � � � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

≤ − ≤ − ♢ − < ♢ <η σ β σ β σ r r ηΘ Θ , Θ ,
2

Θ ,
2

,p
f

m s
f

m p
f

m s
f

m 1 1

which is a contradiction. Furthermore,

� � � � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

≤ − ≤ − ♢ − < ♢ <η σ β σ β σ r r ηΘ Θ , Θ ,
2

Θ ,
2

,p
f

m s
f

m p
f

m s
f

m 1 1

which is a contradiction. So, 
 	 �( )∈2 and thus ( )=Θ Θm is neutrosophic Nörlund �-statistically conver-
gent w.r.t. NN � � � �( )= , , . □

Theorem 9. A sequence �
�

�( )
( )

= ∈Θ Θm S
f is neutrosophic Nörlund �-statistically convergent w.r.t. NN

� � � �( )= , , . Then, for some �∈β , � �− − =st βlimΘp
f

m iff for each ( )∈η 0, 1 and >σ γ, 0, there are

positive integers ( )=T T σ η γΘ, , , such that

� � � �

� � � � � � �

⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣
⎫

⎬
⎭

∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

p
p

m p σ η

σ η σ η γ

: 1 : Θ Θ , 1 or

Θ Θ , , Θ Θ , .

p
f

m T
f

m

p
f

m T
f

m p
f

m T
f

m

Proof. Assume � �− − =st βlimΘp
f

m , for some �∈β . For given >r 0, there exists ( )∈η 0, 1 such that

( ) ( )− △ − > −r r η1 1 1 and ♢ <r r η. Since � �− − =st βlimΘp
f

m , for all >σ γ, 0,

�� � �

� � � � �

⎧

⎨
⎩

⎧

⎨
⎩

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎫

⎬
⎭

⎫

⎬
⎭

= ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

p
p

m p β σ r

β σ r β σ r γ

: 1 : Θ ,
2

1 or

Θ ,
2

, Θ ,
2

,

p
f

m

p
f

m p
f

m

which means that

�� � �

� � � � 	 �

⎧

⎨
⎩

⎧

⎨
⎩

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎫

⎬
⎭

⎫

⎬
⎭

( )

= ∈ ≤ − > −

− < − < < ∈

p
p

m p β σ r

β σ r β σ r γ

: 1 : Θ ,
2

1 and

Θ ,
2

, Θ ,
2

.

c
p
f

m

p
f

m p
f

m

Selecting a natural number �∈T c, we obtain

� � � � � �⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

− > − − < − <β σ r β σ r β σ rΘ ,
2

1 and Θ ,
2

, Θ ,
2

.T
f

m T
f

m T
f

m

We denote that there is a positive integer ( )=T T σ η γΘ, , , such that

�� � � �

� � � � � �

⎧

⎨
⎩

∣{ ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ) }∣
⎫

⎬
⎭

= ∈ ≤ − ≤ −

− ≥ − ≥ ≥

p
p

m p σ η

σ η σ η γ

: 1 : Θ Θ , 1 or

Θ Θ , , Θ Θ , .

p
f

m T
f

m

p
f

m T
f

m p
f

m T
f

m

So, for �
�

�( )
( )

= ∈Θ Θm S
f , we have to denote that � �⊆ .

Let, on the contrary, � �⊈ . Then, there exists �∈q ; however, �∉q . Hence,
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� � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

− ≤ − − > −σ η β σ rΘ Θ , 1 and Θ ,
2

1 .p
f

m T
f

m p
f

m

Especially, � � ( )
( )

− > −β rΘ , 1T
f

m
σ
2 . So, we obtain

� � � � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

( ) ( )− ≥ − ≥ − △ − > − △ − > −η σ β σ β σ r r η1 Θ Θ , Θ ,
2

Θ ,
2

1 1 1 ,p
f

m T
f

m p
f

m T
f

m

which is a contradiction. In the same way,

� � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

− ≥ − <σ η β σ rΘ Θ , and Θ ,
2

.p
f

m T
f

m p
f

m

In particular, � � ( )
( )

− <β rΘ ,T
f

m
σ
2 . Hence, we acquire

� � � � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

≤ − ≤ − ♢ − < ♢ <η σ β σ β σ r r ηΘ Θ , Θ ,
2

Θ ,
2

,p
f

m T
f

m p
f

m T
f

m

which is a contradiction. Similarly,

� � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

− ≥ − <σ η β σ rΘ Θ , and Θ ,
2

.p
f

m T
f

m p
f

m

Particularly, � � ( )
( )

− <β rΘ , .T
f

m
σ
2 Therefore, we obtain

� � � � � � �( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

≤ − ≤ − ♢ − < ♢ <η σ β σ β σ r r ηΘ Θ , Θ ,
2

Θ ,
2

,p
f

m T
f

m p
f

m T
f

m

which is a contradiction. Hence, we have � �⊆ and since � �∈ , so we obtain � �∈ .
Conversely, let, on the contrary, ( )=Θ Θm is not neutrosophic Nörlund �-statistically convergent w.r.t.

NN � � � �( )= , , and � holds, then

�� � �

� � � � �

⎧

⎨
⎩

⎧

⎨
⎩

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎫

⎬
⎭

⎫

⎬
⎭

= ∈ ≤ − > −

− < − < < ∈

p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ ,
2

1 and

Θ ,
2

, Θ ,
2

,

p
f

m

p
f

m p
f

m

which implies that � 	 �( )∈

c . Since � holds, then there is an ( )=T T σ γΘ, , so that

�� � � �

� � � � � � �

⎧

⎨
⎩

⎧

⎨
⎩

⎛
⎝

( ) ( ) ⎞
⎠

⎛
⎝

( ) ( ) ⎞
⎠

⎛
⎝

( ) ( ) ⎞
⎠

⎫

⎬
⎭

⎫

⎬
⎭

= ∈ ≤ − ≤ −

− ≥ − ≥ ≥ ∈

p
p

m p σ η

σ η σ η γ

: 1 : Θ Θ ,
2

1 or

Θ Θ ,
2

, Θ Θ ,
2

.

p
f

m T
f

m

p
f

m T
f

m p
f

m T
f

m

As

� � � � �

� � � � �

� � � � � �

( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

( ( ) ( ) ) ⎛
⎝

( ) ⎞
⎠

( ( ) ( ) ) ⎛
⎝

( ) ( ) ⎞
⎠

− ≥ − > −

− ≤ − <

− ≤ − <

σ β σ η

σ β σ η

σ σ η

Θ Θ , 2 Θ ,
2

1

Θ Θ , 2 Θ ,
2

and

Θ Θ , 2 Θ Θ ,
2

,

p
f

m T
f

m p
f

m

p
f

m T
f

m p
f

m

p
f

m T
f

m p
f

m T
f

m

then

� � � � � � �⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ⎞
⎠

⎛
⎝

( ) ( ) ⎞
⎠

− >

−

− < − <β σ η β σ η σ ηΘ ,
2

1
2

, Θ ,
2 2

and Θ Θ ,
2 2

.p
f

m p
f

m p
f

m T
f

m

So, we obtain � �∈

c . Equivalently, � 	 �( )∈ , which is a contradiction, as � holds. □
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Now �� ( )∞l f shows the space of all sequences, whose � f -transform is neutrosophic bounded sequence.

� �
�

( ( ))∞ Sl
f denotes the space of all sequences, whose � f -transform is neutrosophic bounded and

neutrosophic �-statistically convergent sequence.

Theorem 10. � �
�

( ( ))∞ Sl
f is closed linear space of �� ( )∞l f .

Proof. It is obvious that � � ��
�

( ( )) ( )⊂

∞

∞ S ll
f f . We have to demonstrate that � �

�

( ( ))∞ Sl
f is closed, i.e.,

� � � �
� �

( ( )) ( ( ))=∞ ∞S Sl
f

l
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�

( ( ))∞ Sl
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l
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�

( ( )) ≠ ∅∞ Sl
f for all open ball �( )σ η γΘ, , , of any radius >η 0 and >σ γ, 0 centered at Θ.

So, take � � �
�

( ) ( ( ))∈ ∩ ∞σ η γ SΘ Θ, , , l
f . For ( )∈r 0, 1 and ( )∈η 0, 1 , select ( ) ( )− △ − > −r r η1 1 1 and

♢ <r r η. Since � � �
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( ) ( ( ))∈ ∩ ∞σ η γ SΨ Θ, , , l
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So, for all ∈p T , we have
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As a result, we obtain

� � �

� � � �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

⊂ ∈ ≤ − > −

− < − < <

T p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ , 1 and

Θ , , Θ , .

p
f

m

p
f

m p
f

m

Since 	 �( )∈T , we obtain

16  Ömer Kişi et al.



� � �

� � � � 	 �

⎧

⎨
⎩

∣{ ( ( ) )

( ( ) ) ( ( ) ) }∣
⎫

⎬
⎭

( )

∈ ≤ − > −

− < − < < ∈

p
p

m p β σ η

β σ η β σ η γ

: 1 : Θ , 1 and

Θ , , Θ , .

p
f

m

p
f

m p
f

m
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Consider the following set:
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We denote that ⊂K K1 2. So, for all ∈p K1, we obtain
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This means that ∈p K2 and thus ⊂K K1 2. Since 	 �( )∈K1 , we obtain 	 �( )∈K2 . As a result �
�

( ) ( )= ∈Θ Θm S
f . □
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4 Conclusion

NS was first introduced in 1998 by Smarandache [14]. A unified idea of the NSS has been developed by Maji
[15]. The notion of NSNLS was then examined, and some of its features were suggested in [17,18]. The
NMS was studied by Kirişçi and Şimşek [45] using continuous t-norms and continuous t-conorms.
NNS and statistical convergence in NNS were proposed by Kirişci and Şimşek [46]. Even though certain
features in neutrosophic Nörlund convergent sequence spaces have been examined, it is yet open to
explore further properties in neutrosophic Nörlund �-statistically convergent sequence spaces, such as

� � �
� � �( ) ( ) ( )∞, , .S

f
S
f

S
f

0
So, the main results of the present article fill up the gap in the existing literature. On

the basis of this idea, we anticipate further research on probabilistic metric spaces employing neutrosophic
probability.

Acknowledgments: The authors are greatly indebted to the editors and anonymous reviewers for their
valuable comments and suggestions for improving the article.

Funding information: Not applicable.

Author contributions: This study was carried out in collaboration with equal responsibility. All authors read
and approved the final manuscript.

Conflict of interest: The authors declare that they have no competing interest.

Data availability statement: Not applicable.

References

[1] L. A. Zadeh, Fuzzy sets, Inf. Control. 8 (1965), no. 3, 338–353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-X.
[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), no. 1, 87–96, DOI: https://doi.org/10.1016/S0165-

0114(86)80034-3.
[3] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika. 11 (1975), no. 5, 336–344.
[4] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215–229, DOI: https://doi.org/10.1016/

0165-0114(84)90069-1, 336–344.
[5] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395–399, DOI: https://

doi.org/10.1016/0165-0114(94)90162-7.
[6] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 90 (1997), 365–368,

DOI: https://doi.org/10.1016/S0165-0114(96)00207-2.
[7] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), 1039–1046, DOI: https://doi.org/10.1016/

j.chaos.2004.02.051.
[8] F. Lael and K. Nourouzi, Some results on the IF-normed spaces, Chaos Solitons Fractals 37 (2008), 931–939, DOI: https://

doi.org/10.1016/j.chaos.2006.10.019.
[9] A. Mohamad, Fixed-point theorems in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 34 (2007), no. 5,

1689–1695, DOI: https://doi.org/10.1016/j.chaos.2006.05.024.
[10] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst. 27 (1988), 385–389.
[11] C. Alaca, D. Turkoglu, and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 29 (2006),

no. 5, 1073–1078, DOI: https://doi.org/10.1016/j.chaos.2005.08.066.
[12] C. Alaca, D. Turkoglu, and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces, Chaos

Solitons Fractals 29 (2006), no. 5, 1073–1078, DOI: https://doi.org/10.1016/j.chaos.2005.08.066.
[13] C. Alaca, D. Turkoglu, and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric spaces,

Southeast Asian Bull. Math. 32 (2008), 21–33.
[14] F. Smarandache, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math. 24 2005,

287–297.
[15] P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inform. 5 (2013), no. 1, 157–168.

18  Ömer Kişi et al.

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/0165-0114(84)90069-1
https://doi.org/10.1016/0165-0114(84)90069-1
https://doi.org/10.1016/0165-0114(94)90162-7
https://doi.org/10.1016/0165-0114(94)90162-7
https://doi.org/10.1016/S0165-0114(96)00207-2
https://doi.org/10.1016/j.chaos.2004.02.051
https://doi.org/10.1016/j.chaos.2004.02.051
https://doi.org/10.1016/j.chaos.2006.10.019
https://doi.org/10.1016/j.chaos.2006.10.019
https://doi.org/10.1016/j.chaos.2006.05.024
https://doi.org/10.1016/j.chaos.2005.08.066
https://doi.org/10.1016/j.chaos.2005.08.066


[16] T. Bera and N. K. Mahapatra, Neutrosophic soft linear spaces, Fuzzy Inform. Eng. 9 (2017), 299–324.
[17] T. Bera and N. K. Mahapatra, Neutrosophic soft normed linear spaces, Neutrosophic Sets Syst. 23 (2018), 52–71.
[18] T. Bera and N. K. Mahapatra, Continuity and convergence on neutrosophic soft normed linear spaces, Intl. J. Fuzzy Comp.

Model 3 (2020), no. 2, 156–186.
[19] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244, DOI: https://doi.org/10.4064/cm-2-3-4-241-244.
[20] P. Kostyrko, T. Salát, and W. Wilczynsski, � -convergence, Real Anal. Exchange 26 (2000), no. 2, 669–686.
[21] S. Karakuş, K. Demirci, and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons

Fractals 35 (2008), 763–769.
[22] A. A. Nabiev, S. Pehlivan, and M. Gürdal, On � -Cauchy sequences, Taiwanese J. Math. 11 (2007), no. 2, 569–566.
[23] P. Das, E. Savaş, and S. Kr. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24

(2011), 1509–1614, DOI: https://doi.org/10.1016/j.aml.2011.03.036.
[24] E. Savaş and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826–830, DOI: https://

doi.org/10.1016/j.aml.2010.12.022.
[25] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4 (2012), no. 1, 85–91.
[26] U. Yamancı and M. Gürdal, � -statistical convergence in 2-normed space, Arab J. Math. Sci. 20 (2014), no. 1, 41–47.
[27] S. A. Mohiuddine and Q. M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space,

Chaos Solitons Fractals 42 (2009), 1731–1737, DOI: https://doi.org/10.1016/j.chaos.2009.03.086.
[28] S. A. Mohiuddine, B. Hazarika, and M. A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya

types approximation theorems, Filomat 33 (2019), no. 14, 4549–4560, DOI: https://doi.org/10.2298/FIL1914549M.
[29] M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed

space, J. Comput. Appl. Math. 233 (2009), no. 2, 142–149, DOI: https://doi.org/10.1016/j.cam.2009.07.005.
[30] M. Mursaleen and S. A. Mohiuddine, Statistical convergence of double sequences in intuitionistic fuzzy normed spaces,

Chaos Solitons Fractals 41 (2009), 2414–2421, DOI: https://doi.org/10.1016/j.chaos.2008.09.018.
[31] M. Mursaleen and S. A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012), no. 1,

49–62, DOI: https://doi.org/10.2478/s12175-011-0071-9.
[32] M. Mursaleen, S. A. Mohiuddine, and O. H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy

normed spaces, Comput. Math. Appl. 59 (2010), 603–611.
[33] F. Başar, Summability Theory and its Applications, 2rd ed., CRC Press/Taylor & Francis Group, New York, 2022.
[34] H. Roopaei and F. Başar, On the spaces of Cesàro absolutely p-summable, null, and convergent sequences, Math. Methods

Appl. Sci. 44 (2021), no. 5, 3670–3685, DOI: https://doi.org/10.1002/mma.6973.
[35] M. Mursaleen and A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca 61 (2011), no. 6, 933–940,

DOI: https://doi.org/10.2478/s12175-011-0059-5.
[36] M. Mursaleen and F. Başar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group

Series: Mathematics and Its Applications, Boca Raton, London, New York, 2020.
[37] C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219

(2013), 9821–9826, DOI: https://doi.org/10.1016/j.amc.2013.03.115.
[38] B. Hazarika, A. Alotaibi, and S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued

functions, Soft Computing 24 (2020), 6613–6622, DOI: https://doi.org/10.1007/s00500-020-04805-y.
[39] U. Kadak and S. A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which

includes the (p q, )-Gamma function and related approximation theorems, Results Math. 73 (2018), no. 9, 1–31, DOI:
https://doi.org/10.1007/s00025-018-0789-6.

[40] S. A. Mohiuddine and B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with
associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.
113 (2019), no. 3, 1955–1973, DOI: https://doi.org/10.1007/s13398-018-0591-z.

[41] S. A. Mohiuddine, A. Asiri, and B. Hazarika,Weighted statistical convergence through difference operator of sequences of
fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst. 48 (2019), no. 5, 492–506, DOI: https://
doi.org/10.1080/03081079.2019.1608985.

[42] E. Savaş and M. Gürdal, A generalized statistical convergence in intuitionistic fuzzy normed spaces, Sci. Asia 41 (2015),
289–294, DOI: https://doi.org/10.2306/scienceasia1513-1874.2015.41.289.

[43] E. Savaş and M. Gürdal, Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, J. Intell.
Fuzzy Syst. 27 (2014), no. 4, 2067–2075, DOI: https://doi.org/10.3233/IFS-141172.

[44] E. Savaş and M. Gürdal, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst. 27 (2014),
no. 4, 1621–1629, DOI: https://doi.org/10.3233/IFS-141128.

[45] M. Kirişci and N. Şimşek, Neutrosophic metric spaces, Math. Sci. 14 (2020), 241–248, DOI: https://doi.org/10.1007/
s40096-020-00335-8.

[46] M. Kirişci and N. Şimşek, Neutrosophic normed spaces and statistical convergence, J. Anal. 28 (2020), 1059–1073, DOI:
https://doi.org/10.1007/s41478-020-00234-0.

[47] N. Šimšek and M. Kirišci, Fixed point theorems in neutrosophic metric spaces, Sigma J. Eng. Nat. Sci. 2 (2019), 221–230.
[48] M. Kirišci, N. Šimšek, and N. Akyiğit, Fixed point results for a new metric space, Math. Meth. Appl. Sci. 44 (2020), no. 9,

7416–7422, DOI: https://doi.org/10.1002/mma.6189.

Certain aspects of Nörlund I-statistical convergence of sequences in neutrosophic normed spaces  19

https://doi.org/10.4064/cm-2-3-4-241-244
https://doi.org/10.1016/j.aml.2011.03.036
https://doi.org/10.1016/j.aml.2010.12.022
https://doi.org/10.1016/j.aml.2010.12.022
https://doi.org/10.1016/j.chaos.2009.03.086
https://doi.org/10.2298/FIL1914549M
https://doi.org/10.1016/j.cam.2009.07.005
https://doi.org/10.1016/j.chaos.2008.09.018
https://doi.org/10.2478/s12175-011-0071-9
https://doi.org/10.1002/mma.6973
https://doi.org/10.2478/s12175-011-0059-5
https://doi.org/10.1016/j.amc.2013.03.115
https://doi.org/10.1007/s00500-020-04805-y
https://doi.org/10.1007/s00025-018-0789-6
https://doi.org/10.1007/s13398-018-0591-z
https://doi.org/10.1080/03081079.2019.1608985
https://doi.org/10.1080/03081079.2019.1608985
https://doi.org/10.2306/scienceasia1513-1874.2015.41.289
https://doi.org/10.3233/IFS-141172
https://doi.org/10.3233/IFS-141128
https://doi.org/10.1007/s40096-020-00335-8
https://doi.org/10.1007/s40096-020-00335-8
https://doi.org/10.1007/s41478-020-00234-0
https://doi.org/10.1002/mma.6189


[49] H. Wang, F. Smarandache, Y. Q. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multispace Multistruct. 4
(2010), 410–413.

[50] J. Ye, A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy
Syst. 26 (2014), 2459–2466.

[51] P. Majumdar, Neutrosophic sets and its applications to decision making, Comput. Intell. Big Data Anal. 19 (2015), 97–115,
DOI: https://doi.org/10.1007/978-3-319-16598-1_4.

[52] S. Das, R. Das, and B. C. Tripathy, Multi-criteria group decision making model using single-valued neutrosophic set, Log.
Forum 16 (2020), no. 3, 421–429.

[53] R. Das and B. C. Tripathy, Neutrosophic multiset topological space, Neutrosophic Sets Syst. 35 (2020), 142–152.
[54] R. Das and B. C. Tripathy, Pairwise neutrosophic-b-open set in neutrosophic bitopological spaces, Neutrosophic Sets Syst.

38 (2020), 135–144.
[55] Ö. Kişi, Ideal convergence of sequences in neutrosophic normed spaces, J. Intell. Fuzzy Syst. 41 (2021), no. 2, 2581–2590,

DOI: https://doi.org/10.3233/JIFS-201568.
[56] K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. 28 (1942), no. 12, 535–537.
[57] C. S. Wang, On Nörlund sequence spaces, Tamkang J. Math. 9 (1978), no. 1, 269–274.
[58] G. H. Hardy, Divergent series, Amer. Math. Soc. 334 (2000), 1–400.
[59] O Tuğ and F. Başar, On the spaces of Nörlund null and Nörlund convergent sequences, TWMS J. Pure Appl. Math. 7 (2016),

no. 1, 76–87.
[60] V. A. Khan, S. A. A. Abdullah, and K. M. A. S. Alshlool, A study of Nörlund ideal convergent sequence spaces, Yugosl.

J. Oper. Res. 31 (2021), no. 4, 483–494, DOI: https://doi.org/10.2298/YJOR200716044K.

20  Ömer Kişi et al.

https://doi.org/10.1007/978-3-319-16598-1_4
https://doi.org/10.3233/JIFS-201568
https://doi.org/10.2298/YJOR200716044K

	1 Introduction
	2 Preliminaries
	3 Main results
	4 Conclusion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


