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Abstract: We investigate the existence and nonexistence of nonnegative radial solutions to exterior pro-
blems of the form � ( ) ( ) ( ( )) ( ( ) ( ))+ =

−u q λψ q K r q f r q u qΔ , 0Q2m in B c
1 , under the Dirichlet boundary condi-

tions =u 0 on ∂B1 and ( )( ) =→∞u qlim 0r q . Here, ≥λ 0 is a parameter, �Δ m is the Kohn Laplacian on the

Heisenberg group � �=
+m m2 1, >m 1, = +Q m2 2, B1 is the unit ball in �m, B c

1 is the complement of B1, and

( )
∣ ∣

( )
=ψ q z

r q

2

2 . Namely, under certain conditions on K and f , we show that there exists a critical parameter

( ]∈ ∞
∗λ 0, in the following sense. If ≤ <

∗λ λ0 , the above problem admits a unique nonnegative radial
solution uλ; if < ∞

∗λ and ≥
∗λ λ , the problem admits no nonnegative radial solution. When ≤ <

∗λ λ0 , a
numerical algorithm that converges to uλ is provided and the continuity of uλ with respect to λ, as well as the
behavior of uλ as →

∗−λ λ , are studied. Moreover, sufficient conditions on the the behavior of ( )f t s, as
→ ∞s are obtained, for which = ∞

∗λ or < ∞
∗λ . Our approach is based on partial ordering methods and

fixed point theory in cones.
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1 Introduction

This article is concerned with the study of nonnegative radial solutions to Dirichlet exterior problems of
the form

�

�

⎧

⎨

⎪

⎩
⎪

( ) ( ) ( ( )) ( ( ) ( ))

( )

( )
∣ ∣

+ = ∈

= ∈ ∂

=

−

→∞

u q λψ q K r q f r q u q q B
u q q B

u q

Δ , 0, ,
0, ,

lim 0,

Q c

q

2
1

1

m

m

(1.1)

where ≥λ 0 is a parameter, �Δ m is the Kohn Laplacian on the Heisenberg group � �=
+m m2 1, >m 1,

= +Q m2 2, B1 is the unit ball in �m, i.e.,

� �( ) ( ) ∣ ∣ (∣ ∣ ){ }= = ∈ = = + ≤B q z τ r q q z τ, : 1 ,m
1

4 2m
1
4

B c
1 is the complement of B1, and ( )

∣ ∣

( )
=ψ q z

r q

2

2 . Problem (1.1) is investigated under the following conditions:

(H1) The function [ ] [ ) [ )× ∞ → ∞f : 0, 1 0, 0, is continuous.
(H2) For all [ ]∈t 0, 1 , the function ( ) [ ) [ )⋅ ∞ → ∞f t, : 0, 0, is concave.



* Corresponding author: Mohamed Jleli, Department of Mathematics, College of Science, King Saud University, P.O. Box 2455,
Riyadh, 11451, Saudi Arabia, e-mail: jleli@ksu.edu.sa

Demonstratio Mathematica 2023; 56: 20220193

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/dema-2022-0193
mailto:jleli@ksu.edu.sa


(H3) There exists >σ 0 such that

( ) [ ]≥ ∈f t σ t, 0 , 0, 1 .

(H4) The function [ ) ( )∞ → ∞K : 1, 0, is continuous, and ( )K r r~ μ, as → ∞r , where < −μ Q.

Namely, we show that (1.1) admits a critical value ( ]∈ ∞
∗λ 0, in the following sense:

• For all ≤ <
∗λ λ0 , (1.1) admits a unique nonnegative radial solution uλ (i.e., �( ) ∣( )= ∣u q u qxλ λ m );

• If < ∞
∗λ and ≥

∗λ λ , then (1.1) has no nonnegative radial solution.

When ≤ <
∗λ λ0 , a numerical algorithm that converges to uλ is provided, and the continuity of uλ with

respect to λ as well as the behavior of uλ as →
∗−λ λ are investigated. Moreover, we obtain sufficient

conditions on behavior of ( )f t s, as → ∞s , for which = ∞
∗λ or < ∞

∗λ . Our techniques for proofs are
based on partial ordering methods and fixed point theory in cones.

In the Euclidean case, the existence of positive solutions for problems of type

⎧

⎨

⎪

⎩
⎪

( )

( )

( )
∣ ∣

+ = ∈

= ∈ ∂

=

→∞

u f x u x
u x x

u x

Δ , 0, Ω,
0, Ω,

lim 0,
x

where Ω is an exterior domain of �N , has been investigated by several authors via different approaches as
follows: variational methods (see, e.g., [1–5]), the method of sub- and supersolutions (see, e.g., [6–10]),
index theory and the cone expansion fixed point theorem (see, e.g., [11–15]), and the shooting method (see
e.g. [16,17]).

In the context of the Heisenberg group, the existence of solutions for nonlinear problems involving the
Kohn Laplacian, posed in �m or in a bounded domain of �m, was investigated by several authors via
variational methods (see, e.g., [18–23] and the references therein).

On the other hand, due to the lack of compactness in many nonlinear problems appearing in theory and
applications, which makes the use of topological methods and variational methods so difficult, since the
beginning of the 1980’s, Guo et al. have developed various partial ordering methods for studying nonlinear
problems without using compactness conditions. By using some inequalities related to some ordering, they
have obtained several fixed point results for monotone or mixed monotone operators. For more details, see,
e.g., [11,24–30] and the references therein.

Motivated by the above contributions, the existence of nonnegative radial solutions to problem (1.1) is
investigated via partial ordering methods.

The rest of the article is organized as follows: in Section 2, we briefly recall some notions related to the
Heisenberg group and present our main results; in Section 3, we collect the mathematical tools needed for
the proofs of our results; and finally, the proofs are given in Section 4.

2 Main results

First, let us recall some notions related to the Heisenberg group. For more details, see, e.g., [31].
The Heisenberg group, denoted by �m (m is a positive natural number), is identified to the Euclidean

space � +m2 1 with the group law ∘ defined as follows:

⎜ ⎟
⎛

⎝

( )
⎞

⎠

∑∘ ′ = + ′ + ′ + ′ + ′ − ′

=

q q x x y y τ τ x y yx, , 2 ,
i

n

i i i i
1

where

( ) ( ) ( )

( ) ( ) ( )

= = = … …

′ = ′ ′ = ′ ′ ′ = ′ … ′ ′ … ′ ′

q z τ x y τ x x y y τ
q z τ x y τ x x y y τ

, , , , , , , , , ,
, , , , , , , , , .

m m

m m

1 1

1 1
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In �m, we define the norm

��∣ ∣ (∣ ∣ ) ( )= + = ∈q z τ q z τ, , ,m4 2m
1
4 (2.1)

where ∣ ∣⋅ is the Euclidean norm in � m2 .
For = …i m1, , , consider the vector fields

=

∂

∂

+

∂

∂

=

∂

∂

−

∂

∂

X
x

y
τ

Y
y

x
τ

2 , 2 ,i
i

i i
i

i

and the associated Heisenberg gradient

� ( )∇ = … …X X Y Y, , , , , .m m1 1m

The Kohn Laplacian �Δ m is then the operator defined by

� ( )∑= +

=

X YΔ .
i

m

i i
1

2 2m

Let � ( )∈ ⟼ = …A q Aq A q A q: ,m
m1 2 be a C1 vector field. The Heisenberg divergence of A is defined as

follows:

�� ( ) ( ) ( )∑ ∑= + ∈

= =

+A q X A q Y A q qdiv , .
i

m

i i
i

m

i m i
m

1 1

m

For �( )∈ CΦ m2 , we have

� � �( )∇ =div Φ Δ Φ.m m m

Let u be a radial regular function, i.e., for all �( )= ∈q z τ, m,

( ) ( ( )) ( ) ( ) (∣ ∣ )= = = +u q u r q r q r z τ z τ, , .4 2 1
4

Then,

� ( ) ( )⎛
⎝

( ) ( )⎞
⎠

= ″ +

−

′u q ψ q u r Q
r

u rΔ 1 ,m (2.2)

where = +Q m2 2 and ( )
∣ ∣

( )
=ψ q z

r q

2

2 .

Since we are interested in radial solutions to (1.1), we assume that ( ) ( ( ))=u q u r q and ( ) ( )= =r q r z τ,
(∣ ∣ )+z τ4 2 1

4 , so that (by (2.2)) u solves

⎧

⎨

⎪

⎩
⎪

( ) ( ) ( ) ( ( ))

( )

( )

″ +

−

′ + = >

=

=

−

→∞

u r Q
r

u r λK r f r u r r

u
u r

1 , 0, 1,

1 0,
lim 0.

Q

r

2

(2.3)

Next, after changing variable ( ) ( ) ( )= =
−u r v r v tQ2 , elementary calculations show that (2.3) reduces to

⎧
⎨⎩

( ) ( ) ( ( ))

( ) ( )

″ + = < <

= =

v t λh t f t v t t
v v

, 0, 0 1,
0 1 0,

(2.4)

where

( ) ( )= > < ≤

−

− −h t t K t t0, 0 1.Q
Q Q

2 2
2

1
2

Remark 2.1. Under condition (H4), it holds that (( )) (( ])∈ ∩h L C0, 1 0, 11 .
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Taking in consideration Remark 2.1, by standard arguments, we can show that, if (H1) and (H4) are
satisfied, then for all ≥λ 0, the following statements are equivalent:
(i) ([ ]) (( ))∈ ∩v C C0, 1 0, 1λ

2 is a solution to (2.4).
(ii) ([ ])∈v C 0, 1λ is a solution to the following integral equation:

( ) ( ) ( ) ( ( ))∫= ≤ ≤v t λ G t s h s f s v s s t, , d , 0 1,λ λ

0

1

(2.5)

where

( )
⎧

⎨
⎩

( )

( )
=

− ≤ ≤ ≤

− ≤ ≤ ≤

G t s s t s t
t s t s

, 1 if 0 1,
1 if 0 1.

(2.6)

Our main results are given by the following theorems.

Theorem 2.1. Suppose that conditions (H1)–(H4) are satisfied. The following statements hold:
(I) There exists a critical parameter ( ]∈ ∞

∗λ 0, satisfying:
(a) For all ≤ <

∗λ λ0 , (2.5) admits a unique nonnegative solution ([ ])∈v C 0, 1λ .
(b) If < ∞

∗λ , for all ≥
∗λ λ , (2.5) has no nonnegative continuous solution.

(II) Let ≤ <
∗λ λ0 . Then, the sequence

( )

⎧

⎨

⎪

⎩
⎪

( ) ( ) ( ) ( ( ))
( )

( )

( ) ( )
∫

≡

= ≤ ≤ ≥
≥

−
v

v

v t λ G t s h s f s v s s t n
:

0,

, , d , 0 1, 1λ
n

n

λ

λ
n

λ
n0

0

0

1

1

converges uniformly to vλ, i.e.,

∣ ( ) ( )∣( )
− =

→∞ ≤ ≤

v t v tlim max 0.
n t

λ
n

λ
0 1

(III) For all ≤ <
∗λ λ0 0 ,

∣ ( ) ( )∣− =

→ > ≤ ≤

v t v tlim max 0.
λ λ λ t

λ λ
, 00 10

0

(IV) If ≤ < <
∗λ λ λ0 1 2 , then

( ) ( )≤ ≤ ≤ ≠v t v t t and v v, 0 1, .λ λ λ λ1 2 1 2

(V) ( ) = ∞

→ ≤ ≤
∗−

v tlim max
λ λ t

λ
0 1

.

Theorem 2.2. Suppose that conditions (H1)–(H4) are satisfied.

(I) If ( )
=→∞ ≤ ≤lim sup 0s t

f t s
s0 1
, , then = ∞

∗λ .

(II) If there exist >c S, 0 such that

( ) ≥ ≤ ≤ >f t s cs t s S, , 0 1, ,

then < ∞
∗λ .

Below are some examples of functions f satisfying conditions (H1)–(H3).
• Let

( ) ( ) ∑= + ≤ ≤ ≥

=

f t s a t α s t s, , 0 1, 0,
i

k

i
p

1

i

where ≥k 1, ([ ])∈a C 0, 1 , ( ) >≤ ≤ a tmin 0t0 1 , ≥α 0i , and ≤ ≤p0 1i , for all = …i k1, 2, , . Then, (H1)–(H3)
are satisfied with ( )= ≤ ≤σ a tmin t0 1 .
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• Let

( ) ( ( ) )= + ≤ ≤ ≥f t s a t s t s, arctan , 0 1, 0,

where ([ ])∈a C 0, 1 and ( ) >≤ ≤ a tmin 0t0 1 . Then, (H1)–(H3) are satisfied with ( ( ))= ≤ ≤σ a tarctan min t0 1 .
Note that in this case, we have

( )
=

→∞
≤ ≤

f t s
s

lim sup , 0.
s t0 1

Hence, by Theorem 2.2-(I), = ∞
∗λ .

• Let

( ) ( ( ) )= + + ≤ ≤ ≥f t s a t s s t s, ln , 0 1, 0,

where ([ ])∈a C 0, 1 and ( ) >≤ ≤ a tmin 1t0 1 . Then, (H1)–(H3) are satisfiedwith ( ( ))= ≤ ≤σ a tln min t0 1 . Moreover,
we have

( ) ≥ ≤ ≤ ≥f t s s t s, , 0 1, 0.

Hence, by Theorem 2.2-(II), < ∞
∗λ .

• Let

( )

⎧

⎨

⎪

⎩
⎪

( ) ( )∫
=

− + < ≤ ≥

= ≥

−

f t s
t x a x s x b t s

b t s

,
, d if 0 1, 0,

if 0, 0,

t

α

0

1

where >α b, 0, [ ] [ ) [ )× ∞ → ∞a : 0, 1 0, 0, is continuous, and ( ) [ ) [ )⋅ ∞ → ∞a x, : 0, 0, is concave for
all [ ]∈x 0, 1 . Then, (H1)–(H3) are satisfied with =σ b.

3 Preliminaries

Let ( )‖⋅‖E, be a Banach space over �. We denote by 0E the zero vector in E.

Definition 3.1. Let ⊂� E be a nonempty closed convex subset of E ( { }≠� 0E ). We say that � is a cone in E,
if the following conditions are satisfied:
(i) ∈ �x , ≥ ⇒ ∈ �λ λx0 .
(ii) − ∈ ⇒ =�x x x, 0E.

Moreover, if ≠ ∅�̊ , we say that � is a solid cone.

Let � be a cone in E. We define the partial order ≼ in E by

≼ ⇔ − ∈ ∈�x y y x x y E, for all , .

If ∈x y E, , ≼x y, and ≠x y, we denote ≺x y. If � is solid and for ∈x y E, , − ∈ �y x ˚ , we denote ≪x y.

Definition 3.2. Let � be a cone in E. We say that � is normal, if there exists a constant >k 0 such that for all
∈x y E, ,

≼ ≼ ⇒ ‖ ‖ ≤ ‖ ‖x y x k y0 .E

Clearly, if k exists, then ≥k 1.

Let � be a cone in E and { }∈ �e \ 0E . Let

{ }= ∈ ∃ > − ≼ ≼E x E η ηe x ηe: 0,e

Radial solutions for exterior problems on the Heisenberg group  5



and

{ }‖ ‖ = > − ≼ ≼ ∈x η ηe x ηe x Einf 0 : , .e e

Lemma 3.1. [29] Assume that � is normal. Then
(i) ( )‖⋅‖E ,e e is a Banach space.
(ii) There exists >M 0 such that ‖ ‖ ≤ ‖ ‖x M x e, for all ∈x Ee.
(iii) Let = ∩� � Ee e. Then �e is a normal solid cone in Ee, and

{ } { }= ∈ ∃ > ≽ = ∈ ∃ > > ≼ ≼� x E τ x τe x E η τ τe x ηe˚ : 0, : 0, .e e

(iv) If ∈ �e ˚ (� is solid), then =E Ee and ‖⋅‖ ‖⋅‖~ e.

Definition 3.3. Let D be a nonempty convex subset of E and →A D E: be a given operator. Let � be a cone
in E. We say that A is concave, if

( ( ) ) ( ) ( )+ − ≽ + − ∈ ∈A ηx η y ηAx η Ay η x y D1 1 , 0, 1 , , .

Lemma 3.2. [29] Let � be a normal solid cone and →� �A : be a concave operator satisfying

≪ A0 0 .E E

Then,
(i) there exists < ≤ ∞

∗λ0 such that, for ≤ <
∗λ λ0 , the equation

=u λAu (3.1)

admits a unique solution ∈ �uλ . If < ∞
∗λ , for all ≥

∗λ λ , (3.1) has no solution in �;

(ii) if < <
∗λ λ0 , then, for any ( )

∈ �u 0 , the sequence ( ) ( )
=

−u λAuλ
n

λ
n 1 ( = …n 1, 2, , ( ) ( )

=u uλ
0 0 ) converges to uλ;

(iii) the function [ )∈ ↦ ∈
∗ �u λ λ u: 0, λ• is continuous and strongly increasing, i.e.,

≤ < < ⇒ ≪
∗λ λ λ u u0 .λ λ1 2 1 2

(iv) ‖ ‖ = ∞→
∗− ulimλ λ λ ;

(v) if there exist >λ 00 and ∈ �v0 such that ≽v λ Av0 0 0, then <
∗λ λ0 .

For more details on fixed point theory in cones, see also [11] and the references therein.

Lemma 3.3. Let [ ) [ )∞ → ∞F : 0, 0, be a concave function. Then, F is increasing.

Proof. Let ≤ ≤x y0 , < <η0 1, and = −
− −

y y xη η
η

η
1

1 1 . Then, ≥y xη and ( )= + −y ηx η y1 η. Since F is con-
cave, we obtain

( ) ( ) ( ) ( ) ( )≥ + − ≥F y ηF x η F y ηF x1 .η

Passing to the limit as →
−η 1 , it holds that ( ) ( )≥F y F x . This completes the proof. □

4 Proofs of the main results

4.1 Proof of Theorem 2.1

Let ([ ])=E C 0, 1 be the Banach space equipped with the norm

∣ ( )∣‖ ‖ = ∈

≤ ≤

u u t u Emax , .
t0 1

6  Mohamed Jleli



Let ([ ])=
+P C 0, 1 , i.e.,

{ ([ ]) ( ) }= ∈ ≥ ≤ ≤P u C u t t0, 1 : 0, 0 1 .

Then, P is a normal solid cone with

{ ([ ]) ( ) }= ∈ > ≤ ≤P u C u t t˚ 0, 1 : 0, 0 1 . (4.1)

Let ≼ be the partial order in E induced by P, i.e.,

( ) ( )≼ ⇔ ≤ ≤ ≤ ∈u v u t v t t u v E, 0 1, for all , .

Let us introduce the operator →A P P: defined as follows:

( )( ) ( ) ( ) ( ( ))∫= ≤ ≤ ∈Av t G t s h s f s v s s t v P, , d , 0 1, .
0

1

Note that form (H1)–(H4), it is not difficult to show that ( ) ⊂A P P. Moreover, from (H2), it follows that A is a
concave operator (with respect to the partial order ≼). Then, in order to apply Lemma 3.2, we have to check
whether ≪ A0 0E E, where 0E is the zero function in [ ]0, 1 . Unfortunately, it is not the case. Namely, we have

( )( ) ( ) ( ) ( )∫= ≤ ≤A t G t s h s f s s t0 , , 0 d , 0 1.E

0

1

Hence, by (2.6),

( )( ) =A0 0 0,E

which implies by (4.1) that ∉A P0 ˚E . Hence, to overcome this difficulty, we have to find an adequate, solid
normal cone ⊂� P such that ( ) ⊂� �A and ≪ A0 0E E. Let

( ) ( ) ( )∫= ≤ ≤e t G t s h s s t, d , 0 1.
0

1

We can show easily that ∈e P and ≠e 0E. Let

{ ([ ]) ( ) ( ) ( ) }= ∈ ∃ > − ≤ ≤ ≤ ≤E u C η ηe t u t ηe t t0, 1 : 0, , 0 1e

and

{ ( ) ( ) ( ) }‖ ‖ = > − ≤ ≤ ≤ ≤ ∈u η ηe t u t ηe t t u Einf 0 : , 0 1 , .e e

Let = ∩� P Ee, i.e.,

{ ([ ]) ( ) ( ) }= ∈ ∃ > ≤ ≤ ≤ ≤� u C η u t ηe t t0, 1 : 0, 0 , 0 1 .

From Lemma 3.1, we know that ( )‖⋅‖E ,e e is a Banach space and � is a normal solid cone in Ee with

{ ( ) ( ) }= ∈ ∃ > ≥ ≤ ≤� u E τ u t τe t t˚ : 0, , 0 1 .e (4.2)

We claim that

( ) ⊂ �A P . (4.3)

Let ∈u P. We have

( )( ) ( ) ( ) ( ( ))∫= ≤ ≤t G t s h s f s u s s tAu , , d , 0 1.
0

1

Since ( ( ))↦s f s u s, is continuous and nonnegative in [ ]0, 1 (by (H1)), then

( ( ))≤ = < ∞

≤ ≤

M f s u s0 max , .
s0 1

Radial solutions for exterior problems on the Heisenberg group  7



Moreover, since ( ) [ ) [ )⋅ ∞ → ∞f s, : 0, 0, is concave (by (H2)), then by Lemma 3.3, ( )⋅f s, is increasing.
Hence, by (H3), for all ≤ ≤s0 1,

( ) ( ( ))< ≤ ≤ ≤σ f s f s u s M0 , 0 , ,

which yields

< < ∞M0 .

Next, we deduce that

( )( ) ( ) ( ) ( )∫≤ ≤ = ≤ ≤t M G t s h s s Me t t0 Au , d , 0 1,
0

1

which proves (4.3). Hence (since ⊂� P), →� �A : is well-defined. Moreover, for all ≤ ≤t0 1, it follows
from (H4) that

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ∫ ∫= = ≥ =A t A t G t s h s f s s σ G t s h s s σe t0 0 , , 0 d , d ,E E

0

1

0

1

e

which yields by (4.2) ∈ �A0 ˚Ee , i.e.,

≪ A0 0 .E Ee e

Now, all the assumptions of Lemma 3.2 are satisfied for the operator →� �A : . Then, by Lemma 3.2-(i), we
deduce the existence of ( ]∈ ∞

∗λ 0, satisfying the following conditions:
(a) for all ≤ <

∗λ λ0 , (2.5) admits a unique solution vλ in �;
(b) if < ∞

∗λ , for all ≥
∗λ λ , then (2.5) has no solution in �.

Note that the above results were obtained in �. We claim that the following statements are equivalent:
(A) vλ is a solution to (2.5) in �.
(B) vλ is a solution to (2.5) in P (i.e., vλ is a nonnegative continuous solution in [ ]0, 1 ).

Observe that (A) ⇒ (B) is immediate since ⊂� P . So, we have to show only that (B) ⇒ (A). Let us suppose
that vλ is a solution to (2.5) in P. Then, by (4.3), = ∈ ⊂� �v λAv λλ λ (since ≥λ 0 and � is a cone). Hence, the
equivalence between (A) and (B) is proved. Therefore, part (I) of Theorem 2.1 follows from (a), (b), and (A)⇔
(B). Part (II) of Theorem 2.1 follows from Lemma 3.2-(ii) with ( )

=u 0E
0 . Part (III) of Theorem 2.1 follows from

Lemma 3.2-(iii) (namely, form the continuity of the function [ )∈ ↦ ∈
∗ �u λ λ u: 0, λ• ). Again, by Lemma

3.2-(iii), if ≤ < <
∗λ λ λ0 1 2 , then − ∈ �v v ˚λ λ2 1 , i.e., (by (4.2)), there exists >τ 0 such that

( ) ( ) ( )− ≥ ≤ ≤v t v t τe t t, 0 1.λ λ2 1

Since ∈e P and ≠e 0E, it holds that ( ) ( )≥v t v tλ λ2 1 , for all ≤ ≤t0 1, and ≠v vλ λ2 1. This proves part (IV) of
Theorem 2.1. Finally, part (V) of Theorem 2.1 follows from Lemma 3.2-(iv).

4.2 Proof of Theorem 2.2

We continue to use the notations introduced in the proof of Theorem 2.1.
(I) Suppose that

( )
=

→∞
≤ ≤

f t s
s

lim sup , 0.
s t0 1

Then, for any >λ 0, we can take ρ sufficiently large such that

( ) ( )≤ ≤ ≤
−f t ρ λH ρ t, , 0 1,1 (4.4)

8  Mohamed Jleli



where (( ))= ‖ ‖ >H h 0L
1
4 0,11 . On the other hand, it is not difficult to show that

( ) ≤ ≤ ≤e t H t, 0 1. (4.5)

Let

( ) ( )= ≤ ≤
−μ t H ρe t t, 0 1.1

Then, ∈ �μ . Using (4.4), (4.5), and the fact that ( ) [ ) [ )⋅ ∞ → ∞f s, : 0, 0, is an increasing function, we
obtain

( )( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ))

( ) ( ) ( )

( ) ( ) ( )

( )

( )

∫

∫

∫

∫

=

=

≤

≤

=

=

−

−

−

λ Aμ t λ G t s h s f s μ s s

λ G t s h s f s H ρe s s

λ G t s h s f s ρ s

λ λH ρ G t s h s s

H ρe t
μ t

, , d

, , d

, , d

, d

,

0

1

0

1

1

0

1

1

0

1

1

for all ≤ ≤t0 1, which yields ≼λAμ μ. Hence, by Lemma 3.2-(v), it holds that ≤
∗λ λ . Therefore, since >λ 0

is arbitrary, we deduce that = ∞
∗λ . This proves part (I) of Theorem 2.2.

(II) Suppose that there exist >c S, 0 such that

( ) ≥ ≤ ≤ >f t s cs t s S, , 0 1, . (4.6)

We claim that there exists >ν 0 such that

( )
≤ ≤ ≤ ≤ ≥

s
f t s

ν t s0
,

, 0 1, 0. (4.7)

Note that from (H3) and the fact that ( ) [ ) [ )⋅ ∞ → ∞f t, : 0, 0, is an increasing function, we have

( ) ( )≥ ≥ > ≤ ≤ ≥f t s f t σ t s, , 0 0, 0 1, 0.

Then,

( )
≤ ≤ ≤ ≤ ≤ ≤ ≤

s
f t s

s
σ

S
σ

t s S0
,

, 0 1, 0 . (4.8)

Hence, it follows from (4.6) and (4.8) that

( ) { }≤ ≤ ≤ ≤ ≥

s
f t s c

S
σ

t s0
,

max 1 , , 0 1, 0.

Therefore, (4.7) is proved with { }= >ν max , 0c
S
σ

1 . Consider now the boundary value problem

⎧

⎨
⎩

( ) ( ) ( ( ))

( ) ( )

− ″ = < <

= =

u t γh t F t u t t
u u

, , 0 1,
0 1 0,

(4.9)

where >γ 0 is a parameter and

( ) = + ≤ ≤ ≥F t s s t s, 1, 0 1, 0.
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We can show easily that F satisfies (H1)–(H3). Then, by Theorem 2.1, there exists a critical value ( ]∈ ∞
∗γ 0,

such that (4.9) admits a unique solution ≥u 0γ , for all < <
∗γ γ0 . Let < <

∗γ γ0 0 be fixed and = ≥u u 0γ0 be
the corresponding unique solution to (4.9). Let < <

∗λ λ0 and ([ ])∈v C 0, 1λ be the unique solution to (2.5).
Then, vλ solves the boundary value problem (2.4). Multiplying the first equation in (2.4) by u and integrating
over ( )0, 1 , we obtain

( ) ( ) ( ) ( ( )) ( )∫ ∫− ″ =v t u t t λ h t f t v t u t td , d .λ λ

0

1

0

1

Integrating by parts, it holds that

( ) ( ) ( ) ( ( )) ( )∫ ∫− ″ =v t u t t λ h t f t v t u t td , d .λ λ

0

1

0

1

Hence, by (4.9), we obtain

( )( ( ) ) ( ) ( ) ( ( )) ( )∫ ∫+ =γ h t u t v t t λ h t f t v t u t t1 d , d ,λ λ0

0

1

0

1

which yields

( )[ ( ( ) ) ( ) ( ( )) ( )]∫ + − =h t γ u t v t λf t v t u t1 , 0.λ λ

0

1

0 (4.10)

We claim that there exists < <t0 10 such that

( ( ) ) ( ) ( ( )) ( )+ − =γ u t v t λf t v t u t1 , 0.λ λ0 0 0 0 0 0 (4.11)

Suppose that, for all < <t0 1,

( ( ) ) ( ) ( ( )) ( )+ − ≠γ u t v t λf t v t u t1 , 0.λ λ0

Then, by continuity, we deduce that

( ( ) ) ( ) ( ( )) ( )+ − > < <γ u t v t λf t v t u t t1 , 0, 0 1λ λ0

or

( ( ) ) ( ) ( ( )) ( )+ − < < <γ u t v t λf t v t u t t1 , 0, 0 1.λ λ0

Since (( ])∈h C 0, 1 , in both cases, we deduce by (4.10) that ( ) =h t 0, for all < ≤t0 1, which contradicts the
fact that ( ) >h t 0, for all < ≤t0 1. Therefore, (4.11) holds. On the other hand,

( ) ( ) ( ) ( ( )) ( ) ( ) ( )∫ ∫= ≥ = >u t γ G t s h s F s u s s γ G t s h s s γ e t, , d , d 0.0 0

0

1

0 0

0

1

0 0 0

Hence, by (4.11), we obtain

⎜ ⎟
⎛

⎝

( ( ) )

( )
⎞

⎠

( )

( ( ))
=

+

λ
γ u t

u t
v t

f t v t
1

,
.λ

λ

0 0

0

0

0 0

Next, using (4.7), we deduce that

( ( ) )

( )
≤

+

λ
νγ u t

u t
1

.0 0

0

Since λ is arbitrary, it holds that
( ( ) )

( )
≤ < ∞

∗
+λ νγ u t

u t
10 0

0
. This proves part (II) of Theorem 2.2.
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