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solvability of an infinite system of weighted fractional integral equations of a function with respect to
another function is studied. Also, with the help of a proper example, we illustrate our findings.

Keywords: fixed point, measure of noncompactness, integral equation

MSC 2020: 35K90, 47H10

1 Introduction

Fractional integral equations (FIEs) are extremely important in real-world problems. Because of the rele-
vance of fractional order integral equations (IEs), it has become necessary to understand them. The idea of
measure of noncompactness (MNC) plays a vital role in fixed point theory. The notion of MNC was initially
created by Kuratowski, according to [1]. Darbo established a result demonstrating the presence of the fixed
point for a condensing operator [2] in 1955, employing the idea of MNC. Fixed point theory and MNC have
numerous applications in the study of various IEs that arise in a variety of real-world problems (see [3,4]).

Nashine et al. [5] have discussed fixed-point theorems (FPTs) for a new contraction condition in
partially ordered Banach spaces and also discussed an application to the existence of a local FIE. Nashine
et al. [6-8] also with the help of new contraction operators established new FPTs and applied them on
fractional dynamic systems, fractional Cauchy problem etc.

This theory has proven to be extremely useful in determining the solvability of a wide range of differ-
ential equations and IEs (e.g., [3,9]). The goal of this article is to derive certain generalizations of Darbo’s
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fixed point theorem (DFPT) and use them to determine if an infinite system of weighted fractional integral
equations (WFIEs) of a map w.r.t. another map is solvable.

Let H be a real Banach space with the norm ||-|.. In H, suppose that B(6,r) ={t € H : [t - 0] < r}.IfQ
be a nonempty subset of , then by Q and the ConvQ we denote the closure and convex closure of Q.
Moreover, let B4 be the collection of all nonempty and bounded subsets of H and 914 be its sub-collection
made up of all relatively compact sets.

[10] provides the following definition of MNC:

Definition 1.1. A map u : B4 — [0, co) will be an MNC in H if:
(i) pu(E) = 0 deduces L is relatively compact for all £ € By,.
(ii) ker y ={k € By : u(k) = 0} # @ and ker yu c Ny,.
(iii) £ ck; = uE) < uky).
(iv) u(E) = u(k) = u(Convk).
(v) u(6k + 1 - 6)L) < duk) + (1 - &)u(k) for all 6 € [0, 1].
(vi) B4 has the closed decreasing limit infinite intersection property, i.e., the intersection over any infinite
closed decreasing subcollection of B4, is non-empty, where lim;_,,u(E;) = 0.

keru is called the kernel of measure p. The set Lo, = (52} € kery, as u(to,) < u(k;) for any j, so, we
conclude that u(t.,) = 0.

1.1 MNC on tempered sequence space

The tempering sequence and the space of tempered sequences were introduced as follows by Bana$ and
Krajewska [11].

A fix positive nonincreasing real sequence a = (a;)i%; is called a tempering sequence.

Rabbani et al. [12] recently developed the set [], which includes any real or complex sequence
© = (P2 so that Y af |g,lP < co, (1 <p < o0). It is self-evident that || forms a linear space over R (or
C), which we label it as [] := {{g, for1 <p < co.

Evidently, €}, for 1 < p < co is a Banach space with the norm
oo »

lglles = (zaip |@i|p) .
i=1
Choosing a; = 1 for alli € N, then ¢}, = ¢, for, 1 < p < co.
The Hausdorff MNC X for a nonempty bounded set B® of ¢}, (1 < p < 0o) can be given by (see [12]),

=

Xes(B%) = lim sup(Zaﬂpk |P) : 5

n—oo (JEB“ k>n
Let C(J, €) be the space of all continuous maps on J = [0, a], a > 0 with the value in £},(1 < p < c0). It
is also a Banach space with the norm
lollcw.ey = sup lp®le.
ted
where @(t) = ()% € C(J, £3).

Let E* be a nonempty bounded subset of C(J, ¢;,) and E*(t) = {p(t) : g € E*}, forallt € J. Thus, the MNC
for E* c C(J, ¢3) can be defined by

XC(JJ,z;)(Ea) = SUPXeg(Ea(l‘))-
teld
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1.2 Some important theorems and definitions
The following are some key theorems to remember:

Theorem 1.2. (Schauder [13]) Let E be a nonempty, bounded, closed, and convex subset (NBCC) of the Banach
space H . There is at least one fixed point for each compact continuous map G : £ — E.

Theorem 1.3. (Darbo [2]) Let £ be an NBCC subset of a Banach Space H . Let S : £ — E be a continuous
mapping and there is a constant g € [0, 1) such that

U(SEB) < pu(B),
for all B ¢ L. Then S possesses a fixed point.

The following related notions are needed to establish an extension of DFPT:

Definition 1.4. [3] Let 2 be the collection of all maps A : R, x R, — R, satisfying:
(1) maxih, p} < A(h, p) forall h, p > 0,

(2) A is continuous and nondecreasing,

(3) Al + hy, p, + p,) < A, ) + Al ).

As an example, let A(h, p) =k + p.

Definition 1.5. [14] Let T : W ¢ H — H anda : B4 : —[0, co) be given mappings. T is called a-admissible
provided that
a(f) 21 = a(ConvTE) =1,

where £ C W and £, TE € Bg.

As an example, we can choose T = I, the identity mapping and = R, also let
(1) al(a) =29, a =0,
2) a(a) =k, k=>1.

Denote by @ the class of all maps X : [0, c0) — [0, co) such that lim,_,,X(a,) = 0 if lim,_,a, = 0 where
{a,} is a nonnegative sequence.
As an example, let
1) X(t) =t
(2) R(t) = 2.

Let X € @, and let % : [0, 00) — [0, co) satisfying:
(1) A is a continuous map with A(t) = 0 if and only if t = 0.
(2) lim,_,R(a,) < k(a) if lim,_,.a, = a > 0.

The above class of all such maps is denoted by Wk.
As an example, let

(1) A(t) = 2t2,
(2) A(t) = 3t3.

2 Fixed point results

In this section, we collect some fixed point results that will aid us in the next section.
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Theorem 2.1. Let £ be an NBCC subset of a Banach space H . Also, let K : £ — L be a continuous mapping
which is a-admissible with a(L) > 1. Also,

a(ER[AU(KE), y(U(KE)))] < RIAW(E), y(UE))] )

for all nonempty £ < L, where u is an arbitrary MNC, A € 2, X € ® and h € Y. Also, assume that
y : R, — R, is an increasing and continuous mapping. Then K possesses at least one fixed point in L.

Proof. Consider the sequence { £}, with £; = L and L, = Conv(K L) forall p € N. Also, KLy = KL € L =
Ly, L£; = Conv(KLy) < L = L. Continuing in the similar manner gives £; 2 £,2 £32 ... 2 L2 Ly 2 ...
On the other hand, as K is a-admissible and a(£) > 1, so, a(£,) = a(ConvK.Ly) > 1.
Using mathematical induction, we obtain a(L,) > 1for all p > 1.
Now, forall p € N,

AAU(Lp+1), yU(Lp+)))] = AIA U(ConvK Ly), y(u(ConvK.Ly)))]
= A[AUK L), yU(KL))]
< a(LAA WKL), y UK L))
< RIAQLY), yp(L)].
If there exists po € N satisfying u(Lp,) = 0, then £, is a compact set. In this case, the Schauder’s FPT
implies K has a fixed point in L.
Now, let u(Lp) > 0, for all p € N. Since u(Lp.1) < u(Ly), for all p € N, consequently, there exists > 0
such that lim,_,u(L,) = L.

If I = 0, then K has a fixed point.
If 1 > 0 when p — oo we obtain that

(AL y(D)) < XA y(D)) < (AL yD)),
which is a contradiction. Consequently, | = 0, i.e., limp,_,ou(Lp) = 0.

Since £, 2 Ly1, by Definition 1.1, we obtain L, = (1;2;£p is an NBCC subset of £ and L, is T
invariant. Thus, according to theorem 1.2, K admits a fixed point in L. O
Corollary 2.2. For a(£) = 2%, a > 0; A(t) = 2t%; R(t) = t> and A(x,y) = x + y condition (2) reduces to

29 U(KE) + yW(KE)))? < (U(E) + y(u(£)))2.
Fora(£) = K, K = 1; k(t) = 3t3; R(t) = t3 and A(x, y) = x + y condition (2) reduces to

3K(U(KE) + y(U(KED)) < (U(E) + y(u(E))).
Theorem 2.3. Let L be an NBCC subset of a Banach space H. Also, let K : L — L be a continuous and
a-admissible mapping with a(L) > 1. Also,

a(E)A[U(KE) + y(UKE))] < R[u(E) + y(u£))] €)
for all nonempty £ ¢ L, where u is an arbitrary MNC, X € ® and h € Y. Also, let y : R, - R, be an
increasing and continuous mapping. Then K possesses at least one fixed point in L.
Proof. The result follows by taking A(%, ) = i + p in Theorem 2.1. O
Theorem 2.4. Let L be an NBCC subset of a Banach space H. Also, let K : L — L be a continuous mapping

and

A U(KE), y(UKE)] < RIAE), y(U(E)))] %)

for all nonempty £ ¢ L, where u is an arbitrary MNC, A € A, X € @, and h € Wy. Also, lety : R, —» R, be
increasing and continuous. Then K admits at least one fixed point in L.



DE GRUYTER Existence of a solution to an infinite system... = 5

Proof. The result follows by taking a(£) = 1 in Theorem 2.1. O

Remark 1. In Theorem 2.4, let A(a,b)=a+ b, y(t) =0, h(t) =t and N(t) = kt for all t > 0 where
k € [0, 1). So,

UKE) < ku(£).

So, we obtain the DFPT. Hence, our results generalize the DFPT.

Definition 2.5. [15] An element (p,q) € Q x Q is called a coupled fixed point (CFP) of a mapping
K:Q@xQ - Qif K(p,q) =pand K(g, p) = q.

Theorem 2.6. [10] Suppose that w, be an MNC in ‘H;, w, be an MNC in H,,... and w, be an MNC in ‘H.,.
Moreover, let the map A : RT — R be convex and A(g,;, ¢, ...,5,) =0 ifand only if =0 for1=1,2,...,n.
Then w(Q) = A(w1(Q), W (Q>), ...,wn(Qy)) defines an MNC in H; x H, x---x Hy,, where Q; denotes the
natural projection of Q into ‘H, forl=1,2,..., n.

Example 1. [10] Let w be an MNC on H. Define A(p, q) = p + q, p, q € R,. Then 2 has all the properties
mentioned in Theorem 2.6. Hence, w™(Q) = w(Q;) + w(Q,) is an MNC in the space H x H, where
Q;, 1 =1, 2 denote the natural projections of Q.

Theorem 2.7. Let £ be an NBCC subset of a Banach space H, K : L x L — L be a continuous mapping
such that

A[A (U(K(Q1 x Q2)), y(U(K(Q1 x Q)] < %N[A(H(Ql) + U(Q2), y(u(Q1) + H(Q2))]

for any nonempty Q,, Q, < L, where u be an arbitrary MNC and A € 2. Also, let y : R, —» R, be an
increasing and continuous mapping, y(h + ) < y(h) + y(p) and h(h + ) < h(h) + h(p). Then ‘K has at least
one CFPin L x L.

Proof. We observe that uf(Q) = u(Q,) + u(Q,) is an MNC on H x H for any bounded subset Q ¢ H x H,
where @, Q, denote the natural projection of Q.

Consider a mapping K : £ x £ — £ x £ by Ku, v) = (K(u, v), K(v, u)).
It is trivial that K is continuous. Let Q ¢ £ x £. We obtain

AIA UK EQ)), yu (K@)

< AAQEE(K@ x Q2)), YU (K(Q: x @))))]

A[A(U(K(Q1 x Q2)) + H(K(Q2 x Q), y(U(K(Q1 x Q7)) + u(K(Q2 x Q)]
AA (UK(Q1 x Q2) + W(K(Q2 x Q1)), y(U(K(Q1 x Q2))) + Y(U(K(Q, x Q1)))]
A[A(UK(Q1 x Q2), y(U(K(Q1 x Q)] + A[AUK(Q2 x Q1), y(U(K(Q2 x Q)))]
RIA@Q) + u@Q2), y((@Q1) + u@)))]
RIA@(Q), yu (@)1
By Theorem 2.1, we conclude that K <f admits at least one fixed point in £ x £, i.e., K has at least one
CFP. O

IN NN

Corollary 2.8. For h(t) = 2t%; X(t) = t? and A(x, y) = X + y the condition in Theorem 2.7 reduces to
1
(MK (@Q1 x Q) + y(U(K(Q1 x Q))))* < Z(,M(Ql) + H(Q) + y(up(@Q) + (@)

For h(t) = 3t3;R(t) = t3 and A(x, y) = x + y the condition in Theorem 2.7 reduces to

MK (@1 x Q) + y(U(K(@Q; x QY)))) < %(V(Ql) + u(@Q)) + y(uu@Qy) + u@))))>.
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3 Solvability of an infinite system of WFIEs of a map w.r.t.
another map

Let w(h) + 0, wl(h) = ﬁ and g be a strictly increasing differentiable map.

The weighted fractional integral of a continuous map f on[a, c0), (a € R) w.r.t. another map g of order
a has been introduced by Jarad et al. in [16],

1T wogOF®

winr@ ) g gy 470 e

T )(h) =

In this part, the existence of a solution for the following FIE shall be investigated:

h
1 [ WO OHh 6, 2(0)

zulh) = Kol 1 200, — s ARGOREOR

tl, neN, 5)

where O<a<1, held=1[a,T], T>0, a=0, z(h) = (z,(h)s2; € H and H is a tempered sequence
space.

Consider the following assumptions:
(1) The map K, : J x C(J, €5) x R — R is continuous and

|Kn(h, z(R), 1) = Ku(h, Z2(R), m)IP < Rp(R)|zn(h) — Zu(R)|P + Bu(R)|l — m|P
for all z(h) = (z,(W))521, Z2(R) = (Zp(A))neq € C(J, 22) and Xy, i, : J — R, are continuous maps for all

nenN.
Also,

Zarfj |Kn(h, ZO’ O)lp
n=1

converges to zero for all & € J, where z° = (z2(h)X, € C(J, ¢}) such that z2(h) = 0 for all 2 € J and for
alln e N,
(2) Hy: ) xJ x C(,¢,) — R (neN) is continuous and there exists

Hy = sup{|Hy(h, t, 2(0)] : b, t € J52() € CU, €D}
Also,

Q= z [X,{)an

n>k

suprenQi = 0 and limy_,,Qx = O.
3) g:J > R,and w:J — R are C! and nondecreasing. Also, let

O<l<s|wh)| <L

forallf e .
(4) Define an operator K from J x C(J, €},) to C(J, £},) as follows:

(h, z(h)) — (Kz)(h),

where

1 w©g OHM, t, 2(0)

T = Kl B 2, s )" e - g0

n=1
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(5) Let

sup Ry(h) = Ry,
hel)

~ ~ ~ 1
sSupX, = N, 0< 21-5R7 < 1.

neN

Also, forallh € J,

Y aPR(h) < h.

nx=1
Let Bp’a,f ={z e CQJ, 62) : ”Z”C(_[],(‘;) < f}
Theorem 3.1. Under hypotheses (1)—(5), equation (5) has at least one solution in C(J, E‘;‘,) where p > 1.

Proof. For arbitrary fixed i € J,

p

h
1 (WO OH®h t, 2(0)
wiz =Y a? | K| h, 2z, dt
Izl = 2. 20, @ ANCOREOR

p

h
-1 1 w()g' (OHa(h, t, 2(1) . | .
<P glanp K| h, z(h), W L@ a &) - g dt | - Ku(h, z°(R), 0)

+ 2071 af [Kn(h, 2°(h), O))P
nx=1
p

h
<20 Taf| KWz + )|~ [HEEDILELD
nx>1 a
A h P
21 Y afBlLr g'(t)
Pr(pr o " ) (8(n) - )
2" th(g(T) ~ g(a)P*LP S it
IPT(a)Pa? Z

27 Y(g(T) — g(a)P"LPQ
IPT(a)Pa? )

< ZP‘ll:zllz(h)llfg +

< 2P‘1&||z(h)||f; +

< 2v*1&||z(h)||f; +

Therefore,

» _ 27 h(E(T) - g(@)™LrQ

1- 21’"1&)||Z(h)“z‘; = IPT(a)PaP?

which implies

g, < 2-HED — (@)L

v < - = 7P (say).
G = T IN@Par( - 22-1R) (say)

Hence, |Izllce,e) < r.
Let K : J x By o7 — Bp,4 be an operator given by
h [ee]
1 (WO O (R t,20)
w(ml@) ) (g(h) - gy

(Kz)(h) = | K| 2, 2(R), = (Kn2)(n))pl1s

n=1

where z(h) € By 47 and 7 € J.
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By assumption (4),
Y (K2)(h)

nx1

is finite and unique. Hence, (KXz)(h) € C(J, £3).
Again,

1Kzl e < 7.
So, K is a self-mapping on By, 4 ;.

Let Z(h) = (Zu(1))32; € Bp,o7 and € > 0 such that ||z - Zlcq,e) < i = 6.
Again for arbitrary fixed & € J,

[(Knz)(R) — (Kn2)(R)IP

p
1 W(t)g ()Hn(h, t, Z(t)) . 1 W(t)g ()Hn(h, t, Z(t))
= n s Z, t Kn h zZ, t
w(h)F(a) (g(h) — g(O)* (h)F(a) (g(h) — g(t)*
h p
e LPR(R) | ( 8'(OIHa(h, t, 2(t)) — Ha(h, t, Z(1))|

< N~ 2+ ok D) [ SR I i B oy

As H, is continuous for all n € N, so, for ||z — Z||C(J] ea) we have
ol 2(0) Bl 6200 < allfee
2vh"(g(T) - g(a))“L

foralln e N,

Therefore,

~ p
_ A _ hLP all(a)e (g(T) - gla)*
Y af [(Kuz)(h) - (K2)DIP <R Y af |z4(h) - Zu(W)P +
PP | 2bibg(r) - glaper,
~ ep
< XN|z - Z"g(ﬂ,e,",) + 5
~ EP ep _ b,
2R 2

— P . .
Therefore, |Kz — ‘Kzllc(ﬂ ) < P, when |z - zllé’(Jl gy < ;—N Hence, K is continuous on B, 4 ;.
Ep:

Finally,

1
p\p

h
[ wOgOHh, 1 20)
KB = I 1 2O i@ ) el - sty -

A(g(T) - g(a)PLPRY ]}

IP’T(a)PaP

< lim sup {21"1 Za{l& Iz (WP +

N=00z€Bp,a, k=n

A(g(T) - g(a)PeLPQ, }

=2-5lim sup {R ¥ a? |z(B)P
»lim sup { af lzadmlP + IPT(@)Pa?

N—0C0zeBp,at k>n
i.e.,

A1
X@“p(WBp,a,f) < 23R X (’,“ (Bp a, 7).
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Therefore,

Al

Xco, e“)((KBp of) < 27 PR, Xca, e“)(Bp i)

Thus, assumption (5) and Corollary 1 yield that K possesses one fixed point in By 47 € C(J, £3). Hence,
system (5) possesses one solution in C(J, £3). O

Example 2. Let

h

() = zn(H) t3 cos(z,(t)) ar, ¢
Zn(h) 6n? + h HZF( ),!.(hl; _ t“)%(t +n?) t (6)

where h e ) =[1,2] andn € N,
Here,

Ku(h, 2(h), Iz(h))) = Zn(h) , ety

+h n?
cos(zn(t))
Hy(h, t, (1)) = e’
[ £ cos(z(®)
1z (hY) = cos(z,
(z(h)) T( %) _[ (h4 _ tl‘)%(t + le)

gy =hh, wit) =1, a=~, ay= 2,
2 n

and

Let z(h) € €}, for some fixed & € J. Then

dt

1| z(R) . 4 } t3 cos(z,(t))

P |K(h, z(R), z())IP =
Z(xn |Kn(h, z(R), 1(z(R)))] z n? | 6n2+h nzr(%) 4 (h4 _ t4)%(t+ nZ)

nx1 n>1
h p

2p- 1 or-1 1 4¢3dt
<— v |zZn(WIP + — Z 2V T
[ F(E)p =17 1 (h* - t*)2

p 2124 — 1)} 1
<2+ ZE Ly Lo,
7 ’ F(E)p n>1 n

as both Zn>1 — and Zn>1 —p are convergent for p > 1.
Therefore, for fixed i € J,

{Ku(h, z(h), iz}, € €5,
i.e.,
{Kn(h, z(h), lz(M))}2, € CA, €5).

It is obvious that K}, is continuous for all n € N and

[Kn(h, 2(R), I(z(R))) — Kn(h, Z(R), IZ(M))|P = 7, @) = 2(h)) + %(I(Z(h)) - 1z(w)) ’

< P IZn(h) - ZmP + —- Il(Z(h)) - 1zm)IP.
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Here, both X, and B, are continuous maps for all n € N and

)N )
Nn(h) = 6Pn2p’ Nn = 6Pn2p’ N = —6p
and
zp_l 00 0 4p-1 00 1
_ p - — -1y
Bl) =~ YafR() = Y~ =271 — < oo,
n=1 n=1 n=1
Also,

[o0)
Y af |Kn(h, 2°, 0)|P = 0
n=1
and 21587 = 21 . 215 . 67, fe., 0 < 2V 3RP < 1.
The map g(#) = h* is C! and nondecreasing.
Again, H, is continuous for all n € N and

|Hn(h, t, z())] =

t + n?

and

which gives Q; = ankﬁ < oo and limy_,,,Qx = 0.

Thus, all the assumptions (1)-(5) of Theorem 3.1 are satisfied. Hence, system (6) has a solution
in C(J, ¢€3).
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