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Abstract: In this work, we present a new proximal gradient algorithm based on Tseng’s extragradient
method and an inertial technique to solve the convex minimization problem in real Hilbert spaces.
Using the stepsize rules, the selection of the Lipschitz constant of the gradient of functions is avoided.
We then prove the weak convergence theorem and present the numerical experiments for image recovery.
The comparative results show that the proposed algorithm has better efficiency than other methods.
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1 Introduction and preliminaries

The forward-backward splitting (FBS) algorithm [1,2] was proposed for solving the convex minimization
problem (MNP) of two objective functions in a real Hilbert space H. It is modeled as the following form:

min{f(k) + g(k) : k € H}, (1.1)

where f: H — (—o00, +oo]and g : H — R are two proper lower semicontinuous convex functions such that
f is differentiable on H. The FBS generates an iterative sequence k® ¢ H and

K+l = Proxy,e (kn - Aan(kn)),

backward step forward step

(1.2)

where A, > 0, prox; ¢ = (I + A,0g)7! is the proximal operator of g, and Vf is the gradient of f. The proximal
operator is single-valued with full domain, and it is characterized by the relations
k — prox,g(k
pf/lg() € ag(proxAg(k))’ (1.3)
forall k € H and A > 0. The subdifferential of g is the set-valued operator dg : H — 2, which is defined by
og(k) ={u e Higx) —glk) > {(u,x - k), x € H}.
The elements in dg(k) are called the subgradient of g at k. The FBS includes, as a special case, the proximal
point algorithm [3-9] and the gradient method [10-12]. Due to its wide applications, there have been
modifications of (1.2) invented in the literature [13-16].
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In 2000, Tseng [17] introduced the forward—-backward-forward splitting (FBFS) algorithm, also known
as Tseng’s extragradient algorithm or Tseng’s method. FBFS is generated by k® ¢ H and

k"1 = Prox,g(k" - anVf (k") — au(VF( proxag(k" - aVF (k™)) - VF(k"),

where (a,) is a real positive sequence. In 2005, Combettes and Wajs [1] proposed the relaxed version of FBS
(FBS-CW), which is generated by k° = k' € H, € € (0, min{1, 1/L}), and

kel = g 4 An(Proxqg(k™ — a,VF (k™) — k™), (1.4)

where A, € [g, 1], a, € [e, (2/L) - €], and L is the Lipschitz constant of Vf.

To improve the convergence of the algorithm, a popular technique is using inertial-type methods. For
other inertial methods, we refer to [18-23]. In this work, we consider the inertial forward—backward method
[18,24] (IFB), which is generated by k® = k! ¢ H and

X" = k" + O(k™ - k1), k™ = proxe,g(x™ — a,Vf (x™)), (1.5)

where (a,) is a real positive sequence, 6, > 0. Here, 6, is an extrapolation factor, and the inertial is
represented by the term 6,(k" — k"1). In 2009, Beck and Teboulle [24] introduced a fast iterative
shrinkage-thresholding algorithm method (FISTA-BT). This is similar to (1.5) with the condition a, = 1/L
and

- 1+ 41+ 4t}
0, = b 1, where ty,,= ———% and f=1. (1.6)

tn+1 2

Many proximal gradient methods usually use the assumption that the gradient is Lipschitz continuous and
the step size is bounded below the Lipschitz constant. This is somehow not known in practice. For this
reason, Bello Cruz and Nghia [25] proposed the linesearch rule by setting a,, = 08™ and m,, is the smallest
nonnegative integer such that

o [VF (K™Y = VF(KM)| < 8]kt — kM. 1.7)
A new version of the forward-backward method (FISTA-CN) based on (1.7) is generated by the following:
Xt = k" + Op(k™ - k"), y" = Po(x"), k™! = proxgg(y" - a,Vf(y"),

where the inertial parameter 6, is defined by (1.6). Recently, Verma and Shukla [26] introduced a new
accelerated proximal gradient algorithm (NAGA), which is defined by k° = k! ¢ H and

X" = k" + G,(k" - k',
Y'=(1 = ap)Xx™ + @, proxXq,g(x" — ayVf(x™),

k™1 = prox,,q(y"* — anVf (y™),

where a, € (0, 2/L) and 6, is defined by (1.6).

Motivated by previous works, in this work, we are interested to introduce a new inertial proximal
algorithm for solving the convex MNPs and provide a weak convergence theorem for the proposed algo-
rithm without the Lipschitz continuity condition on the gradient. We provide numerical experiments for our
algorithm to solve image recovery problems and show the efficiency of the proposed algorithms when
compared with FBS-CW [1], FISTA-BT [24], FISTA-CN [25], FBFS [17], and NAGA [26].

2 Main theorem

Now, we assume that f: H—> R U {+co} and g : H —» R U {+o0o} are proper, lower semicontinuous, and
convex functions, f is uniformly continuous on bounded sets, and Vf is bounded on bounded sets. The
following is our algorithm.
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Algorithm 2.1. The inertial modified FBS (IMFBS) algorithm.
Initialization: Given o, 0, 4, > 0,6 ¢ (0, %), and p € (0, 1).

Iterative step: Let k® = k! ¢ H and calculate k"*! as follows:
Step 1. Compute the inertial step:

X" = k" + 6,(k" - k"1,

where (6,) is a positive sequence.
Step 2. Compute the forward—-backward step:

P = ProXqg(x™ — ayVf(x™),
where a,, = 06™ and m, is the smallest nonnegative number such that:
an|lVF(p™) = VF(xXMIl < 6lp™ — x™|. (2.1)
Step 3. Compute the forward—-backward step:
1" = prox, ¢(p" - u,Vf(p™).
Step 4. Compute the k*! step:
kKt =1+ (VP = VFI™)

and update

i plp" — 1| . ny _ wf(pn .
mm( IVF(p™) - VEaOI Vn) if [Vf(p™) - VF(r™ # 05

", otherwise.

Hn+1 = (2'2)

Setn == n + 1 and return to Step 1.
Remark 2.2.
(1) By [25], we know that the Linesearch (2.1) stops after finitely many steps.

(2) By (2.2), we see that the sequence (u,) is nonincreasing.

Theorem 2.3. Suppose that a, > a for some a > 0, 6, > 0, and };” 6, < +co. Then, the sequence (k") gen-
erated by Algorithm 2.1 converges weakly to a minimizer of f + g.

Proof. Let k, € argmin(f + g). Following the definition of ", we have

p" 1" = u,Vf(p") € p,0g(rM). (2.3)
By definition of k™*1, we see that

U VF(D™) = KT — e VE(m). (2.4)
From (2.3) and (2.4), we have

p" = k™ — u VF(r") € p,dg (™). (2.5)

Since k, € argmin(f + g), we obtain —u, Vf(k.) € u,0g(k.). Thus, by relation (2.5) and the monotonicity of
d0g, we have

(" — k™ = (VF(r™) - Vf(k.), "~ k) 2 0.
This, together with the monotonicity of Vf, implies that
(p" - k™, — k) > 0.

Hence, we have
@n _ kn+l’ rn— kn+l> + <pn _ kn+l’ kn+1 _ k*> > 0. (26)
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We know that ||[x + y|? = |x|? + 2{x, y) + |ly|?. So by (2.6), we obtain

%[Ilp” = KM+ ke -~ lpt - P+ %[Ilp" =kl = lp" = kP - Ik - kP] 2 0.

It implies that

Ikt — k> < lIp™ = kP + K™ =12 — p™ — P 2.7)
By definition of k"*! and (2.2), we have

lkm et — 2 < I+, (VF(p™) = VEG™) = M2 = p IV (p™) - VEmIP. (2.8)

Note that

no_yn no_ on
oot = mm( ||Vfg|f) - vrfgr")u ¥ ) - ||Vf$|"p) - Vrfgr")u '

It follows that

IVF (o™ - VF G < Llup" -, (2.9)
n+

Combining (2.8) and (2.9), we have

"kn+1 _ rn"2 <

2,,2
Ly (2.10)

n+1

By definition of p", we have

""; P vf(xeny € ag(pn).

n

By the convexity of g, we obtain
Xn _ pn
gk.) - g(p") = B VFO™, k. - p" ). (21)
n
By the convexity of f, we see that
flk) = FOXM 2 (VF(xXM), ko = x™). (2.12)

Combining (2.1), (2.11), and (2.12), we have

x" — pn

(f+ &)k =2 g(p") + f(x™) + < = Vf(x™), k. - p"> + (VF (), k. = x™)

n

= g(p") + FOM) + aioc" Pk P + (VF() — VE(M), P — X + (VF(p), pT — X7

n

>g(pY) + f(x") + ai(xn - p", k., — p") — IVF(x™) = VE(p)llp" - x| (2.13)

n

+ (Vf(p™), p" - X
2g(p") + f(xX™) + {%(X” -p" k.- p") - illp" - X"? + (Vf(p™), p" - x™).

n n

By (2.13) and the convexity of f, we obtain

1 )
a—(X" -phpt - k)2 g+ fOxXM - (f+ g)k.) - a—llp" - X"IP + f(p™) - f(X™)
" 5 " (2.14)
=(f+g)") - (f+ g)k.) - a—||p" - x"?.
n
We see that [|x" - k,J? =[x — p"|? + 2{(x" — p", p" - k,) + |p" - k.. By (2.14), we have
Ix™ = k> = Ix® = p"I? = lIp" = kP 2 2a,[(f + g)(p™) - (f + g)(k)] - 26lp™ — x"|I°.
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It implies that

Ip" = kP < X" = kP = 1 = 28)|Ix™ = p"I? = 2a[(f + £)(P") — (f + &) (k). (2.15)
Hence, from (2.7), (2.10), and (2.15), we obtain

It = kP < lIx™ = kP = (1 = 26)lIx™ = p"'I* = 2a[(f + 8)(P") = (f + 8)(k.)]

- (1 - @]Ilp” - 2. (216
n+1
Now, we will show that (k™) is bounded. From (2.16) and by definition of (x"), we have
I = Rl < X" = Kl = 1K™ + (k™ = k"1 = kll < k™ = kel + Oa(IK" = Kl + K" = KD
This shows that
It = Kl < (1 + OlIk™ = Kol + Onllk™ ™! ~ Kol
By Lemma 5 in [27], we conclude that
Ikt — k.l < K -ﬁ(l +20),
j=1

where K = max{||k! - k.|, [Ik? - k.||}. Since }7” 6, < +00, we have (k"), which is bounded. From (2.16), we
have

Ikt = Kl < k™ + 6p(k™ = k") = kP = (1 = 28)Ix™ = p"I* = 2a:[(f + 8)(P") — (f + g)(k.)]

2,,2
- (l - p#)np" - 1P
n+1

2.17
= Ik = Kl + 26,lIk™ = KulIK™ = k") + 671K — k"2 — (1 = 28)|Ix™ — p"|P @10

2.,,2
= 2a,[(f + )P - (f + 8)k)] - (1 P 2;4 . )Ilp" - P,

n+1
Since lim,_, ,0nllk™ — k7Y = 0, lim,_, o, |k™ - k.|| exists, and 1 - 26 > 0, we have

lim [x" - p"| = 0.

n—oo
By definition of x™, we have lim,,_,.[x" — k™| = 0. Then,

lp" = k"l < Ix" = p"ll + Ix" = k" - O as n — oo.

Since lim,Hoo(l - ) =1- p? > 0, we have lim,_,.|[p" - r"|| = 0. So, we have

[r* = k" < lp™ =" + lp" —= k™| - 0 as n— oo.

Since the sequence (k™) is bounded, assume that k* is a weak limit point of (k™), i.e., there is a subsequence
(k™) of (k™) such that k™ — k. Since lim;_,[r" — k™| = 0, we also obtainr™ — k*asi — co. Since (p™)
is bounded, lim;_,.[|p™ — | = 0, and Vf is uniformly continuous on H, we have

lim;_ool[VF(p™) = VF(r)Il = 0.

From (1.3), we obtain

P f(p") = p" — ProXe,¢(p" — anVf(p™)) - anVf(p™)

Qp, ®p;

e 3g(p" - anVf(p")).

It follows that

pli — rhi

. Vf(r”i) - Vf(p"f) € Vf(r"i) + ag(r"i) cof+ g)(r"f).
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By passing i — oo and using Fact 2.2 in [25], we have 0 € Vf(k®) + dg(k®). Thus, k*® € argmin(f + g).
Hence, by Theorem 5.5 in [28], we can conclude that (k™) converges weakly to a point in argmin(f + g). We
thus complete the proof. O

3 Numerical experiments

In this section, we apply Algorithm 2.1 to solve the image restoration problem and compare the efficiency of
FBS-CW [1], FISTA-BT [24], FISTA-CN [25], FBFS [17], and NAGA [26]. The numerical experiments are
performed by Matlab 2020b on a 64-bit MacBook Pro Chip Apple M1 and 8 GB of RAM.

The image restoration problem can be modeled as follows:

b=Ak +w, 3.1

where b € R™1 is the observed image, A € R™" is the blurring matrix, k ¢ R™! is an original image, and w
is additive noise. To solve problem (3.1), we aim to approximate the original image by transforming (3.1) to
the following LASSO problem [29]:

mkin(gnb AR + Aukul), (3.2)

where|-|; is &-norm. In general, (3.2) can be formulated in a general form by estimating the minimizer of the

sum of two functions when f(k) = %Ilb — AKk|2 and g(k) = A||k];.
To evaluate the quality of the restored images, we use the peak signal-to-noise ratio (PSNR) [30] and the
structural similarity index (SSIM) [31], which are defined as follows:

lkllF
PSNR = 20log—<IF__ 33
Sk - Kl G-3)
and
IR 2Ginr
ssIM = 24w+ ) (20w + ) (3.4)

W +up +a)(oi+ 0k +0)

where k is the original image, k" is the restored image, u; and u;r are the mean values of the original image k
and restored image k', respectively, a,f and Ulfy are the variances, O,fky is the covariance of two images,
¢ = (KL)? and ¢ = (IGL)? with K; = 0.01 and K, = 0.03, and L is the dynamic range of pixel values. SSIM
ranges from O to 1, and 1 means perfect recovery.

All parameters are chosen as in Table 1. The initial point k° = k! are vectors of ones with the size of the

original images for all algorithms. The parameter 8, of FISTA-BT, FISTA-CN, and NAGA is defined as (1.6).
We also set 6, in Algorithm 2.1 (IMFBS) by

Table 1: Chosen parameters of each algorithm

Algorithms Chosen parameters
=1 a, = 1/2| A A, =05 0=60=04 0=0.2 p=p =04
FBS-CW v v
FISTA-BT v v
FISTA-CN v v v
NAGA v v
FBFS v

IMFBS Y N N v
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(Fig(A)

(BM-1.1)

(BM-1.2)

(BM-1.3)

Figure 1: The original image size 448 x 298 (Fig(A)) and the deblurred RGB images by out-of-focus blur matrices with radius 6
(BM-1.1), Gaussian blur with standard deviation 7 of the filter size [5 x 5] (BM-1.2), and the deblurred images by motion blur
specified with the motion length of 11 pixels and motion orientation 23 (BM-1.3), respectively.

(Fig(B))

(BM-2.1)

(BM-2.2)

(BM-2.3)

Figure 2: The original image size 240 x 320 (Fig(A)) and the deblurred RGB image by out-of-focus blur matrices with radius 6
(BM-1.1), Gaussian blur with standard deviation 7 of the filter size [5 x 5] (BM-2.2), and the deblurred image by motion blur
specified with the motion length of 11 pixels and motion orientation 23 (BM-2.3), respectively.

Table 2: The results of deblurred images for each algorithm

Fig(A) M Algorithms Blurred type
BM-1.1 BM-1.2 BM-1.3
PSNR SSIM PSNR SSIM PSNR SSIM

The original image size 448 x 298 500 FBS-CW 25.8764 0.7715  29.0112  0.8899 31.2942 0.9242
FISTA-BT 35.5477 0.9446 38.3302 0.9621  40.5405 0.9835
FISTA-CN 36.5491 0.9543 39.5388 0.9705 41.8671 0.9871

NAGA 36.2057 0.9514 39.1270 0.9678  41.4341 0.9859

FBFS 24.2054 0.7072 27.5600 0.8583 29.8552 0.8996

IMFBS 38.7966 0.9702 41.6765 0.9816  44.6781 0.9930

1,000 FBS-CW 26.1910 0.7837 29.2922 0.8957 31.5644 0.9286
FISTA-BT 37.0305 0.9586 39.6679 0.9715 41.7964  0.9883
FISTA-CN 38.1887 0.9664 40.9419 0.9780 43.1783 0.9911

NAGA 37.7800 0.9641 40.5485 0.9759  42.6821 0.9901

FBFS 24.6732  0.7225 27.8260 0.8662 30.1126 0.9053

IMFBS 40.5491 0.9782 43.2354 0.9868 45.9856 0.9950

1,500 FBS-CW 26.4418 0.7923  29.5205 0.8996 31.7869  0.9318
FISTA-BT 38.0757 0.9664 40.6216 0.9765 42.6318 0.9906
FISTA-CN 39.2981 0.9726  41.9730 0.9833  44.0774 0.9330

NAGA 38.8771 0.9708  41.5473 0.9813 43.5755 0.9923

FBFS 24.8915 0.7331 28.0377  0.8717 30.3250 0.9094

IMFBS 41.7181 0.9828  44.4942 0.9901 47.3108 0.9964
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Table 3: The results of deblurred images for each algorithm

Fig(B) M Algorithms Blurred type

BM-2.1 BM-2.2 BM-2.3

PSNR SSIM PSNR SSIM PSNR SSIM

The original image size 240 x 320 500 FBS-CW 28.1063 0.8764 33.3164  0.9479 32.8894 0.9503
FISTA-BT 38.4144  0.9733 42,9090 0.9888 42.9989 0.9911
FISTA-CN 39.3158  0.9779  43.9720 0.9910 44.3774  0.9932

NAGA 39.0548 0.9767 43.6322 0.9904 43.9016 0.9926
FBFS 26.7863  0.8427 315921 0.9344 31.3430 0.9354
IMFBS 41.2504  0.9843  46.2374 0.9945 46.6263 0.9958
1,000 FBS-CW 28.3151  0.8818 33.5886 0.9507 33.1323  0.9530

FISTA-BT 39.1638 0.9772  43.9748 0.9912  44.0517 0.9931
FISTA-CN 40.1671  0.9813  45.1091  0.9929  45.4008 0.9948

NAGA 39.9064 0.9804 44.7171  0.9923  45.1169  0.9945
FBFS 26.9618 0.8486 31.8549 0.9378 315693  0.9388
IMFBS 42.2498 09874  47.3408 0.9957 47.6728 0.9968
1,500 FBS-CW 28.5033 0.8862 33.8154 0.9526 33.3404 0.9549

FISTA-BT 39.7800 0.9800 44.7409 0.9925 449116  0.9943
FISTA-CN 40.8390 0.9836 459122  0.9941  46.2742 0.9957

NAGA 40.4829 0.9825 45.5109 0.9936  45.8330 0.9953
FBFS 27.1200  0.8534 32.0793 0.9402 31.7652  0.9412
IMFBS 43.0213  0.9891 48.0766 0.9963 48.6282 0.9974

(FBS-CW) (FISTA-BT) (FISTA-CN) (NAGA) (FBFS) (IMFBS)

Figure 3: The restored images by BM-1.1 for FBS-CW (PSNR:26.07923, SSIM:0.7923), FISTA-BT (PSNR:38.9664, SSIM:0.9664),
FISTA-CN (PSNR:39.2981, SSIM:0.9726), NAGA (PSNR:38.8771 SSIM:0.9708), FBFS (PSNR:24.8915 SSIM:0.7331), and IMFBS
(PSNR:41.7181, SSIM:0.9828), respectively.

(FBS-CW) (FISTA-BT) (FISTA-CN) (NAGA) (FBFS) (IMFBS)

Figure 4: The restored images by BM-1.2 for FBS-CW (PSNR:29.5205, SSIM:0.8996), FISTA-BT (PSNR:40.6212, SSIM:0.9765),
FISTA-CN (PSNR:41.9730, SSIM:0.9833), NAGA (PSNR:41.5473, SSIM:0.9813), FBFS (PSNR:28.0377, SSIM:0.8717), and IMFBS
(PSNR:44.4942, SSIM:0.9901), respectively.
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(FBS-CW) (FISTA-BT) (FISTA-CN) (NAGA) (FBFS) (IMFBS)

Figure 5: The restored images by BM-2.3 for FBS-CW (PSNR:33.3404, SSIM:0.9549), FISTA-BT (PSNR:44.9116, SSIM:0.9943),
FISTA-CN (PSNR:46.2742, SSIM:0.9957), NAGA (PSNR:45.8330, SSIM:0.9953), FBFS (PSNR:31.7652, SSIM:0.9412), and IMFBS
(PSNR:48.6282, SSIM:0.9974), respectively.

PSNR

201 T

T G |

075F _~ 1

07

065 | .

0.6 L -
0 500 1000 1500
Number of iterations

Figure 6: Graphs of PSNR and SSIM for FIG(A) by out of focusing, respectively.
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50 T

— — FBS-CW
— — Fista-BT
—-—- Fista-CN
o NAGA A
------- FBFS )
: IMFBS -

PSNR
T
1

o ———

ol s )
25 |

20 - &

L
0 500 1000 1500

SSIM

0.85 B

08 B

0.75 L L
0 500 1000 1500
Number of iterations

Figure 7: Graphs of PSNR and SSIM for FIG(A) by Gaussian blur matrices, respectively.

1+ 41+ 4t}
by where ty,;= ————— ™, if 1<n<M;
0, = th1 2
1 .
= otherwise.
n

The original images and three different blurring matrices types for the original images of sizes
448 x 298 and 240 x 320 are shown in Figures 1 and 2, respectively.

The results of the deblurred images with M iterations for each algorithm are shown in Tables 2 and 3.
We provide some experiments of recovered images of Fig(A) for two cases and one case for Fig(B) to
illustrate the convergence behavior of all algorithms in Figures 3-5.

In Figures 6-8, we plot the number of iterations versus the PSNR [30] and the SSIM [31].

4 Conclusion

In this work, we have introduced a new inertial proximal gradient algorithm for solving the convex MNPs
and have proved a weak convergence theorem without the Lipschitz continuity conditions on the gradient
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— — FBS-CW

— — Fista-BT [|

===~ Fista-CN
- NAGA
-+ FBFS
IMFBS

PSNR

L
0 500 1000 1500
Number of iterations

097 - b

0.96 - =

SSIM

05+ === T T ]
BB e o

093 -

092 r T

0.91 z :
0 500 1000 1500

Number of iterations

Figure 8: Graphs of PSNR and SSIM for Fig(B) by motion blurring, respectively.

of functions. We provided some numerical experiments and applied our algorithm to the image recovery
problem. We also compared our algorithm with FBS-CW [1], FISTA-BT [24], FISTA-CN [25], FBFS [17], and
NAGA [26]. It was shown that our algorithm has better efficiency than other algorithms in terms of PSNR
and SSIM for all blurred types.
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