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1 Introduction and preliminaries

We recall some important concepts for the fixed-point theory.

Definition 1.1. Let X d,( ) be a metric space. Then, T X X: → is called a Picard operator if:
(i) F xT { }=

∗ , where F x X x T x:T { ( )}= ∈ = is the fixed-point set of T ;
(ii) the sequence of iterates T x xn

n N( ( )) →
∈

∗ as n → ∞, for all x X∈ .

Definition 1.2. Let X d,( ) be a metric space. Then, T X X: → is called a weakly Picard operator if, for any
x X∈ , the sequence of iterates T xn

n N( ( ))
∈

converges to a fixed-point of T .

In this case, the mapping T X F: T→
∞ , given by T T xlimn

n( )≔
∞

→∞
is a set retraction on FT .

Definition 1.3. [1] Let X d,( ) be a metric space and T X X: → be an operator such that FT is nonempty. Let
r X F: T→ be a set retraction. We say thatT satisfies a retraction-displacement condition if there exists c 0>

such that for every x X∈

d x r x cd x T x, , .( ( )) ( ( ))≤

Definition 1.4. Let X d,( ) be a metric space, T X X: → be an operator such that FT is nonempty, and
r X F: T→ be a set retraction. Then:
(i) the fixed-point equation x T x( )= is called well posed in the sense of Reich and Zaslavski (see [2,3]) if

for each x FT∈
∗ and any sequence un n N( )

∈
in r x1( )− ∗ for which d u T u, 0n n( ( )) → as n → ∞, we have that

u xn →
∗ as n → ∞.

(ii) the operator T has the Ostrowski property (see [4,5]) if for each x FT∈
∗ and any sequence un n N( )

∈
in

r x1( )− ∗ for which d u T u, 0n n1( ( )) →
+

as n → ∞, we have that u xn →
∗ as n → ∞.
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(iii) the fixed-point equation x T x( )= is Ulam-Hyers stable (see [6,7]) if there exists c 0> such that for
every ε 0> and every ε-fixed-point y X∈

∗ ofT (i.e., d y T y ε,( ( )) ≤
∗ ∗ ), there exists a fixed-point x X∈

∗

of T such that d x y cε,( ) ≤
∗ ∗ .

Recently, Petruşel and Rus [8] proved the following important theorem :

Theorem 1.1. (Graphic contraction principle) Let X d,( ) be a complete metric space and f X X: → be a
graphic k-contraction, i.e., there exists k 0, 1( )∈ such that

d f x f x kd x f x, , ,2( ( ) ( )) ( ( ))≤

for every x X∈ .
If f has a closed graph, then:

(1) the sequence of iterates f xn
n N0( ( ))

∈
converges in X d,( ) to a fixed-point x x0( )∗ of f ;

(2) F Ff f n= ≠ ∅ for all n N∈
∗;

(3) f is a weakly Picard operator;

(4) d x f x d x f x, ,k
1

1( ( )) ( ( ))≤
∞

−

, for every x X∈ , i.e., f is a
k

1
1 −

-weakly Picard operator;

(5) the fixed-point equation x f x( )= is well posed in the sense of Reich and Zaslavski;
(6) the fixed-point equation x f x( )= is Ulam-Hyers stable:
(7) if k 1 3< / , then d f x f x d x f x, ,k

k1 2( ( ) ( )) ( ( ))≤
∞

−

∞ , for every x X∈ , i.e., f is a k
k1 2−

-quasicontraction;
(8) if k 1 3< / , then f has the Ostrowski stability property.

Very recently, Petruşel and Petruşel [9] gave the following notion of convex orbital β-Lipschitz operator.

Definition 1.5. Let X,( ∥ ∥)⋅ be a normed space andY be a nonempty and convex subset of X . LetT Y Y: →

be an operator and λ 0, 1( ]∈ . We say thatT is a convex orbital β-Lipschitz operator if β 0> and for any x Y∈

T x T λ x λT x βλ x T x1 .∥ ( ) (( ) ( ))∥ ∥ ( )∥− − + ≤ −

They proved that this class of operators includes the Banach contractions, Kannan contractions, Ćirić-
Reich-Rus contractions, Berinde contractions, nonexpansive operators, enriched β θ,( ) contractions, and
Lipschitz operators [10–16]. From now on, we will use the symbolTx instead ofT x( ). The main results in [9]
are the following theorems:

Theorem 1.2. Let X,( )⟨⋅⟩ be a Hilbert space, Y be a nonempty closed and convex subset of X, andT Y Y: →

be an operator with closed graph. We suppose that:
(i) T is a convex orbital β-Lipschitz;
(ii) T is decreasing, i.e., Tu Tv u vRe , 0( )⟨ − − ⟩ ≤ , for every u v Y, ∈ .

Then, there exists λ 0, 1( )∈ such that, for every x Y0 ∈ , the sequence x Yn n N( ) ⊂
∈

, defined by

x λ x λTx n N1 , ,n n n1 ( )= − + ∈
+

converges to the unique fixed-point x Y∈
∗ of T .

Theorem 1.3. Let X,( )⟨⋅⟩ be a Hilbert space, Y be a nonempty closed and convex subset of X, andT Y Y: →

be an operator satisfying all the assumptions in Theorem 1.2. If x Y∈
∗ is the unique fixed-point of T, then the

following conclusions hold:
(a) T satisfies the following retraction-displacement condition

x x k x Tx1 ,∥ ∥ ( )∥ ∥− ≤ + −
∗

for every x Y∈ , where k β
β1 2

≔

+

;
(b) the fixed-point equation x Tx= is Ulam-Hyers stable;
(c) the fixed-point equation x Tx= is well posed.
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Theorem 1.4. Let X,( )⟨⋅⟩ be a Hilbert space, Y be a nonempty closed and convex subset of X , andT Y Y: →

be an operator satisfying all the assumptions in Theorem 1.2. If β 5 2 5
5

<
− , then T is a quasicontraction.

In this article we will clarify and complement the notion of convex orbital β-Lipschitz, by introducing
some new classes of convex orbital operators. Then similar results as Theorems 1.2, 1.3, and 1.4 for these
new types of operators are proved.

2 Main results

Definition 2.1. [9] Let X,( ∥ ∥)⋅ be a normed space and Y be a nonempty and convex subset of X . Let
T Y Y: → be an operator. We say that T is a convex orbital β-Lipschitz operator if there exists β 0> such
that for any λ 0, 1( ]∈ , and for any x Y∈ ,

Tx TT x βλ x Tx ,λ∥ ∥ ∥ ∥− ≤ −

where T x λ x λTx1λ ( )≔ − + .

Definition 2.2. Let X,( ∥ ∥)⋅ be a normed space andY be a nonempty and convex subset of X . LetT Y Y: →

be an operator. We say that T is a weak convex orbital Lipschitz operator if for any λ 0, 1( ]∈ there exists
β 0> such that for any x Y∈ ,

Tx TT x βλ x Tx .λ∥ ∥ ∥ ∥− ≤ −

Definition 2.3. Let X,( ∥ ∥)⋅ be a normed space andY be a nonempty and convex subset of X . LetT Y Y: →

be an operator. We say thatT is a convex orbital λ β,( )-Lipschitz operator if there exists λ 0, 1( ]∈ and β 0>

such that for any x Y∈

Tx TT x βλ x Tx .λ∥ ∥ ∥ ∥− ≤ −

Obviously, every convex orbital β-Lipschitz operator is a weak convex orbital Lipschitz operator and every
weak convex orbital Lipschitz operator is a convex orbital λ β,( )-Lipschitz operator.

Example 2.1. (See Example 2.7 of [9]) Let X, .( ∥ ∥) be a normed space,Y be a nonempty and convex subset of
X , and T Y Y: → be an L-Lipschitz operator, i.e., L 0> and for each x y Y, ∈

Tx Ty L x y .∥ ∥ ∥ ∥− ≤ −

Then, T is a convex orbital L-Lipschitz operator. Indeed, if we choose y T xλ≔ in the aforementioned
inequality, we have that

Tx TT x L x T x Lλ x Tx ,λ λ∥ ∥ ∥ ∥ ∥ ∥− ≤ − = −

for any λ 0, 1( ]∈ and for every x Y∈ .

Example 2.2. (See Example 2.1 of [9]) Let X, .( ∥ ∥) be a normed space,Y be a nonempty and convex subset of
X , and T Y Y: → be an α-contraction, i.e., α 0, 1( )∈ and for each x y Y, ∈

Tx Ty α x y .∥ ∥ ∥ ∥− ≤ −

Since every α-contraction is a Lipschitz operator with L α≔ , thenT is a convex orbital α-Lipschitz operator.

Example 2.3. (See Example 2.5 of [9]) Let X, .( ∥ ∥) be a normed space,Y be a nonempty and convex subset of
X , and T Y Y: → be a nonexpansive operator, i.e.,

Convex orbital operators  3



Tx Ty x y .∥ ∥ ∥ ∥− ≤ −

Since every nonexpansive operator is a Lipschitz operator with L 1≔ , thenT is a convex orbital 1-Lipschitz
operator.

Example 2.4. (See Example 2.6 of [9]) Let X, .( ∥ ∥) be a normed space,Y be a nonempty and convex subset
of X , and T Y Y: → be an enriched b θ,( )-contraction, i.e., there exist b θ b0, 0, 1[ )≥ ∈ + such that for
each x y Y, ∈

b x y Tx Ty θ x y .∥ ( ) ∥ ∥ ∥− + − ≤ −

Then, T is a convex orbital b θ( )+ -Lipschitz operator. Indeed, if we choose y T xλ≔ in the aforementioned
relation, we obtain that

bλ x Tx Tx TT x θλ x Tx ,λ∥ ( ) ∥ ∥ ∥− + − ≤ −

from which we obtain

Tx T x bλ x Tx θλ x Tx ,λ∥ ∥ ∥ ∥ ∥ ∥− − − ≤ −

for any λ 0, 1( ]∈ and for every x Y∈ . Hence, we obtain that

Tx TT x b θ λ x Tx .λ∥ ∥ ( ) ∥ ∥− ≤ + −

Example 2.5. (See Example 2.2 of [9]) Let X, .( ∥ ∥) be a normed space,Y be a nonempty and convex subset of
X , and T Y Y: → be a Kannan γ-contraction, i.e., γ 0, 1 2[ )∈ / , and for each x y Y, ∈ ,

Tx Ty γ x Tx y Ty .∥ ∥ [∥ ∥ ∥ ∥]− ≤ − + −

Then, T is a weak convex orbital Lipschitz operator. Indeed, if we insert in the aforementioned inequality
y T xλ≔ , then we obtain for λ 0, 1( ]∈ and x Y∈ that

Tx TT x γ x Tx λ x λTx TT x γ x Tx λ x Tx Tx TT x1 1 .λ λ λ∥ ∥ [∥ ∥ ∥( ) ∥] [∥ ∥ ( )∥ ∥ ∥ ∥]− ≤ − + − + − ≤ − + − − + −

Hence, we obtain

Tx TT x γ γ
γ

x Tx2
1

.λ∥ ∥
( )

∥ ∥− ≤

−

−

−

Therefore,T is a weak convex orbital Lipschitz operator β γ γ
λ γ

2
1

( )

( )( )=

−

−

. Obviously, β λlimλ 0 ( ) = ∞
→

, soT is not
a convex orbital β-Lipschitz operator.

Example 2.6. (See Example 2.3 of [9]) Let X, .( ∥ ∥) be a normed space,Y be a nonempty and convex subset of
X , and T Y Y: → be a Ćirić-Reich-Rus α γ,( )-contraction, i.e., α γ R, ∈

+
with α γ2 1+ < , and for each

x y Y, ∈ ,

Tx Ty α x y γ x Tx y Ty .∥ ∥ ∥ ∥ [∥ ∥ ∥ ∥]− ≤ − + − + −

Then, T is a weak convex orbital Lipschitz operator. Indeed, if we insert in the aforementioned inequality
y T xλ≔ , we obtain that

Tx TT x α x T x γ x Tx T x TT x .λ λ λ λ∥ ∥ ∥ ∥ [∥ ∥ ∥ ∥]− ≤ − + − + −

This implies

Tx TT x αλ x Tx γ x Tx λ x Tx Tx TT x1 .λ λ∥ ∥ ∥ ∥ [∥ ∥ ( )∥ ∥ ∥ ∥]− ≤ − + − + − − + −

Hence,

Tx TT x αλ γ λ
γ

x Tx2
1

.λ∥ ∥
( )

∥ ∥− ≤

+ −

−

−

Therefore,T is a weak convex orbital Lipschitz operator β αλ γ λ
λ γ

2
1

( )

( )( )=

+ −

−

. Obviously, β λlimλ 0 ( ) = ∞
→

, soT is
not a convex orbital β-Lipschitz operator.
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Example 2.7. (See Example 2.4 of [9]) Let X, .( ∥ ∥) be a normed space,Y be a nonempty and convex subset of
X , and T Y Y: → be a Berinde α L,( )-contraction, i.e., α L R, ∈

+
with α 1< , and for each x y Y, ∈ ,

Tx Ty α x y L y Tx .∥ ∥ ∥ ∥ ∥ ∥− ≤ − + −

Then, T is a weak convex orbital Lipschitz operator. Indeed, if we insert in the aforementioned inequality
y T xλ≔ , we obtain that

Tx TT x α x Tx L T x Tx α x Tx L λ x Tx1 ,λ λ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ( )∥ ∥− ≤ − + − ≤ − + − −

where we obtain for every λ 0, 1( ]∈ and each x Y∈

Tx TT x αλ L λ x Tx1 .λ∥ ∥ ( ( ))∥ ∥− ≤ + − −

Therefore,T is a weak convex orbital Lipschitz operator β αλ L λ
λ

1( )
( )=

+ − . Obviously, β λlimλ 0 ( ) = ∞
→

, soT is
not a convex orbital β-Lipschitz operator.

The following examples show that there exist convex orbital λ β,( )-Lipschitz operators, which are not
weak convex orbital Lipschitz operators.

Example 2.8. Let X Y TR R R, := = → be a mapping defined by Tx x≔ − if x 0≠ and Tx 1≔ if x 0= . We
have T x Tx1 = , TT x T x x1

2
= = if x 0≠ and TT x T x 11

2
= = − if x 0= . Then, we obtain that Tx TT x x21− = − if

x 0≠ , Tx TT x 21− = if x 0= , x Tx x2− = if x 0≠ , and x Tx 1− = − if x 0= . It is easy to see that the
inequality Tx TT x x Tx21∥ ∥ ∥ ∥− ≤ − holds for every x, so T is a convex orbital 1, 2( )-Lipschitz operator.
Moreover, T x x Tx 2 01 2 ( )= + / =

/
if x 0≠ and T x 1 21 2 = /

/
if x 0= . Thus, TT x 11 2 =

/
if x 0≠ , TT x 1 21 2 = − /

/
if

x 0= ,Tx TT x x 11 2− = − −
/

if x 0≠ , andTx TT x 3 21 2− = /
/

if x 0= . For x 0≠ , the inequality Tx TT x1 2∥ ∥− ≤
/

β x Tx2∥ ∥/ − is equivalent to x β x1∣ ∣ ∣ ∣+ ≤ . For x 0→ , we obtain a contradiction. Then, T is not a weak
convex orbital Lipschitz operator.

Example 2.9. Let X Y TR R R, := = → be a mapping defined byTx 1 x
1

1≔ +
−

if x 1> ,Tx 2≔ if x 1, 1[ ]∈ − ,

and Tx 1 x
1

1≔ +
− −

if x 1< − . For x 1> , we have T x Tx TT x T x x Tx TT x x, , 1 x1 1
2

1
1

1= = = − = + −
−

, and

x Tx x 1 x
1

1− = − −
−

. Then, Tx TT x x Tx1∥ ∥ ∥ ∥− ≤ − . If x 1, 1[ ]∈ − , we have TT x T x Tx TT x2,1
2

1= = − =

x2 − and x Tx x 2− = − , by where we obtain Tx TT x x Tx1∥ ∥ ∥ ∥− ≤ − . For x 1< − , we have TT x T x1
2

= =

x Tx TT x x, 1 x
x x

x1
1

1
2

1

2
− − = − + =

+

+

+

and x Tx x 1 x
x

x
1

1 1

2
− = − + =

+ +

. Since x1 2 1, 1( )+ / ∈ − , we obtain

x x x22 2∣ ∣ ∣ ∣+ ≤ , by where Tx TT x x Tx1∥ ∥ ∥ ∥− ≤ − . Therefore, T is a convex orbital 1, 1( )-Lipschitz
operator. Since T TT n T TT n1 , 1 2 , 1 2n n n n n1 2

1 1
2 1 2

1 1
1 2

1
= + = + − = −

/ / /
, and T 1n n n

1 1 1
− = − , the inequality

T TT β T1 2n n n n
1

1 2
1 1 1

( )− ≤ / −
/

is not satisfied for n sufficiently large. Hence, T is not a weak convex

orbital Lipschitz operator. Also, it is easy to see that T has a closed graph.

In the following example, we present a weak convex orbital Lipschitz operator with a closed graph,
which is not a convex orbital β- Lipschitz operator.

Example 2.10. Let X Y TR R R, := = → be a mapping defined by Tx x1≔ / if x 0≠ and Tx 1≔ if x 0= .

Obviously, T has a closed graph. For x 0≠ , we have T x λ x1 0λ
λ
x( )= − + > , TT xλ

x
λ x λ1 2( )

=
− +

, Tx TT xλ− =

λ x
x λ x λ

1
1

2

2
( )

[( ) ]

−

− +

, and x Tx x
x

12
− =

− . Taking β λ1≔ / , we have βλ x λ
1

1 2( )
≤

− +

, so λβ .λ x
x λ x λ

x
x

1
1

12

2

2∣ ∣

[( ) ]

∣ ∣

∣ ∣
≤

−

− +

− Then, we

obtain Tx TT x λβ x Tx .λ∥ ∥ ∥ ∥− ≤ − If x 0= , we have T x λ TT x Tx TT x, , 1λ λ λ λ λ
1 1

= = − = − , and x Tx 1− = − .

Taking β λ
λ

1
2=

− , we obtain λβ1 λ
1

− ≤ , so Tx TT x λβ x Txλ∥ ∥ ∥ ∥− ≤ − . Therefore, for any λ 0, 1( ]∈ , there

exists β max ,λ
λ

λ
1 1

2{ }≔

− such that Tx TT x λβ x Tx ,λ∥ ∥ ∥ ∥− ≤ − i.e., T is a weak convex orbital Lipschitz

operator. Now, if we take x λ n1= = / with n 2≥ , we have Tx TT x x Tx,λ
n n

n n
n

n1
13

2

2
− = − =

−

+ −

− . Then, the
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inequality Tx TT x λβ x Txλ∥ ∥ ∥ ∥− ≤ − is equivalent to the inequality βn
n n 1

3

2 ≤
+ −

, which is not satisfied for n
sufficiently large. Hence, T is not a convex orbital β- Lipschitz operator.

Now, we give similar results of Theorems 1.2, 1.3, and 1.4 (which hold for convex orbital β-Lipschitz
operators) for convex orbital λ β,( )-Lipschitz operators.

Theorem 2.1. Let X,( ∥ ∥)⋅ be a Banach space and Y be a nonempty closed and convex subset of X. Let
T Y Y: → be a convex orbital λ β,( )-Lipschitz operator with closed graph, where β 1< . Then, for every
x Y0 ∈ , the sequence x Yn n N( ) ⊂

∈
, defined by

x λ x λTx n N1 , ,n n n1 ( )= − + ∈
+

converges to a fixed-point x x0( )∗ of T .

Proof. Let the operator T Y Y:λ → defined by

T λ x λTx x Y1 , .λ ( )≔ − + ∈

It is easy to see that F FT Tλ= and Tλ has a closed graph. For every x y Y, ∈ , we have

T x T y λ x y λ Tx Ty λ x y λ Tx Ty1 1 .λ λ∥ ∥ ∥( )( ) ( )∥ ( )∥ ∥ ∥ ∥− = − − + − ≤ − − + −

Taking y T xλ≔ , we obtain

T x T x λ x T x λ Tx TT x
λ x T x βλ x Tx
λ x T x βλ x T x
λ βλ x T x

1
1
1
1 .

λ λ λ λ

λ

λ λ

λ

2

2
∥ ∥ ( )∥ ∥ ∥ ∥

( )∥ ∥ ∥ ∥

( )∥ ∥ ∥ ∥

( )∥ ∥

− ≤ − − + −

≤ − − + −

= − − + −

= − + −

Since β 1< , if we denote k λ βλ1≔ − + , then k 1< and

T x T x k x T x ,λ λ λ
2∥ ∥ ∥ ∥− ≤ −

for every x Y∈ . This shows that T Y Y:λ → is a graphic k-contraction. Hence, by the graphic contraction
principle, Tλ is a weakly Picard operator. Since F FT Tλ= , we have FT ≠ ∅ and the sequence T xλ

n
n N0( )

∈

converges to T x x x Fλ T0 0( )≔ ∈
∞ ∗ , for every x Y0 ∈ . □

The following theorem is our main result.

Theorem 2.2. Let X,( )⟨⋅⟩ be a Hilbert space, Y be a nonempty closed and convex subset of X, andT Y Y: →

be an operator with a closed graph. We suppose that:
(i) T is a convex orbital λ β,( )-Lipschitz operator with β 1≥ ;

(ii) Tu Tv u v μ u vRe , 2( ) ∥ ∥⟨ − − ⟩ ≤ − , for every u v Y, ∈ , where μ .λ β
λ

2 1
2 1

2( )

( )
<

− +

−

Then, for every x Y0 ∈ , the sequence x Yn n N( ) ⊂
∈

, defined by

x λ x λTx n N1 , ,n n n1 ( )= − + ∈
+

converges to the unique fixed-point x Y∈
∗ of T .

Proof. Consider the operator T Y Y:λ → defined by

T λ x λTx x Y1 , .λ ( )≔ − + ∈

Obviously, F FT Tλ= and Tλ has a closed graph. By using (ii), for every x u Y, ∈ , we have:

T x T u λ x u λ Tx Tu
λ x u λ Tx Tu λ λ Tx Tu x u
λ x u λ Tx Tu λ λ μ x u

1
1 2 1 Re ,
1 2 1 .

λ λ
2 2

2 2 2 2

2 2 2 2 2

∥ ∥ ∥( )( ) ( )∥

( ) ∥ ∥ ∥ ∥ ( ) ( )

( ) ∥ ∥ ∥ ∥ ( ) ∥ ∥

− = − − + −

≤ − − + − + − ⟨ − − ⟩

≤ − − + − + − −

6  Ovidiu Popescu



Taking u T xλ≔ in the aforementioned inequality, we obtain

T x T x λ λ λ μ x T x λ Tx TT x
λ λ λ μ x T x λ β x Tx
λ λ λ μ x T x λ β x T x
λ λ λ μ λ β x T x

1 2 1
1 2 1
1 2 1
1 2 1 .

λ λ λ λ

λ

λ λ

λ

2 2 2 2 2 2

2 2 4 2 2

2 2 2 2 2

2 2 2 2

∥ ∥ [( ) ( ) ]∥ ∥ ∥ ∥

[( ) ( ) ]∥ ∥ ∥ ∥

[( ) ( ) ]∥ ∥ ∥ ∥

[( ) ( ) ]∥ ∥

− ≤ − + − − + −

= − + − − + −

= − + − − + −

= − + − + −

If we denote by k λ λ λ μ λ β1 2 12 2 2( ) ( )≔ − + − + , we have by (ii) that k 1< and

T x T x k x T x ,λ λ λ
2∥ ∥ ∥ ∥− ≤ −

for every x Y∈ . Thus, by graphic contraction principle, Tλ is a weakly Picard operator and the sequence
T xλ

n
n N0( )

∈
converges to T x x x Fλ T0 0( )≔ ∈

∞ ∗ , for every x Y0 ∈ .
Now, let us suppose that there exist x y F, T∈

∗ ∗ with x y≠
∗ ∗. Then, we have x Tx T xλ= =

∗ ∗ ∗ and
y Ty T yλ= =

∗ ∗ ∗. Taking u x≔
∗ and v y≔

∗ in (ii), we obtain

Tx Ty x y μ x yRe , .2( ) ∥ ∥⟨ − − ⟩ ≤ −
∗ ∗ ∗ ∗ ∗ ∗

Hence,

x y μ x y .2 2∥ ∥ ∥ ∥− ≤ −
∗ ∗ ∗ ∗

Since β 1≥ , we have λ β λ2 1 2 12( ) ( )− + ≤ − , and hence, μ 1< . Therefore, x y 0∥ ∥− =
∗ ∗ , which is a contra-

diction. Thus, F F xT Tλ { }= =
∗ and Tλ is a Picard operator. □

We will illustrate the aforementioned theorem by the following example:

Example 2.11. Let T R R: 2 2
→ be a mapping defined by

T x y x y x y, 3
4

, .( ) ( )≔ − +

Then:

(a) T is a convex orbital 1 2, 3 2 2( )/ / -Lipschitz operator;
(b) T satisfies (ii) of Theorem 2.2 with μ 3 4= / ;

(c) T is continuous on R2;
(d) T is not decreasing on R2;

(e) F 0, 0T {( )}= and T x y x y, 58 8 , 0n n
1 2∥ ( )∥ ( ) ∥( )∥= / →

/
as n → ∞.

(a) For x y R, 2( ) ∈ , we have:

T x y x y T x y x y x y, 1 2 , 1 2 , 1 8 7 3 , 3 7 ,1 2( ) ( )( ) ( ) ( ) ( )( )= / + / = / − +
/

TT x y x y x y, 3 16 2 5 , 5 2 .1 2( ) ( )( )= / − +
/

Hence, we obtain:

T x y TT x y x y x y, , 3 16 2 , 2 .1 2( ) ( ) ( )( )− = / + − +
/

Since x y T x y x y x y, , 1 4 3 , 3( ) ( ) ( )( )− = / + − , we obtain:

T x y TT x y x y, , 3 5 161 2
2 2∥ ( ) ( )∥ ( )− = / +

/

and

x y T x y x y, , 10 4 .2 2∥( ) ( )∥ ( )− = / +

Therefore, we have

T x y TT x y x y T x y, , 1 2 3 2 4 , , .1 2∥ ( ) ( )∥ ( )( )∥( ) ( )∥− = / / −
/

Thus, T is a convex orbital 1 2, 3 2 4( )/ / -Lipschitz operator.
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(b) If x y x y R, , ,1 1 2 2
2( ) ( ) ∈ , then we have:

T x y T x y x x y y x x y y, , 3 4 , .1 1 2 2 1 2 1 2 1 2 1 2( ) ( ) ( )( ( ) )− = / − − − − + −

Hence,

T x y T x y x y x y
x x y y x x x x y y y y
x x y y x y x y

Re , , , , ,
3 4 3 4
3 4 , 3 4 , , .

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2
2

1 2
2

1 1 2 2
2

( ( ) ( ) ( ) ( ) )

( )[( ) ( )]( ) ( )[ ]( )

( )[( ) ( ) ] ( )∥( ) ( )∥

⟨ − − ⟩

= / − − − − + / − + − −

= / − + − = / −

Therefore, T satisfies (ii) of Theorem 2.2 with μ 3 4= / . We note that μ 15 16λ β
λ

2 1
2 1

2( )

( )
< = /

− +

−

.
(c) It is obvious.
(d) For x y, 2, 01 1( ) ( )= and x y, 1, 02 2( ) ( )= , we have

T x y T x y x y x yRe , , , , , 3 4 0,1 1 2 2 1 1 2 2( ( ) ( ) ( ) ( ) )⟨ − − ⟩ = / >

hence T is not decreasing.

(e) It is easy to see that F 0, 0T {( )}= and T x y x y, 58 8 ,1 2∥ ( )∥ ( )∥( )∥= /
/

. This implies that

T x y x y, 58 8 , 0n n
1 2∥ ( )∥ ( ) ∥( )∥= / →

/
as n → ∞.

By the previous theorems, we obtain some additional properties of the fixed-point equation x Tx= .

Theorem 2.3. Let X,( ∥ ∥)⋅ be a Banach space and Y be a nonempty closed and convex subset of X . Let
T Y Y: → be a convex orbital λ β,( )-Lipschitz operator with a closed graph, where β 1< . Then, the following
conclusions hold:
(a) T satisfies the following retraction-displacement condition

x x x
β

x Tx1
1

,∥ ( )∥ ∥ ∥− ≤

−

−
∗

for every x Y∈ ;
(b) the fixed-point equation x Tx= is Ulam-Hyers stable;
(c) if β 1 3< / and λ β

2
3 1( )

>
−

, then T has the Ostrowski stability property.

Proof. (a) By the proof of Theorem 2.1, the operator T Y Y:λ → , given by T x λ x λTx1λ ( )≔ − + is weakly
Picard. By graphic contraction principle, we obtain

x x x
k

x T x1
1

,λ∥ ( )∥ ∥ ∥− ≤

−

−
∗

for every x Y∈ , where T xλ
n

n N( )
∈

converges to x x( )∗ and k λ λβ1= − + . Since x T x λ x Txλ∥ ∥ ∥ ∥− = − , we
obtain that

x x x λ
k

x Tx
β

x Tx
1

1
1

,∥ ( )∥ ∥ ∥ ∥ ∥− ≤

−

− =

−

−
∗

for every x Y∈ . This proves thatT satisfies the c r,( )-retraction-displacement condition, where c β
1

1≔
−

and
r Y F: T→ is given by r x x x x Y,( ) ( )≔ ∈

∗ .
(b) Let ε 0> and y Y∈ such that y Ty ε∥ ∥− ≤ . Then, we have

y x y
β

y Ty ε
β

1
1 1

.∥ ( )∥ ∥ ∥− ≤

−

− ≤

−

∗

(c) By the graphic contraction principle, we know thatT has the Ostrowski stability property if k 1 3< / . This
means that λ λβ1 1 3− + < / , i.e., λ β

2
3 1( )

>
−

. Since β 1 3< / , we have 1β
2

3 1( )
<

−

, by where there exists λ 1≤

such that λ β
2

3 1( )
>

−

. Also, in this case, T is a k
k1 2−

-quasicontraction. □

8  Ovidiu Popescu



Theorem 2.4. Let X,( )⟨⋅⟩ be a Hilbert space,Y be a nonempty closed and convex subset of X , andT Y Y: →

be an operator satisfying all the conditions in Theorem 2.2. If x∗ is the unique fixed-point of T , then the
following conclusions hold:
(a) T satisfies the retraction-displacement condition

x x λ
k

x Tx
1

,∥ ∥ ∥ ∥− ≤

−

−
∗

for every x Y∈ , where k λ λ λ μ λ β1 2 12 2 2( ) ( )≔ − + − + ;
(b) the fixed-point equation x Tx= is Ulam-Hyers stable;
(c) the fixed-point equation x Tx= is well posed.

Proof.
(a) By graphic contraction principle and the proof of Theorem 2.2, we have

x x
k

x T x λ
k

x Tx1
1 1

,λ∥ ∥ ∥ ∥ ∥ ∥− ≤

−

− =

−

−
∗

for every x Y∈ .
(b) Similarly with (b) from Theorem 2.3.
(c) Let un n N( )

∈
be a sequence in Y such that u Tulim 0n n n∥ ∥− =

→∞
. Then, by (a), we have that

u x λ
k

u Tu
1

0n n n∥ ∥ ∥ ∥− ≤

−

− →
∗

as n → ∞. Hence, u xn →
∗ as n → ∞. □
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