

Research Article

Ovidiu Popescu*

Fixed-point results for convex orbital operators

<https://doi.org/10.1515/dema-2022-0184>

received July 10, 2022; accepted November 24, 2022

Abstract: The aim of this article is to introduce a new type of operator similar to those of A. Petrușel and G. Petrușel type (*Fixed point results for decreasing convex orbital operators*, J. Fixed Point Theory Appl. **23** (2021), no. 35) and prove some fixed-point theorems which generalize and complement several results in the theory of nonlinear operators.

Keywords: Hilbert space, graphic contraction, convex orbital Lipschitz operator, weakly Picard operator, fixed-point

MSC 2020: 47H10, 54H25

1 Introduction and preliminaries

We recall some important concepts for the fixed-point theory.

Definition 1.1. Let (X, d) be a metric space. Then, $T : X \rightarrow X$ is called a *Picard operator* if:

- (i) $F_T = \{x^*\}$, where $F_T = \{x \in X : x = T(x)\}$ is the fixed-point set of T ;
- (ii) the sequence of iterates $(T^n(x))_{n \in \mathbb{N}} \rightarrow x^*$ as $n \rightarrow \infty$, for all $x \in X$.

Definition 1.2. Let (X, d) be a metric space. Then, $T : X \rightarrow X$ is called a *weakly Picard operator* if, for any $x \in X$, the sequence of iterates $(T^n(x))_{n \in \mathbb{N}}$ converges to a fixed-point of T .

In this case, the mapping $T^\infty : X \rightarrow F_T$, given by $T^\infty := \lim_{n \rightarrow \infty} T^n(x)$ is a set retraction on F_T .

Definition 1.3. [1] Let (X, d) be a metric space and $T : X \rightarrow X$ be an operator such that F_T is nonempty. Let $r : X \rightarrow F_T$ be a set retraction. We say that T satisfies a *retraction-displacement condition* if there exists $c > 0$ such that for every $x \in X$

$$d(x, r(x)) \leq cd(x, T(x)).$$

Definition 1.4. Let (X, d) be a metric space, $T : X \rightarrow X$ be an operator such that F_T is nonempty, and $r : X \rightarrow F_T$ be a set retraction. Then:

- (i) the fixed-point equation $x = T(x)$ is called *well posed* in the sense of Reich and Zaslavski (see [2,3]) if for each $x^* \in F_T$ and any sequence $(u_n)_{n \in \mathbb{N}}$ in $r^{-1}(x^*)$ for which $d(u_n, T(u_n)) \rightarrow 0$ as $n \rightarrow \infty$, we have that $u_n \rightarrow x^*$ as $n \rightarrow \infty$.
- (ii) the operator T has the *Ostrowski property* (see [4,5]) if for each $x^* \in F_T$ and any sequence $(u_n)_{n \in \mathbb{N}}$ in $r^{-1}(x^*)$ for which $d(u_{n+1}, T(u_n)) \rightarrow 0$ as $n \rightarrow \infty$, we have that $u_n \rightarrow x^*$ as $n \rightarrow \infty$.

* Corresponding author: Ovidiu Popescu, Department of Mathematics and Computer Sciences, Transilvania University of Brașov, Brașov, Romania, e-mail: ovidiu.popescu@unitbv.ro

(iii) the fixed-point equation $x = T(x)$ is *Ulam-Hyers stable* (see [6,7]) if there exists $c > 0$ such that for every $\varepsilon > 0$ and every ε -fixed-point $y^* \in X$ of T (i.e., $d(y^*, T(y^*)) \leq \varepsilon$), there exists a fixed-point $x^* \in X$ of T such that $d(x^*, y^*) \leq c\varepsilon$.

Recently, Petrușel and Rus [8] proved the following important theorem :

Theorem 1.1. (Graphic contraction principle) *Let (X, d) be a complete metric space and $f : X \rightarrow X$ be a graphic k -contraction, i.e., there exists $k \in (0, 1)$ such that*

$$d(f(x), f^2(x)) \leq kd(x, f(x)),$$

for every $x \in X$.

If f has a closed graph, then:

- (1) *the sequence of iterates $(f^n(x_0))_{n \in \mathbb{N}}$ converges in (X, d) to a fixed-point $x^*(x_0)$ of f ;*
- (2) *$F_f = F_{f^n} \neq \emptyset$ for all $n \in \mathbb{N}^*$;*
- (3) *f is a weakly Picard operator;*
- (4) *$d(x, f^\infty(x)) \leq \frac{1}{1-k}d(x, f(x))$, for every $x \in X$, i.e., f is a $\frac{1}{1-k}$ -weakly Picard operator;*
- (5) *the fixed-point equation $x = f(x)$ is well posed in the sense of Reich and Zaslavski;*
- (6) *the fixed-point equation $x = f(x)$ is Ulam-Hyers stable;*
- (7) *if $k < 1/3$, then $d(f(x), f^\infty(x)) \leq \frac{k}{1-2k}d(x, f^\infty(x))$, for every $x \in X$, i.e., f is a $\frac{k}{1-2k}$ -quasicontraction;*
- (8) *if $k < 1/3$, then f has the Ostrowski stability property.*

Very recently, Petrușel and Petrușel [9] gave the following notion of convex orbital β -Lipschitz operator.

Definition 1.5. Let $(X, \|\cdot\|)$ be a normed space and Y be a nonempty and convex subset of X . Let $T : Y \rightarrow Y$ be an operator and $\lambda \in (0, 1]$. We say that T is a *convex orbital β -Lipschitz operator* if $\beta > 0$ and for any $x \in Y$

$$\|T(x) - T((1 - \lambda)x + \lambda T(x))\| \leq \beta\lambda\|x - T(x)\|.$$

They proved that this class of operators includes the Banach contractions, Kannan contractions, Ćirić-Reich-Rus contractions, Berinde contractions, nonexpansive operators, enriched (β, θ) contractions, and Lipschitz operators [10–16]. From now on, we will use the symbol Tx instead of $T(x)$. The main results in [9] are the following theorems:

Theorem 1.2. *Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space, Y be a nonempty closed and convex subset of X , and $T : Y \rightarrow Y$ be an operator with closed graph. We suppose that:*

- (i) *T is a convex orbital β -Lipschitz;*
- (ii) *T is decreasing, i.e., $\text{Re}(\langle Tu - Tv, u - v \rangle) \leq 0$, for every $u, v \in Y$.*

Then, there exists $\lambda \in (0, 1)$ such that, for every $x_0 \in Y$, the sequence $(x_n)_{n \in \mathbb{N}} \subset Y$, defined by

$$x_{n+1} = (1 - \lambda)x_n + \lambda Tx_n, n \in \mathbb{N},$$

converges to the unique fixed-point $x^ \in Y$ of T .*

Theorem 1.3. *Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space, Y be a nonempty closed and convex subset of X , and $T : Y \rightarrow Y$ be an operator satisfying all the assumptions in Theorem 1.2. If $x^* \in Y$ is the unique fixed-point of T , then the following conclusions hold:*

- (a) *T satisfies the following retraction-displacement condition*

$$\|x - x^*\| \leq (1 + k)\|x - Tx\|,$$

for every $x \in Y$, where $k := \frac{\beta}{\sqrt{1+\beta^2}}$;

- (b) *the fixed-point equation $x = Tx$ is Ulam-Hyers stable;*
- (c) *the fixed-point equation $x = Tx$ is well posed.*

Theorem 1.4. Let $(X, \langle \cdot \rangle)$ be a Hilbert space, Y be a nonempty closed and convex subset of X , and $T : Y \rightarrow Y$ be an operator satisfying all the assumptions in Theorem 1.2. If $\beta < \sqrt{\frac{5-2\sqrt{5}}{5}}$, then T is a quasicontraction.

In this article we will clarify and complement the notion of convex orbital β -Lipschitz, by introducing some new classes of convex orbital operators. Then similar results as Theorems 1.2, 1.3, and 1.4 for these new types of operators are proved.

2 Main results

Definition 2.1. [9] Let $(X, \|\cdot\|)$ be a normed space and Y be a nonempty and convex subset of X . Let $T : Y \rightarrow Y$ be an operator. We say that T is a *convex orbital β -Lipschitz operator* if there exists $\beta > 0$ such that for any $\lambda \in (0, 1]$, and for any $x \in Y$,

$$\|Tx - TT_\lambda x\| \leq \beta\lambda\|x - Tx\|,$$

where $T_\lambda x := (1 - \lambda)x + \lambda Tx$.

Definition 2.2. Let $(X, \|\cdot\|)$ be a normed space and Y be a nonempty and convex subset of X . Let $T : Y \rightarrow Y$ be an operator. We say that T is a *weak convex orbital Lipschitz operator* if for any $\lambda \in (0, 1]$ there exists $\beta > 0$ such that for any $x \in Y$,

$$\|Tx - TT_\lambda x\| \leq \beta\lambda\|x - Tx\|.$$

Definition 2.3. Let $(X, \|\cdot\|)$ be a normed space and Y be a nonempty and convex subset of X . Let $T : Y \rightarrow Y$ be an operator. We say that T is a *convex orbital (λ, β) -Lipschitz operator* if there exists $\lambda \in (0, 1]$ and $\beta > 0$ such that for any $x \in Y$

$$\|Tx - TT_\lambda x\| \leq \beta\lambda\|x - Tx\|.$$

Obviously, every convex orbital β -Lipschitz operator is a weak convex orbital Lipschitz operator and every weak convex orbital Lipschitz operator is a convex orbital (λ, β) -Lipschitz operator.

Example 2.1. (See Example 2.7 of [9]) Let $(X, \|\cdot\|)$ be a normed space, Y be a nonempty and convex subset of X , and $T : Y \rightarrow Y$ be an L -Lipschitz operator, i.e., $L > 0$ and for each $x, y \in Y$

$$\|Tx - Ty\| \leq L\|x - y\|.$$

Then, T is a convex orbital L -Lipschitz operator. Indeed, if we choose $y := T_\lambda x$ in the aforementioned inequality, we have that

$$\|Tx - TT_\lambda x\| \leq L\|x - T_\lambda x\| = L\lambda\|x - Tx\|,$$

for any $\lambda \in (0, 1]$ and for every $x \in Y$.

Example 2.2. (See Example 2.1 of [9]) Let $(X, \|\cdot\|)$ be a normed space, Y be a nonempty and convex subset of X , and $T : Y \rightarrow Y$ be an α -contraction, i.e., $\alpha \in (0, 1)$ and for each $x, y \in Y$

$$\|Tx - Ty\| \leq \alpha\|x - y\|.$$

Since every α -contraction is a Lipschitz operator with $L := \alpha$, then T is a convex orbital α -Lipschitz operator.

Example 2.3. (See Example 2.5 of [9]) Let $(X, \|\cdot\|)$ be a normed space, Y be a nonempty and convex subset of X , and $T : Y \rightarrow Y$ be a nonexpansive operator, i.e.,

$$\|Tx - Ty\| \leq \|x - y\|.$$

Since every nonexpansive operator is a Lipschitz operator with $L := 1$, then T is a convex orbital 1-Lipschitz operator.

Example 2.4. (See Example 2.6 of [9]) Let $(X, \|\cdot\|)$ be a normed space, Y be a nonempty and convex subset of X , and $T : Y \rightarrow Y$ be an enriched (b, θ) -contraction, i.e., there exist $b \geq 0$, $\theta \in [0, b + 1)$ such that for each $x, y \in Y$

$$\|b(x - y) + Tx - Ty\| \leq \theta\|x - y\|.$$

Then, T is a convex orbital $(b + \theta)$ -Lipschitz operator. Indeed, if we choose $y := T_\lambda x$ in the aforementioned relation, we obtain that

$$\|b\lambda(x - Tx) + Tx - TT_\lambda x\| \leq \theta\lambda\|x - Tx\|,$$

from which we obtain

$$\|Tx - T_\lambda x\| - b\lambda\|x - Tx\| \leq \theta\lambda\|x - Tx\|,$$

for any $\lambda \in (0, 1]$ and for every $x \in Y$. Hence, we obtain that

$$\|Tx - TT_\lambda x\| \leq (b + \theta)\lambda\|x - Tx\|.$$

Example 2.5. (See Example 2.2 of [9]) Let $(X, \|\cdot\|)$ be a normed space, Y be a nonempty and convex subset of X , and $T : Y \rightarrow Y$ be a Kannan γ -contraction, i.e., $\gamma \in [0, 1/2)$, and for each $x, y \in Y$,

$$\|Tx - Ty\| \leq \gamma[\|x - Tx\| + \|y - Ty\|].$$

Then, T is a weak convex orbital Lipschitz operator. Indeed, if we insert in the aforementioned inequality $y := T_\lambda x$, then we obtain for $\lambda \in (0, 1]$ and $x \in Y$ that

$$\|Tx - TT_\lambda x\| \leq \gamma[\|x - Tx\| + \|(1 - \lambda)x + \lambda Tx - TT_\lambda x\|] \leq \gamma[\|x - Tx\| + (1 - \lambda)\|x - Tx\| + \|Tx - TT_\lambda x\|].$$

Hence, we obtain

$$\|Tx - TT_\lambda x\| \leq \frac{\gamma(2 - \gamma)}{1 - \gamma}\|x - Tx\|.$$

Therefore, T is a weak convex orbital Lipschitz operator ($\beta = \frac{\gamma(2 - \gamma)}{\lambda(1 - \gamma)}$). Obviously, $\lim_{\lambda \rightarrow 0} \beta(\lambda) = \infty$, so T is not a convex orbital β -Lipschitz operator.

Example 2.6. (See Example 2.3 of [9]) Let $(X, \|\cdot\|)$ be a normed space, Y be a nonempty and convex subset of X , and $T : Y \rightarrow Y$ be a Čirić-Reich-Rus (α, γ) -contraction, i.e., $\alpha, \gamma \in \mathbf{R}_+$ with $\alpha + 2\gamma < 1$, and for each $x, y \in Y$,

$$\|Tx - Ty\| \leq \alpha\|x - y\| + \gamma[\|x - Tx\| + \|y - Ty\|].$$

Then, T is a weak convex orbital Lipschitz operator. Indeed, if we insert in the aforementioned inequality $y := T_\lambda x$, we obtain that

$$\|Tx - TT_\lambda x\| \leq \alpha\|x - T_\lambda x\| + \gamma[\|x - Tx\| + \|T_\lambda x - TT_\lambda x\|].$$

This implies

$$\|Tx - TT_\lambda x\| \leq \alpha\lambda\|x - Tx\| + \gamma[\|x - Tx\| + (1 - \lambda)\|x - Tx\| + \|Tx - TT_\lambda x\|].$$

Hence,

$$\|Tx - TT_\lambda x\| \leq \frac{\alpha\lambda + \gamma(2 - \lambda)}{1 - \gamma}\|x - Tx\|.$$

Therefore, T is a weak convex orbital Lipschitz operator ($\beta = \frac{\alpha\lambda + \gamma(2 - \lambda)}{\lambda(1 - \gamma)}$). Obviously, $\lim_{\lambda \rightarrow 0} \beta(\lambda) = \infty$, so T is not a convex orbital β -Lipschitz operator.

Example 2.7. (See Example 2.4 of [9]) Let $(X, \|\cdot\|)$ be a normed space, Y be a nonempty and convex subset of X , and $T : Y \rightarrow Y$ be a Berinde (α, L) -contraction, i.e., $\alpha, L \in \mathbf{R}_+$ with $\alpha < 1$, and for each $x, y \in Y$,

$$\|Tx - Ty\| \leq \alpha\|x - y\| + L\|y - Tx\|.$$

Then, T is a weak convex orbital Lipschitz operator. Indeed, if we insert in the aforementioned inequality $y := T_\lambda x$, we obtain that

$$\|Tx - TT_\lambda x\| \leq \alpha\|x - Tx\| + L\|T_\lambda x - Tx\| \leq \alpha\|x - Tx\| + L(1 - \lambda)\|x - Tx\|,$$

where we obtain for every $\lambda \in (0, 1]$ and each $x \in Y$

$$\|Tx - TT_\lambda x\| \leq (\alpha\lambda + L(1 - \lambda))\|x - Tx\|.$$

Therefore, T is a weak convex orbital Lipschitz operator $(\beta = \frac{\alpha\lambda + L(1 - \lambda)}{\lambda})$. Obviously, $\lim_{\lambda \rightarrow 0} \beta(\lambda) = \infty$, so T is not a convex orbital β -Lipschitz operator.

The following examples show that there exist convex orbital (λ, β) -Lipschitz operators, which are not weak convex orbital Lipschitz operators.

Example 2.8. Let $X = Y = \mathbf{R}$, $T : \mathbf{R} \rightarrow \mathbf{R}$ be a mapping defined by $Tx := -x$ if $x \neq 0$ and $Tx := 1$ if $x = 0$. We have $T_1 x = Tx$, $TT_1 x = T^2 x = x$ if $x \neq 0$ and $TT_1 x = T^2 x = -1$ if $x = 0$. Then, we obtain that $Tx - TT_1 x = -2x$ if $x \neq 0$, $Tx - TT_1 x = 2$ if $x = 0$, $x - Tx = 2x$ if $x \neq 0$, and $x - Tx = -1$ if $x = 0$. It is easy to see that the inequality $\|Tx - TT_1 x\| \leq 2\|x - Tx\|$ holds for every x , so T is a convex orbital $(1, 2)$ -Lipschitz operator. Moreover, $T_{1/2} x = (x + Tx)/2 = 0$ if $x \neq 0$ and $T_{1/2} x = 1/2$ if $x = 0$. Thus, $TT_{1/2} x = 1$ if $x \neq 0$, $TT_{1/2} x = -1/2$ if $x = 0$, $Tx - TT_{1/2} x = -x - 1$ if $x \neq 0$, and $Tx - TT_{1/2} x = 3/2$ if $x = 0$. For $x \neq 0$, the inequality $\|Tx - TT_{1/2} x\| \leq \beta/2\|x - Tx\|$ is equivalent to $|x + 1| \leq \beta|x|$. For $x \rightarrow 0$, we obtain a contradiction. Then, T is not a weak convex orbital Lipschitz operator.

Example 2.9. Let $X = Y = \mathbf{R}$, $T : \mathbf{R} \rightarrow \mathbf{R}$ be a mapping defined by $Tx := 1 + \frac{1}{x-1}$ if $x > 1$, $Tx := 2$ if $x \in [-1, 1]$, and $Tx := 1 + \frac{1}{-x-1}$ if $x < -1$. For $x > 1$, we have $T_1 x = Tx$, $TT_1 x = T^2 x = x$, $Tx - TT_1 x = 1 + \frac{1}{x-1} - x$, and $x - Tx = x - 1 - \frac{1}{x-1}$. Then, $\|Tx - TT_1 x\| \leq \|x - Tx\|$. If $x \in [-1, 1]$, we have $TT_1 x = T^2 x = 2$, $Tx - TT_1 x = 2 - x$ and $x - Tx = x - 2$, by where we obtain $\|Tx - TT_1 x\| \leq \|x - Tx\|$. For $x < -1$, we have $TT_1 x = T^2 x = -x$, $Tx - TT_1 x = 1 - \frac{1}{1+x} + x = \frac{x^2+2x}{1+x}$ and $x - Tx = x - 1 + \frac{1}{1+x} = \frac{x^2}{1+x}$. Since $1 + 2/x \in (-1, 1)$, we obtain $|x^2 + 2x| \leq |x^2|$, by where $\|Tx - TT_1 x\| \leq \|x - Tx\|$. Therefore, T is a convex orbital $(1, 1)$ -Lipschitz operator. Since $T_{1/2} \frac{1}{n} = 1 + \frac{1}{2n}$, $TT_{1/2} \frac{1}{n} = 1 + 2n$, $T \frac{1}{n} - TT_{1/2} \frac{1}{n} = 1 - 2n$, and $\frac{1}{n} - T \frac{1}{n} = \frac{1}{n} - 1$, the inequality $\|T \frac{1}{n} - TT_{1/2} \frac{1}{n}\| \leq (1/2)\beta \left\| \frac{1}{n} - T \frac{1}{n} \right\|$ is not satisfied for n sufficiently large. Hence, T is not a weak convex orbital Lipschitz operator. Also, it is easy to see that T has a closed graph.

In the following example, we present a weak convex orbital Lipschitz operator with a closed graph, which is not a convex orbital β -Lipschitz operator.

Example 2.10. Let $X = Y = \mathbf{R}$, $T : \mathbf{R} \rightarrow \mathbf{R}$ be a mapping defined by $Tx := 1/x$ if $x \neq 0$ and $Tx := 1$ if $x = 0$. Obviously, T has a closed graph. For $x \neq 0$, we have $T_1 x = (1 - \lambda)x + \frac{\lambda}{x} > 0$, $TT_1 x = \frac{x}{(1 - \lambda)x^2 + \lambda}$, $Tx - TT_1 x = \frac{\lambda(1 - x^2)}{x[(1 - \lambda)x^2 + \lambda]}$, and $x - Tx = \frac{x^2 - 1}{x}$. Taking $\beta := 1/\lambda$, we have $\frac{1}{(1 - \lambda)x^2 + \lambda} \leq \beta$, so $\frac{\lambda|1 - x^2|}{x[(1 - \lambda)x^2 + \lambda]} \leq \lambda\beta \frac{|x^2 - 1|}{|x|}$. Then, we obtain $\|Tx - TT_1 x\| \leq \lambda\beta\|x - Tx\|$. If $x = 0$, we have $T_1 x = \lambda$, $TT_1 x = \frac{1}{\lambda}$, $Tx - TT_1 x = 1 - \frac{1}{\lambda}$, and $x - Tx = -1$. Taking $\beta = \frac{1-\lambda}{\lambda^2}$, we obtain $\left|1 - \frac{1}{\lambda}\right| \leq \lambda\beta$, so $\|Tx - TT_1 x\| \leq \lambda\beta\|x - Tx\|$. Therefore, for any $\lambda \in (0, 1]$, there exists $\beta := \max\left\{\frac{1}{\lambda}, \frac{1-\lambda}{\lambda^2}\right\}$ such that $\|Tx - TT_1 x\| \leq \lambda\beta\|x - Tx\|$, i.e., T is a weak convex orbital Lipschitz operator. Now, if we take $x = \lambda = 1/n$ with $n \geq 2$, we have $Tx - TT_1 x = \frac{n^3 - n}{n^2 + n - 1}$, $x - Tx = \frac{1 - n^2}{n}$. Then, the

inequality $\|Tx - TT_\lambda x\| \leq \lambda\beta\|x - Tx\|$ is equivalent to the inequality $\frac{n^3}{n^2 + n - 1} \leq \beta$, which is not satisfied for n sufficiently large. Hence, T is not a convex orbital β -Lipschitz operator.

Now, we give similar results of Theorems 1.2, 1.3, and 1.4 (which hold for convex orbital β -Lipschitz operators) for convex orbital (λ, β) -Lipschitz operators.

Theorem 2.1. *Let $(X, \|\cdot\|)$ be a Banach space and Y be a nonempty closed and convex subset of X . Let $T : Y \rightarrow Y$ be a convex orbital (λ, β) -Lipschitz operator with closed graph, where $\beta < 1$. Then, for every $x_0 \in Y$, the sequence $(x_n)_{n \in N} \subset Y$, defined by*

$$x_{n+1} = (1 - \lambda)x_n + \lambda Tx_n, n \in N,$$

converges to a fixed-point $x^(x_0)$ of T .*

Proof. Let the operator $T_\lambda : Y \rightarrow Y$ defined by

$$T_\lambda := (1 - \lambda)x + \lambda Tx, x \in Y.$$

It is easy to see that $F_T = F_{T_\lambda}$ and T_λ has a closed graph. For every $x, y \in Y$, we have

$$\|T_\lambda x - T_\lambda y\| = \|(1 - \lambda)(x - y) + \lambda(Tx - Ty)\| \leq (1 - \lambda)\|x - y\| + \lambda\|Tx - Ty\|.$$

Taking $y := T_\lambda x$, we obtain

$$\begin{aligned} \|T_\lambda x - T_\lambda^2 x\| &\leq (1 - \lambda)\|x - T_\lambda x\| + \lambda\|Tx - TT_\lambda x\| \\ &\leq (1 - \lambda)\|x - T_\lambda x\| + \beta\lambda^2\|x - Tx\| \\ &= (1 - \lambda)\|x - T_\lambda x\| + \beta\lambda\|x - T_\lambda x\| \\ &= (1 - \lambda + \beta\lambda)\|x - T_\lambda x\|. \end{aligned}$$

Since $\beta < 1$, if we denote $k := 1 - \lambda + \beta\lambda$, then $k < 1$ and

$$\|T_\lambda x - T_\lambda^2 x\| \leq k\|x - T_\lambda x\|,$$

for every $x \in Y$. This shows that $T_\lambda : Y \rightarrow Y$ is a graphic k -contraction. Hence, by the graphic contraction principle, T_λ is a weakly Picard operator. Since $F_T = F_{T_\lambda}$, we have $F_T \neq \emptyset$ and the sequence $(T_\lambda^n x_0)_{n \in N}$ converges to $T_\lambda^\infty x_0 := x^*(x_0) \in F_T$, for every $x_0 \in Y$. \square

The following theorem is our main result.

Theorem 2.2. *Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space, Y be a nonempty closed and convex subset of X , and $T : Y \rightarrow Y$ be an operator with a closed graph. We suppose that:*

- (i) *T is a convex orbital (λ, β) -Lipschitz operator with $\beta \geq 1$;*
- (ii) *$\operatorname{Re}(\langle Tu - Tv, u - v \rangle) \leq \mu \|u - v\|^2$, for every $u, v \in Y$, where $\mu < \frac{2 - \lambda(1 + \beta^2)}{2(1 - \lambda)}$.*

Then, for every $x_0 \in Y$, the sequence $(x_n)_{n \in N} \subset Y$, defined by

$$x_{n+1} = (1 - \lambda)x_n + \lambda Tx_n, n \in N,$$

converges to the unique fixed-point $x^ \in Y$ of T .*

Proof. Consider the operator $T_\lambda : Y \rightarrow Y$ defined by

$$T_\lambda := (1 - \lambda)x + \lambda Tx, x \in Y.$$

Obviously, $F_T = F_{T_\lambda}$ and T_λ has a closed graph. By using (ii), for every $x, u \in Y$, we have:

$$\begin{aligned} \|T_\lambda x - T_\lambda u\|^2 &= \|(1 - \lambda)(x - u) + \lambda(Tx - Tu)\|^2 \\ &\leq (1 - \lambda)^2\|x - u\|^2 + \lambda^2\|Tx - Tu\|^2 + 2\lambda(1 - \lambda)\operatorname{Re}(\langle Tx - Tu, x - u \rangle) \\ &\leq (1 - \lambda)^2\|x - u\|^2 + \lambda^2\|Tx - Tu\|^2 + 2\lambda(1 - \lambda)\mu\|x - u\|^2. \end{aligned}$$

Taking $u := T_\lambda x$ in the aforementioned inequality, we obtain

$$\begin{aligned}\|T_\lambda x - T_\lambda^2 x\|^2 &\leq [(1 - \lambda)^2 + 2\lambda(1 - \lambda)\mu]\|x - T_\lambda x\|^2 + \lambda^2 \|Tx - TT_\lambda x\|^2 \\ &= [(1 - \lambda)^2 + 2\lambda(1 - \lambda)\mu]\|x - T_\lambda x\|^2 + \lambda^4 \beta^2 \|x - Tx\|^2 \\ &= [(1 - \lambda)^2 + 2\lambda(1 - \lambda)\mu]\|x - T_\lambda x\|^2 + \lambda^2 \beta^2 \|x - T_\lambda x\|^2 \\ &= [(1 - \lambda)^2 + 2\lambda(1 - \lambda)\mu + \lambda^2 \beta^2]\|x - T_\lambda x\|^2.\end{aligned}$$

If we denote by $k := \sqrt{(1 - \lambda)^2 + 2\lambda(1 - \lambda)\mu + \lambda^2 \beta^2}$, we have by (ii) that $k < 1$ and

$$\|T_\lambda x - T_\lambda^2 x\| \leq k\|x - T_\lambda x\|,$$

for every $x \in Y$. Thus, by graphic contraction principle, T_λ is a weakly Picard operator and the sequence $(T_\lambda^n x_0)_{n \in \mathbb{N}}$ converges to $T_\lambda^\infty x_0 := x^*(x_0) \in F_T$, for every $x_0 \in Y$.

Now, let us suppose that there exist $x^*, y^* \in F_T$ with $x^* \neq y^*$. Then, we have $x^* = Tx^* = T_\lambda x^*$ and $y^* = Ty^* = T_\lambda y^*$. Taking $u := x^*$ and $v := y^*$ in (ii), we obtain

$$\operatorname{Re}(\langle Tx^* - Ty^*, x^* - y^* \rangle) \leq \mu \|x^* - y^*\|^2.$$

Hence,

$$\|x^* - y^*\|^2 \leq \mu \|x^* - y^*\|^2.$$

Since $\beta \geq 1$, we have $2 - \lambda(1 + \beta)^2 \leq 2(1 - \lambda)$, and hence, $\mu < 1$. Therefore, $\|x^* - y^*\| = 0$, which is a contradiction. Thus, $F_T = F_{T_\lambda} = \{x^*\}$ and T_λ is a Picard operator. \square

We will illustrate the aforementioned theorem by the following example:

Example 2.11. Let $T : R^2 \rightarrow R^2$ be a mapping defined by

$$T(x, y) := \frac{3}{4}(x - y, x + y).$$

Then:

- (a) T is a convex orbital $(1/2, 3\sqrt{2}/2)$ -Lipschitz operator;
- (b) T satisfies (ii) of Theorem 2.2 with $\mu = 3/4$;
- (c) T is continuous on R^2 ;
- (d) T is not decreasing on R^2 ;
- (e) $F_T = \{(0, 0)\}$ and $\|T_{1/2}^n(x, y)\| = (\sqrt{58}/8)^n\|(x, y)\| \rightarrow 0$ as $n \rightarrow \infty$.

- (a) For $(x, y) \in R^2$, we have:

$$T_{1/2}(x, y) = (1/2)(x, y) + (1/2)T(x, y) = (1/8)(7x - 3y, 3x + 7y),$$

$$TT_{1/2}(x, y) = (3/16)(2x - 5y, 5x + 2y).$$

Hence, we obtain:

$$T(x, y) - TT_{1/2}(x, y) = (3/16)(2x + y, -x + 2y).$$

Since $(x, y) - T(x, y) = (1/4)(x + 3y, x - 3y)$, we obtain:

$$\|T(x, y) - TT_{1/2}(x, y)\| = (3\sqrt{5}/16)\sqrt{x^2 + y^2}$$

and

$$\|(x, y) - T(x, y)\| = (\sqrt{10}/4)\sqrt{x^2 + y^2}.$$

Therefore, we have

$$\|T(x, y) - TT_{1/2}(x, y)\| = (1/2)(3\sqrt{2}/4)\|(x, y) - T(x, y)\|.$$

Thus, T is a convex orbital $(1/2, 3\sqrt{2}/4)$ -Lipschitz operator.

(b) If $(x_1, y_1), (x_2, y_2) \in R^2$, then we have:

$$T(x_1, y_1) - T(x_2, y_2) = (3/4)(x_1 - x_2 - (y_1 - y_2), x_1 - x_2 + y_1 - y_2).$$

Hence,

$$\begin{aligned} \operatorname{Re}(\langle T(x_1, y_1) - T(x_2, y_2), (x_1, y_1) - (x_2, y_2) \rangle) \\ = (3/4)[(x_1 - x_2) - (y_1 - y_2)](x_1 - x_2) + (3/4)[x_1 - x_2 + y_1 - y_2](y_1 - y_2) \\ = (3/4)[(x_1 - x_2)^2 + (y_1 - y_2)^2] = (3/4)\|(x_1, y_1) - (x_2, y_2)\|^2. \end{aligned}$$

Therefore, T satisfies (ii) of Theorem 2.2 with $\mu = 3/4$. We note that $\mu < \frac{2 - \lambda(1 + \beta^2)}{2(1 - \lambda)} = 15/16$.

(c) It is obvious.

(d) For $(x_1, y_1) = (2, 0)$ and $(x_2, y_2) = (1, 0)$, we have

$$\operatorname{Re}(\langle T(x_1, y_1) - T(x_2, y_2), (x_1, y_1) - (x_2, y_2) \rangle) = 3/4 > 0,$$

hence T is not decreasing.

(e) It is easy to see that $F_T = \{(0, 0)\}$ and $\|T_{1/2}(x, y)\| = (\sqrt{58}/8)\|(x, y)\|$. This implies that $\|T_{1/2}^n(x, y)\| = (\sqrt{58}/8)^n\|(x, y)\| \rightarrow 0$ as $n \rightarrow \infty$.

By the previous theorems, we obtain some additional properties of the fixed-point equation $x = Tx$.

Theorem 2.3. *Let $(X, \|\cdot\|)$ be a Banach space and Y be a nonempty closed and convex subset of X . Let $T : Y \rightarrow Y$ be a convex orbital (λ, β) -Lipschitz operator with a closed graph, where $\beta < 1$. Then, the following conclusions hold:*

(a) *T satisfies the following retraction-displacement condition*

$$\|x - x^*(x)\| \leq \frac{1}{1 - \beta}\|x - Tx\|,$$

for every $x \in Y$;

(b) *the fixed-point equation $x = Tx$ is Ulam-Hyers stable;*

(c) *if $\beta < 1/3$ and $\lambda > \frac{2}{3(1 - \beta)}$, then T has the Ostrowski stability property.*

Proof. (a) By the proof of Theorem 2.1, the operator $T_\lambda : Y \rightarrow Y$, given by $T_\lambda x := (1 - \lambda)x + \lambda Tx$ is weakly Picard. By graphic contraction principle, we obtain

$$\|x - x^*(x)\| \leq \frac{1}{1 - k}\|x - T_\lambda x\|,$$

for every $x \in Y$, where $(T_\lambda^n x)_{n \in \mathbb{N}}$ converges to $x^*(x)$ and $k = 1 - \lambda + \lambda\beta$. Since $\|x - T_\lambda x\| = \lambda\|x - Tx\|$, we obtain that

$$\|x - x^*(x)\| \leq \frac{\lambda}{1 - k}\|x - Tx\| = \frac{1}{1 - \beta}\|x - Tx\|,$$

for every $x \in Y$. This proves that T satisfies the (c, r) -retraction-displacement condition, where $c := \frac{1}{1 - \beta}$ and $r : Y \rightarrow F_T$ is given by $r(x) := x^*(x)$, $x \in Y$.

(b) Let $\varepsilon > 0$ and $y \in Y$ such that $\|y - Ty\| \leq \varepsilon$. Then, we have

$$\|y - x^*(y)\| \leq \frac{1}{1 - \beta}\|y - Ty\| \leq \frac{\varepsilon}{1 - \beta}.$$

(c) By the graphic contraction principle, we know that T has the Ostrowski stability property if $k < 1/3$. This means that $1 - \lambda + \lambda\beta < 1/3$, i.e., $\lambda > \frac{2}{3(1 - \beta)}$. Since $\beta < 1/3$, we have $\frac{2}{3(1 - \beta)} < 1$, by where there exists $\lambda \leq 1$ such that $\lambda > \frac{2}{3(1 - \beta)}$. Also, in this case, T is a $\frac{k}{1 - 2k}$ -quasicontraction. \square

Theorem 2.4. Let $(X, \langle \cdot \rangle)$ be a Hilbert space, Y be a nonempty closed and convex subset of X , and $T : Y \rightarrow Y$ be an operator satisfying all the conditions in Theorem 2.2. If x^* is the unique fixed-point of T , then the following conclusions hold:

(a) T satisfies the retraction-displacement condition

$$\|x - x^*\| \leq \frac{\lambda}{1 - k} \|x - Tx\|,$$

for every $x \in Y$, where $k := \sqrt{(1 - \lambda)^2 + 2\lambda(1 - \lambda)\mu + \lambda^2\beta^2}$;

(b) the fixed-point equation $x = Tx$ is Ulam-Hyers stable;

(c) the fixed-point equation $x = Tx$ is well posed.

Proof.

(a) By graphic contraction principle and the proof of Theorem 2.2, we have

$$\|x - x^*\| \leq \frac{1}{1 - k} \|x - T_\lambda x\| = \frac{\lambda}{1 - k} \|x - Tx\|,$$

for every $x \in Y$.

(b) Similarly with (b) from Theorem 2.3.

(c) Let $(u_n)_{n \in \mathbb{N}}$ be a sequence in Y such that $\lim_{n \rightarrow \infty} \|u_n - Tu_n\| = 0$. Then, by (a), we have that

$$\|u_n - x^*\| \leq \frac{\lambda}{1 - k} \|u_n - Tu_n\| \rightarrow 0$$

as $n \rightarrow \infty$. Hence, $u_n \rightarrow x^*$ as $n \rightarrow \infty$. □

Acknowledgements: The author would like to thank the referees for their valuable comments and suggestions that improved the presentation of this article.

Funding information: None declared.

Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The author states no conflict of interest.

References

- [1] V. Berinde, A. Petrușel, I. A. Rus, and M. A. Șerban, *The retraction-displacement condition in the theory of fixed-point equation with a convergent iterative algorithm*, in: T. Rassias, V. Gupta (eds.) *Mathematical Analysis, Approximation Theory and Their Applications*, Springer, Cham, 2016.
- [2] S. Reich and A. J. Zaslavski, *Well-posedness of fixed-point problems*, East J. Math. Sci. Special Volume (Functional Analysis and its Applications), Part III, (2001), 393–401.
- [3] S. Reich and A. J. Zaslavski, *Genericity in Nonlinear Analysis*, Springer, New York, 2014.
- [4] A. M. Ostrowski, *The round off stability of iterations*, Z. Angew. Math. Mech. **47** (1967), 77–81.
- [5] I. A. Rus and M. A. Șerban, *Basic problems of the metric fixed-point theory and the relevance of a metric fixed-point theorem*, Carpathian J. Math. **29** (2013), 239–258.
- [6] I. A. Rus, *Results and problems in Ulam stability of operatorial equations and inclusions*, in: T. Rassias (ed.) *Handbook of Functional Equations*, Springer, New York, 2014.
- [7] I. A. Rus, *Remarks on Ulam stability of the operatorial equations*, Fixed Point Theory **10**, (2009), 305–320.
- [8] A. Petrușel and I. A. Rus, *Graphic contraction principle and applications*, In: T. M. Rassias, P. M. Pardalos (eds.), *Mathematical Analysis and Applications*, Springer, Cham, 2019.
- [9] A. Petrușel and G. Petrușel, *Fixed point results for decreasing convex orbital operators*, J. Fixed Point Theory Appl. **23** (2021), no. 35.

- [10] V. Berinde and M. Păcurar, *Approximating fixed-points of enriched contractions in Banach spaces*, J. Fixed Point Theory Appl. **22** (2020), no. 38.
- [11] Lj. B.Ciric, *A generalization of Banach's contraction principle*, Proc. Am. Math. Soc. **45** (1974), 267–273.
- [12] W. A. Kirk and B. Sims (eds.), *Handbook of Metric Fixed Point Theory*, Kluwer Academic Publishers, Dordrecht, 2001.
- [13] S. Reich, *Some remarks concerning contractions mappings*, Can. Math. Bull. **14** (1971), 121–124.
- [14] S. Reich, *Fixed point of contractive functions*, Boll. Un. Mat. Ital. **5** (1972), 26–42.
- [15] I. A. Rus, A. Petrușel, and G. Petrușel, *Fixed Point Theory*, Cluj University Press, Cluj-Napoca, 2008.
- [16] E. Llorens-Fuster, *Partially nonexpansive mappings*, Adv. Theory Nonlinear Analysis Appl. **6** (4) (2002), 565–573.