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Abstract: In this article, we the study generalized family of positive linear operators based on two para-
meters, which are a broad family of many well-known linear positive operators, e.g., Baskakov-Durrmeyer,
Baskakov-Szász, Szász-Beta, Lupaş-Beta, Lupaş-Szász, genuine Bernstein-Durrmeyer, and Pǎltǎnea. We
first find direct estimates in terms of the second-order modulus of continuity, then we find an estimate of
error in the Ditzian-Totik modulus of smoothness. Then we discuss the rate of approximation for functions
in the Lipschitz class. Furthermore, we study the pointwise Grüss-Voronovskaja-type result and also estab-
lish the Grüss-Voronovskaja-type asymptotic formula in quantitative form.
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1 Introduction

In approximation theory, linear positive operators (LPO) play a vital contribution to approximate functions
of various classes. In this direction, several operators were constructed by various researchers, but here we
mention the operators related to work, namely, Miheşan-Durrmeyer [1], summation-integral type [2,3] and
references therein. The researchers are attempting to modify the order of approximation of their operators
as well as study their local and global approximation results.

Suppose Π 0,2[ )∞ is the set of all functions ζ that are real-valued and defined on 0,[ )∞ such that
ζ y M y1ζ

2∣ ( )∣ ( )≤ + , where a constant Mζ is dependent on ζ and M 0ζ > . In addition, let 0,2[ )∞� denote the
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It was shown (see [4]) that for every ζ 0,2[ )∈ ∞
∗

� , there hold:

ζ δlim Ω , 0
δ 0

( ) =

→

and

ζ lδ l δ ζ δ lΩ , 2 1 1 Ω , , 0,2( ) ( )( ) ( )≤ + + > (1.1)

where ζ δΩ ,( ) is the weighted modulus of continuity, given by
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Using the above definition and in view of (1.1), we may write
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Recently, Gupta [5] studied the general class of family of LPO for ζ 0,2[ )∈ ∞� for parameters ρ τ, 0>

as:
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having rising factorial τ τ τ τ ν1 1ν( ) ( ) ( )= + … + − and τ 10( ) = (also see [6]). We see that this sequence of
LPO reproduces linear functions.

Stancu [7] presented the modification of renowned Bernstein operators by using real parameters and
discussed some approximation properties. Inspired from this modification, most recently, Alotaibi et al. [8],
Milovanovic et al. [9], Mohiuddine et al. [10], and Mohiuddine and Özger [11] defined and discussed the
Durrmeyer-Stancu, Stancu-type modification of Szász-Kantorovich, α-Baskakov-Kantorovich, and α-Bern-
stein-Kantorovich operators, respectively.

Motivated by the study of the above operators and their order of convergence, in the proceeding
section, we will first define the Stancu kind modification of (1.3) and then moment estimates of our newly
defined operators and their bound. An interesting property of LPO is to find the estimate of their differences
using K-functional approach and in terms of appropriate modulus of continuity, so, in Section 3, we discuss
the rate of convergence of our operators, i.e., estimation of error in terms of the usual modulus of continuity
of second order as well as in terms of Ditzian-Totik modulus of smoothness using Peetre’s K-functional
approach. For more details, we refer to [12–22].

In [23], Grüss introduced an inequality, nowadays called Grüss inequality, in which he discusses the
difference between the product of the integrals of two functions and the integral of the product of the same
functions. Furthermore, Andrica and Badea [24] studied Grüss inequality by taking into account positive
linear functionals. Acu et al. [25] extended this inequality for the Bernstein operators, convolution-type
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operators, and Hermite-Fejer interpolation operators. Motivated by the study in this direction (cf. [25–28]),
it is very interesting topic to study Grüss-Voronovskaja asymptotic result for general family of our newly
aforementioned operators. In continuation, we derive the Grüss-Voronovskaja-type approximation theorem
and also establish Grüss-Voronovskaja-type asymptotic result in quantitative form in the last section.

2 Construction of operators and estimates of moments

For real parameters a b a b, 0( )≤ ≤ , we define the Stancu generalization of operators (1.3) as follows:

ζ y y v ζ nv a
n b

v y ζ a
n b

y, ϒ ϒ d ϒ , 0.n τ
σ ρ a b

ν
n ν
τ

n ν
σ ρ

n
τ

,
, , ,

1
,

0

, 1
1,

,0L ( ) ( ) ( ) ⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

∫∑=

+

+

+

+

≥

=

∞
∞

−

+ (2.1)

For specific values a b 0= = in (2.1), we obtain
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which is (1.3).
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We can obtain the following lemma with the help of Remark 4 of [5].

Lemma 1. The r-th moment is defined as follows:
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Remark 2. We have
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3 Direct results

We start this section by discussing the pointwise convergence theorem for (2.1).

Theorem 1. Let ζ 0,2[ )∈ ∞� . Then, for each y 0,[ )∈ ∞ , we have

ζ y ζ ylim , .
n

n τ
σ ρ a b

,
, , ,L ( ) ( )=

→∞

(3.1)

Proof. From Lemma 1, it is evident that

e y y mlim , , 0, 1, 2.
n

n τ
σ ρ a b

i
m

,
, , ,L ( ) = =

→∞

Hence, (3.1) follows by applying the universal Korovkin theorem (see [29]). □
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We are now ready to estimate the error of approximation by (2.1) in terms of first- and second-order
moduli of continuity.

Theorem 2. If g ¯ 0,B[ )∈ ∞� and y 0,[ )∈ ∞ , then
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In view of κ g δ ω g δ, , ,2 2( ) ( )≤ we obtain
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For the choice of a b 0= = in the last Theorem 2, we obtain the following corollary:
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For ζ ¯ 0,B[ )∈ ∞� and δ 0,> the Ditzian-Totik modulus of smoothness of second order is defined as
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Now, we estimate an error in terms of weighted Ditzian-Totik modulus of smoothness using κ-func-
tional approach.
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ψ y
λ y

κ ζ
λ y λ y

φ y
ω ζ

n b

, 4 ,
4

4 ,
4

, 1

4 ,
4

, 1 ,

n τ
σ ρ a b

φ
n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

φ
n τ
σ ρ a b

n τ
σ ρ a b

ψ n τ
σ ρ a b

φ
n τ
σ ρ a b

n τ
σ ρ a b

ψ

,
, , ,

2,
, ,2
, , , ,

, ,1
, , , , 2

2
, ,1
, , ,

2,
, ,2
, , , ,

, ,1
, , , , 2

2 , ,1
, , ,

2,
, ,2
, , , ,

, ,1
, , , , 2

2

L

⎜ ⎟

∣ ( ) ( )∣
⎛

⎝
⎜

( ) ( ( ))

( )

⎞

⎠
⎟

⎛

⎝
⎜ ( )

( )

( )

⎞

⎠
⎟ ( )

⎛

⎝
⎜

( ) ( ( ))

( )

⎞

⎠
⎟

⎛

⎝ ( )
∣ ( )∣⎞

⎠

⎛

⎝
⎜

( ) ( ( ))

( )

⎞

⎠
⎟

⎛
⎝

⎞
⎠

− ≤

+

+ + −

≤

+

+

≤

+

+

+

∗ ∗

∗ ∗

∗ ∗

in view of Remark 2.
Using the equivalence between κ ζ δ,φ2,

2( ) and ω ζ δ, ,φ
2( ) the theorem follows. □

We consider the Lipschitz-type space (see [32]) for parameters c d, 0> to investigate the approximation
of functions as follows:

ζ ζ v ζ y M v y
v cy y

v yLip ϱ 0, :
d

, , 0, ,M
c d,

ϱ

2 ϱ
2

( )
⎧

⎨
⎩

[ ) ∣ ( ) ( )∣
∣ ∣

( )
[ )

⎫

⎬
⎭

( )
= ∈ ∞ − ≤

−

+ +

∈ ∞�

where a constant M 0> and 0 ϱ 1.< ≤

The proceeding result gives the degree of approximation for ζn τ
σ ρ a b

,
, , ,L ( ) for ζ Lip ϱ .M

c d, ( )( )
∈

Theorem 4. Let 0 ϱ 1< ≤ and ζ Lip ϱ .M
a b, ( )( )

∈ Then,

ζ y ζ y M
λ y
cy y

y,
d

0 .n τ
σ ρ a b n τ

σ ρ a b

,
, , , , ,2

, , ,

2

ϱ 2

L∣ ( ) ( )∣
⎛

⎝
⎜

( ) ⎞

⎠
⎟ ( )− ≤

+

∀ >

∕

Proof. We first consider to obtain our result for ϱ 1= . Then, for ζ Lip ϱM
c d, ( )( )

∈ and y 0> , we have

ζ y ζ y ζ v ζ y y

M v y
v cy y

y

M
v cy y

v y y

, ,

d
,

d
, ,

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , ,

,
, , ,

2 1 2

2 1 2 ,
, , ,

L L

L

L

⎜ ⎟

∣ ( ) ( )∣ (∣ ( ) ( )∣ )

⎛

⎝

∣ ∣

( )
⎞

⎠

( )
(∣ ∣ )

− ≤ −

≤

−

+ +

≤

+ +

−

∕

∕

Modified summation-integral type operators  7



since

v cy y cy y
1

d
1

d
.2 2

+ +

≤

+

Using Cauchy’s Schwarz inequality together with Lemma 1, we obtain

ζ y ζ y M
cy y

v y y M
λ y
cy y

,
d

,
d

.n τ
σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

,
, , ,

2 1 2 ,
, , , 2 1 2 , ,2

, , ,

2

1 2

L L∣ ( ) ( )∣
( )

( (( ) ))
⎛

⎝
⎜

( ) ⎞

⎠
⎟− ≤

+

− ≤

+
∕

∕

∕

Thus, result is true for ϱ 1.=

Now, let us prove the result for the case 0 ϱ 1.< < So,

ζ y ζ y ζ v ζ y y

M v y
v cy y

y

M
cy y

v y y

, ,

d
,

d
, .

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , ,

,
, , ,

ϱ

2 ϱ 2

2 ϱ 2 ,
, , , ϱ

L L

L

L

⎜ ⎟

∣ ( ) ( )∣ (∣ ( ) ( )∣ )

⎛

⎝

∣ ∣

( )
⎞

⎠

( )
(∣ ∣ )

− ≤ −

≤

−

+ +

≤

+

−

∕

∕

In view of Lemma 1 and Hölder’s inequality with p 1
ϱ= and q 1

1 ϱ=
−

, we obtain

ζ y ζ y ζ v ζ y y M
cy y

v y y, ,
d

, .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , ,

2 ϱ 2 ,
, , , ϱL L L∣ ( ) ( )∣ (∣ ( ) ( )∣ )

( )
( (∣ ∣ ))− ≤ − ≤

+

−
∕

It follows from the Cauchy’s Schwarz inequality and Lemma 1 that

ζ y ζ y M
λ x
cy y

,
d

,n τ
σ ρ a b n τ

σ ρ a b

,
, , , , ,2

, , ,

2

ϱ 2

L∣ ( ) ( )∣
⎛

⎝
⎜

( ) ⎞

⎠
⎟− ≤

+

∕

which completes the proof. □

In the last result of this section, we consider the Lipschitz-type maximal function of order ϱ (see [33]) as

ω ζ y ζ v ζ y
v y

y˜ , sup , 0, and ϱ 0, 1
v y v

ϱ
, 0,

ϱ( )
∣ ( ) ( )∣

∣ ∣
[ ) ( ]

[ )

=

−

−

∈ ∞ ∈

≠ ∈ ∞

(3.6)

to study the local direct estimate for (2.1).

Theorem 5. Let 0 ϱ 1< ≤ and ζ C 0, .B[ )∈ ∞ Then,

ζ y ζ y Cω ζ y λ y y, ˜ , 0, .n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

ϱ , ,2
, , , ϱ

2L∣ ( ) ( )∣ ( )( ( )) ( [ ))− ≤ ∀ ∈ ∞

Proof. From (3.6), we have

ζ v ζ y ω ζ y v y˜ ,ϱ
ϱ∣ ( ) ( )∣ ( )∣ ∣− ≤ −

and

ζ y ζ y ζ v ζ y y ω ζ y v y y, , ˜ , , .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , ,

ϱ ,
, , , ϱL L L∣ ( ) ( )∣ (∣ ( ) ( )∣ ) ( ) (∣ ∣ )− ≤ − ≤ −

It follows by using Hölder’s inequality with

p
p p

2
ϱ

, 1 1 1
1

2 1
= = −

and Lemma 1 that

ζ y ζ y ω ζ y v y y ω ζ y λ y, ˜ , , ˜ , .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

ϱ ,
, , , 2 ϱ 2

ϱ , ,2
, , , ϱ

2L L∣ ( ) ( )∣ ( )( (( ) )) ( )( ( ))− ≤ − ≤
∕

Consequently, the proof follows. □
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4 Grüss-Voronovskaja-type asymptotic result

We establish the Grüss-Voronovskaja-type theorem for (2.1). First, we derive a Grüss-type approximation
theorem and then prove the Grüss-Voronovskaja-type asymptotic result.

The weighted modulus of continuity is given as follows:

ζ δ ζ y ξ ζ y
ξ y

Ω , sup
1 1ξ δ y0 , 0,

2 2( )
( ) ( )

( )( )[ )

=

+ −

+ +< < ∈ ∞

for the functions ζ 0,2[ )∈ ∞
∗

� .

Theorem 6. If ζ p ζ p, , ,2 2, and ζg 0,2[ )∈ ∞
∗

� then for fixed y 0,≥ there holds:

ζp y ζ y p y x y, , , ,n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

ζ p,
, , ,

,
, , ,

,
, , ,L L L∣ ( ) ( ) ( )∣ ( ) ( )− ≤ ℘ ℘

where

y y ζ λ y C ζ y ζ λ y32 1 Ω , 32 1 1 Ω , ,ζ n τ
σ ρ a b

n τ
σ ρ a b2 2

, ,4
, , , 1 4

2
2 2

, ,4
, , , 1 4( ) ( ) ( ( ( )) ) ( ) ( ) ( ( ( )) )℘ = + + + ‖ ‖ +

∕ ∕

yp( )℘ is the analogue of yζ ( )℘ , and C is a constant.

Proof. Define ζ p y ζp x ζ y p y, , , , , .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , ,

,
, , ,

,
, , ,L L L L( ) ( ) ( ) ( )= − Using Cauchy-Schwarz inequality,

one obtains

ζ p y ζ ζ y p p y, , , , , , .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , ,

,
, , ,L L L∣ ( )∣ ( ) ( )≤

In view of (1.2), we reach to

ζ y ζ y y δ ζ δ z y
δ

z y y, 2 1 1 Ω , 1 1 , .n τ
σ ρ a b

n τ
σ ρ a b

,
, , , 2 2

,
, , , 2L L ⎜ ⎟∣ ( ) ( )∣ ( )( ) ( ) ⎛

⎝

⎛
⎝

∣ ∣
⎞
⎠

( ( ) ) ⎞

⎠
− ≤ + + × +

−

+ − (4.1)

Let us define y z δ z y, , 1 1 .z y
δ

2( ) ( ( ) )
∣ ∣

( )∅ ≔ + + −
− So,

y z δ
δ z y δ

δ z y
δ

z y δ
, ,

2 1 ,

2 1 , .

2

2
4

4

( )
⎧

⎨
⎩

( ) ∣ ∣

( )
( )

∣ ∣
∅ ≤

+ − <

+

−

− ≥

Now, combining both cases for all y z, 0,≥ we obtain

y z δ δ z y
δ

, , 2 1 1 .2
4

4( ) ( )⎡

⎣⎢

( ) ⎤

⎦⎥
∅ ≤ + +

− (4.2)

Combining (4.1)–(4.2), for δ0 1,< < we obtain

ζ y ζ y y
δ

λ y ζ δ, 16 1 1 1 Ω , .n τ
σ ρ a b

n τ
σ ρ a b

,
, , , 2

4 , ,4
, , ,L∣ ( ) ( )∣ ( )⎛

⎝
( )⎞

⎠
( )− ≤ + + (4.3)

We can write

ζ ζ y ζ y ζ y ζ y ζ y

ζ y ζ y ζ y ζ y ζ y ζ y

, , , ,

, , , .
n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , , 2 2 2

,
, , , 2

,
, , , 2 2

,
, , ,

,
, , ,

L L L

L L L

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ) ( ))( ( ) ( ))

= − + −

= − + − +

Now,

ζ y
y

ζ t y
y

ζ C y
y

C ζ
,

1
1 ,

1
1

1
.n τ

σ ρ a b
n τ
σ ρ a b

,
, , ,

2
2 ,

, , , 2

2
2

2

2 2
L L( ) ( ) ( )

+

≤

‖ ‖ +

+

≤

‖ ‖ +

+

= ‖ ‖

So, we have

ζ ζ y ζ y ζ y ζ y ζ y ζ M ζ y, , , , 1 .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , , 2 2

,
, , ,

2 2
2L L L∣ ( )∣ ∣ ( ) ( )∣ ∣ ( ) ( )∣( )( )≤ − + − ‖ ‖ + ‖ ‖ +
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Furthermore, using (4.3), we obtain

ζ ζ y y
δ

λ y ζ δ C ζ y
δ

λ y ζ δ, , 16 1 1 1 Ω , 16 1 1 1 1 Ω , .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , , 2

4 , ,4
, , , 2

2
2 2

4 , ,4
, , ,L∣ ( )∣ ( )⎛

⎝
( )⎞

⎠
( ) ( ) ( ) ⎛

⎝
( )⎞

⎠
( )≤ + + + + ‖ ‖ + +

Choosing δ λ y ,n τ
σ ρ a b
, ,4
, , , 1

4( ( ))= we obtain

ζ ζ y y ζ λ y C ζ y ζ λ y, , 32 1 Ω , 32 1 1 Ω , .n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , , 2 2

, ,4
, , ,

2
2 2

, ,4
, , ,1

4
1
4L∣ ( )∣ ( ) ( ( )) ( ) ( ) ( ( ))( ) ( )≤ + + + ‖ ‖ +

We find similar estimate for p p y, ,n τ
σ ρ a b

,
, , ,L∣ ( )∣. □

Next, we discuss the quantitative Voronovskaja-type result with a view of (2.1) for functions belonging
to 0,2[ )∞

∗

� .

Theorem 7. If ζ ζ, ′, and ζ 0,2[ )″ ∈ ∞
∗

� , then for y 0,[ )∈ ∞ , there holds

ζ y ζ y ζ y μ y y ζ
λ y
λ y

λ y, 1
2

16 1 Ω , .n τ
σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b
,
, , ,

, .2
, , , 2 , ,6

, , ,

, ,2
, , ,

1 4

, ,2
, , ,L ( ) ( ) ( ) ( ) ( )

⎛

⎝

⎜
⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎞

⎠

⎟ ( )− − ″ ≤ + ″

∕

Proof. We obtain our result by proceeding along the similar lines of the proof of Theorem 2 of [26], hence
the details are omitted. □

Finally, we prove the following Grüss-Voronovskaja-type quantitative result for n τ
σ ρ a b

,
, , ,L .

Theorem 8. Let ζ p ζp ζ p ζp ζ p, , , , , , ,( )′ ′ ′ ″ ″, and ζp 0,2( ) [ )″ ∈ ∞
∗

� , then at any point y 0, ,[ )∈ ∞ we have

n ζp y ζ y p y λ y ζ y p y

y n λ y ζp
λ y
λ y

ζ y p
λ y
λ y

p y ζ
λ y
λ y

n ζ p

, , ,

16 1 Ω , 1 Ω ,

1 Ω , ,

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b n n

,
, , ,

,
, , ,

,
, , ,

, ,2
, , ,

2
, ,2
, , , , ,6

, , ,

, ,2
, , ,

1 4

2
2 , ,6

, , ,

, ,2
, , ,

1 4

2
2 , ,6

, , ,

, ,2
, , ,

1 4

L L L∣ ( ) ( ) ( ) ( ) ( ) ( )∣

( ) ( )
⎧

⎨
⎩

⎛

⎝

⎜( )
⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎞

⎠

⎟ ( )
⎛

⎝

⎜
⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎞

⎠

⎟

( )
⎛

⎝

⎜
⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎞

⎠

⎟

⎫

⎬
⎭

( ) ( )

− − ′ ′

≤ + ″ + ‖ ‖ + ″

+ ‖ ‖ + ′′ + ℏ ℏ

∕ ∕

∕

where

ζ ζ y λ y y
y

λ y
y

λ y1
2

1 2 2
1

1
1n n τ

σ ρ a b
n τ
σ ρ a b

n τ
σ ρ a b

2
2

, ,2
, , ,

2 , ,3
, , ,

2 , ,4
, , ,

⎜ ⎟( ) ( )⎛

⎝
( ) ∣ ( )∣ ( )⎞

⎠
ℏ = ‖ ″‖ + +

+

+

+

and pn( )ℏ is the analogue of ζ .n( )ℏ

Proof. By Taylor’s series expansion, we have

ζp y ζ y p y v y y ζ y p y

ζp y ζ y p y
v y y

ζ y p y

ζ y p y p y
v y y

p y

p y ζ y ζ y
v y y

ζ y

p y p y ζ y ζ y

, , , ,

,
,

2

,
,

2

,
,

2

, . , Γ Γ Γ Γ .

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , ,

,
, , ,

,
, , , 2

,
, , , ,

, , , 2

,
, , , ,

, , , 2

,
, , , ,

, , , 2

,
, , ,

,
, , ,

1 2 3 4

L L L L

L
L

L
L

L
L

L L

( ) ( ) ( ) (( ) ) ( ) ( )

( ) ( ) ( )
(( ) )

( ( ) ( ))

( )
⎡

⎣
⎢ ( ) ( )

(( ) )
( )

⎤

⎦
⎥

( )
⎡

⎣
⎢ ( ) ( )

(( ) )
( )

⎤

⎦
⎥

( ( ) ( )) ( ( ) ( ))

− − − ′ ′

= − −

−

″

− − −

−

″

− − −

−

″

+ − − = + + +
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Using Theorem 7, we obtain

y ζp
λ y
λ y

λ y

ζ y y p
λ y
λ y

λ y

p y y ζ
λ y
λ y

λ y

Γ 16 1 Ω , ,

Γ 16 1 Ω , ,

Γ 16 1 Ω , .

n τ
σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b n τ

σ ρ a b

1
2 , ,6

, , ,

, ,2
, , ,

1 4

, ,2
, , ,

2
2 , ,6

, , ,

, ,2
, , ,

1 4

, ,2
, , ,

3
2 , ,6

, , ,

, ,2
, , ,

1 4

, ,2
, , ,

∣ ∣ ( )
⎛

⎝

⎜( )
⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎞

⎠

⎟ ( )

∣ ∣ ∣ ( )∣( )
⎛

⎝

⎜
⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎞

⎠

⎟ ( )

∣ ∣ ∣ ( )∣( )
⎛

⎝

⎜
⎛

⎝
⎜

( )

( )

⎞

⎠
⎟

⎞

⎠

⎟ ( )

≤ + ″

≤ + ″

≤ + ″

∕

∕

∕

Next, since ζ 0,2[ )∈ ∞
∗

� , we can write

ζ y ζ y ζ ξ v y y, 1
2

, ,n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , , 2L L( ) ( ) ( ( )( ) )− = ″ −

and hence, we obtain

ζ y ζ y ζ ξ v y y ζ ξ v y y, 1
2

, 1
2

1 , ,n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , ,

,
, , , 2

2 ,
, , , 2 2L L L∣ ( ) ( )∣ (∣ ( )∣( ) ) (( )( ) )− ≤ ″ − ≤ ‖ ″‖ + −

where v ξ y.< <

If ξ lies between v and y, then we obtain ξ y1 1 .2 2
+ ≤ + So, in this case, we obtain

ζ y ζ y ζ y λ y, 1
2

.n τ
σ ρ a b

n τ
σ ρ a b

,
, , , 2

2

, ,2
, , ,L∣ ( ) ( )∣

( )
( )− ≤

‖ ″‖ +

Moreover, if ξ lies between y and v, then we obtain ξ v1 1 .2 2
+ ≤ + So, we obtain

ζ y ζ y ζ v v y y

ζ y λ y yλ y λ y

,
2

1 ,

2
1 2 .

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

,
, , , 2

,
, , , 2 2

2 2
, ,2
, , ,

, ,3
, , ,

, ,4
, , ,

L L∣ ( ) ( )∣ (( )( ) )

(( ) ( ) ( ) ( ))

− ≤

‖ ″‖

+ −

=

‖ ″‖

+ + +

Therefore, by combining the two cases of ξ , we obtain

ζ y ζ y ζ y λ y y
y

λ y
y

λ y ζ, 1
2

2 2
1

1
1

.n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n τ
σ ρ a b

n,
, , , 2

2

, ,2
, , ,

2 , ,3
, , ,

2 , ,4
, , ,L∣ ( ) ( )∣

( ) ⎧

⎨
⎩

( ) ( ) ( )
⎫

⎬
⎭

( )− ≤

‖ ″‖ +

+

+

+

+

≔ ℏ

Analogously, we determine p y p y p,n τ
σ ρ a b

n,
, , ,L∣ ( ) ( )∣ ( )− ≤ ℏ . Thus, we reach to

n ζp y ζ y p y λ y ζ y p y
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,
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∕
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∕

Hence, the result of the theorem is established. □
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5 Conclusion

In our discussion, we defined the Stancu-type modification of ζ y,n τ
σ ρ

,
,L ( ) with the help of parameters by

ζ y τ
ν

n νρ σρ
σ νρ σρ

ζ nv a
n b

v ζ a
n b

,
1

Γ 1
Γ Γ 1

.
1

d 1
1

.

n τ
σ ρ a b

ν

ν
ny
τ

ν

ny
τ

τ ν

nv
σ

νρ

nv
σ

σρ νρ

ny
τ

τ

,
, , ,

1 0

1

1L ( )
( ) ( )

( ) ( )

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

( )

( )

( )

∫∑=

!
+

+ +

+
+

×

+

+

+

+
+

=

∞

+

∞
−

+ +

(5.1)

We discussed several approximation results for (5.1), namely, pointwise convergence, degree of approx-
imation, error estimations by means of suitable moduli of continuity as well as moduli of smoothness,
Grüss-Voronovskaja-type results, etc.

By taking different values and limiting conditions of parameters τ and σ in (5.1), we obtain various
linear positive operators, which were studied by several authors. In Table 1, we see that our operators

ζ y,n τ
σ ρ a b

,
, , ,L ( ) reduced to several previously studied operators.

It is worth noting to the reader that one can further modify these operators to improve the order of
approximation by taking their linear and iterative combination and studying their approximation properties.
Moreover, the q-variant of these operators may also be constructed and studied.
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Table 1: The operators L ( )ζ y,n τ
σ ρ a b

,
, , , for some specific values

For the choice of (5.1) reduces to Studied in

= =a b 0 The operators L ( )ζ y,n τ
σ ρ

,
, [5]

= = = = →a b ρ τ σ0, 1, ∞ Phillips operators [34] (also see [35])
= = = = =a b ρ τ σ n0, 1, Baskakov-Durrmeyer type operators [36]
= = = ≠ = →a b ρ τ σ τ n σ0, 1, , , ∞ Baskakov-Szász type operators [37]
= = = ≠ = →a b ρ τ σ σ n τ0, 1, , , ∞ Szász-Beta type operators [38]
= = = ≠ = =a b ρ τ σ τ ny σ n0, 1, , , Lupaş-Beta integral operators [39]
= = = ≠ = →a b ρ τ σ τ ny σ0, 1, , , ∞ Lupaş-Szász operators [40]
= = = = =a b ρ τ σ n0, 1, − Genuine Bernstein-Durrmeyer operator [41] (also see [42])
= = > = →a b ρ τ σ0, 0, ∞ Pǎltǎnea operators [43]
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