DE GRUYTER Demonstratio Mathematica 2023; 56: 20220181 a

Research Article

Nadiyah Hussain Alharthi, Abdon Atangana*, and Badr S. Alkahtani
Analysis of Cauchy problem with fractal-
fractional differential operators

https://doi.org/10.1515/dema-2022-0181
received August 22, 2022; accepted November 9, 2022

Abstract: Cauchy problems with fractal-fractional differential operators with a power law, exponential
decay, and the generalized Mittag-Leffler kernels are considered in this work. We start with deriving
some important inequalities, and then by using the linear growth and Lipchitz conditions, we derive the
conditions under which these equations admit unique solutions. A numerical scheme was suggested for
each case to derive a numerical solution to the equation. Some examples of fractal-fractional differential
equations were presented, and their exact solutions were obtained and compared with the used numerical
scheme. A nonlinear case was considered and solved, and numerical solutions were presented graphically
for different values of fractional orders and fractal dimensions.
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1 Introduction

Linear and nonlinear ordinary differential equations are important mathematical tools used to replicate
behaviors observed in nature. To obtain these equations, some important mathematical formulas called
derivatives are used. In the last decades, different definitions were suggested to help replicate different
processes found in nature. One of the old definitions that were applied in classical mechanics is based on
the rate of change. This definition is reported to have been introduced independently by Newton and
Leibniz [1,2]. This concept together with its integral is the foundation of the nowadays differential and
integral calculus [2-6]. Several important mathematical models that have changed our globe were built
using this derivative [2-9]. Nevertheless, due to the complexity of nature, it has been reported in several
instances that some models obtained using the classical differential operators do not always agree with the
experimental data. This disagreement led many researchers to see the limitations of the derivative based on
the rate of change. Several attempts have been done to capture different processes that the classical
derivative cannot replicate [10-12], for example, the concept of fractional differential and integral cal-
culus-based power law [6,10,12]. With the power-law kernel, two major fractional derivatives were suggested,
namely, the Riemann-Liouville and the Caputo derivatives [6,10,12]. Indeed, several processes in nature
follow the power-law behaviors, and such processes can be therefore replicated using a power-law-based
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fractional derivative. However, there are plenty of natural processes that do not follow power-law behaviors
rather they follow fading memory trends. A clear indication shows that the power-law-based fractional
derivative cannot be used to model such processes, and therefore, a new definition was needed and intro-
duced by Caputo and Fabrizio in 2015 [13]. This concept has with no doubt opened new doors of investigations
within the framework of theory and application in the last years. Nevertheless, the fact that the associate
integral of this derivative is the average of the function, and its classical integral led some researchers to ask
some fundamental questions [14]. While this is not at all any weakness of this derivative, it only raises some
issues about the fractional view of the derivative. To solve this problem, Atangana and Baleanu suggested a
different definition with the general Mittag-Leffler kernel [14,15]. We have to note that, although several
modifications have been suggested, the major strength of these three definitions is that their kernels appear
naturally in many real-world problems. They were used to form very important distributions (Power-law
distribution or the Pareto distribution, the Poisson distribution, and the generalized Mittag-Leffler distribution
that was used to form super statistics) that are used in many statistical problems. On the other hand, a more
general classical differential operator called fractal derivative was suggested to capture processes with local
self-similar behaviors [16]. One of the properties of this derivative is that if the function is classically differ-
entiable, then the fractal derivative is the product of the classical derivative and the power law function. By
using this property, Atangana suggested a new concept called fractal-fractional derivative [17]. This concept
was suggested for the power law, exponential decay, and generalized Mittag-Leffler functions [17]. Indeed,
these three differential operators gave birth to three classes of Cauchy problems that will be analyzed in this
work. The remainder of this essay is organized as follows: We derive some significant inequality in Section 2
that is related to fractal-fractional differential and integral operators. In Section 3, we provide a theoretical
analysis of the power law-kernel fractal-fractional Cauchy problem, outlining the existence and uniqueness of
the exact solution as well as the numerical approach. The same analysis is presented in Sections 4 and 5, with
the generalized Mittag-Leffler and exponential decay as the kernels.

2 Some inequalities

We present here some inequalities associated with fractal-fractional differential operators.
Let f(t) be a continuous bounded function admitting maximum and minimum M and M, respectively.
We have that:

M < f(t) < M. €]
With ¥ D8, we have:
FEPDAM < FEPDRf (1) < FFPDEM,, 2
where
d t
FFP a8 _ 1 d J’ v

D )= —— T)(t - T)%dT, 3
DO = i qgp ) O ©)

0

where 0 < a <1, 8 > 0 is a fractal dimension.
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Noting that:
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Therefore:

With FFED®#, we have:

Noting that,

Thus,

t-p
A-ap

We note that:

g o] 5

Jexp[—l—(t - T)]d‘l’ = —[1 - exp[ N a
0

Cauchy problem with fractal-fractional differential operators

1 }
F(l—a)dt.[(_ od F(l—a)
Mt ppp ap Mt -F-2
pra—w = o T O= gy

FFED®EM < FFED&PE(t) < FFED®AM,.

t
FFEpa,B _ 1 i __ @ _
oD = — dtﬁ_[f(r)exp[ s T)]dr-
0
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4
dt

o
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< TEDPPr(E) < )
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t]]
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Then,
M A ol o] < FrEpas tl‘_ﬁMli[ ~ expl % ]
B dt[l exp[ 1_at]_ < TODMf() < B dr 1 exp[ 1_at] .
With F¥D®# we have:
Mt% ﬁ (14 a— FFMpa,B Mltz_ﬁ _ (44 o
a-ap ol ] < f(t)g(l—a)ﬁE“’z[ ru
We evaluate FF(I;Dt“’ﬁf(t) assuming f'(t) > O:
8 2
FFPna,B 2 _ t17 a
FEDEf T = | s dtjf(r)(t ryedr
t 2
— 1-B] t 1 ! _ -a
Bt (+m O s !f (T)(t - 7)°dr
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2B2t2—2/3—2a 5 ﬁt - ' . 2B2t2(l—a—/3) 5
< 7@(1 - a))zf 0) +2 T Jf ()t -1)yddr | < 71"(1 e
2
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282 2(1—a—ﬁ) 243-28-2a . tszzﬁ supyeps| f (O
sup; OlFFPDa ﬁf(t)|2 ( ﬁ t ﬁ t )/2(0) I'(1-a)*(1-2a)
> (F(l _ a))2 F(l _ a)2(1 2(1) 2/32t2“ a-PB) 8p23-2-2 ) 15
(F(l 0F T Ta-ali-2a) )f ©) (15
< K( + IfI2,)s
where
B zﬁZTZ(l—a—ﬁ) 8B2T3—2ﬁ—2a ,
- ( Pl-o Fo-ai-wm) 16
Under the condition that:
8B2T3 2B-2a
2(1 - 20)p2TX-ah) 4 RT3 22 <L 17)
We consider the case where the derivative is based on:
EDEY(E) = ——j yoexp| -t 0o, (18)
e[ o) 19)
B t2-28 2
Entyof = 5oy | = CE Do = T |ty 0) +y0) 22 ( o)
B —a\ 1-a«a
B ckena ‘)/(0) (_ a )2
< 7 276DiyOF + 2 - aexp T a at
t2—2ﬁ . y(O) a 2 20
< 7 ] Iy (r)dr| +2 aexp(—mt) (20)
2-28
‘ R )2 () - YO + 2|y<0>|2} ﬁ% SIyI2,
fr. 2 Yoo
+ |y(0)] {2 + - a)z} 7
3 Analysis of Cauchy problem with fractal-fractional with
power law
We consider the following general Cauchy problem.
oDyt = f(t, y(®) if t > 0 1
y(0) =y, ift=0
We define the following norm:
lpll2, = suprenyl(t)]- (22)

fe@0,T,0<a<1,B>0.
where a is a fractional order and f is a fractal dimension.
It is assumed that f(¢, y(t)) verifies the following criteria:
L vtelo,T] [f(t,yO) <RA+[yP),
2. Vt € [0, Tl v, ¥, € CO, T1|f(t, yp) = f(t, ) < Rly; =y,
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Note that,
{FFclfo‘ Py(t) = f({, yit)) t>0 .
y(0) =y, ift = 0.
Can be transformed to:
RDEPy(t) = BEFYf(t, y(1), t> 0 o0
y(0) =y, ift = 0.
B t
= |81 _ )@
YO=10"%n !T F(r, y(O)t - T)4%dt, t>0 o

y(0) = y,.

To achieve the existence and uniqueness of exacts condition, we defined the following mapping and
show that this mapping verified conditions described earlier:

t
) = 1 [y - oy e, (26)
0

t 2

t t
Bz B- _ )« zﬁz 2B-2(+ _ )2 2
J)'r ey - e < '0[ 82t - 1) dT_£|f(T,y(T))| dr. @)

2 _
PP = T4 - o)

We evaluate first,

1
I #-2(t — 1) 2dr. (28)
0
By the following change of variable:
tz = 1. (29)
Such that:
t t
I(tz)zﬂ’z(t - zt)*tdz = tZﬁ*ZHJ‘zZ/‘*Z(l - 2)2dz = t# 2 B2B -1, 1-2a), (30)
0 0
where
t
Bz, ) = jtz‘l(l _ s, (31)
0
where Re(z), Re(z;) > 0, in our case,
28-1>0and1-2a>0, 32)
1 1
ﬁ>§and1>2a2a<5. (33)

Thus,

2p? [
2 2B-2a-1 _ _ 2
QUOF < 77 stP BB -1, 1 2a)!|f(r, y(m)Pdr

t
L 2B-2a-1 _ _ 9 34)
STa_at B 1 2a>1<£<1+|y<t>| e

2B?
< — - 21B2B — 1, 1 - 20)Kt(1 + |lyl%,),
T a)y (2B Kt + lyllss)



6 —— Nadiyah Hussain Alharthi et al. DE GRUYTER

2 2 -2a
DY) < ;[le SB(2B - 1,1 - 20)K(1 + |lyl3,) < Ki(1 + llyll%,), (35)
where
~ zﬁszﬁ—za ~ ~
Kl_i(r(l_a))zB(zﬁ 1,1 - 20)K. (36)

This shows that the mapping @ satisfies the linear growth condition. We now proceed with the Lipschitz
condition.
2

t t
Dy - Doy f? = ﬁjf”‘l(t—f)‘“f(n (@)t - ﬁjrﬁ-la—rwﬂr, y)dr| . G7)
0 0

The linearity of the fractal-fractional integral yields:
2

t
Oy - Dt - | E— ! TP = T of (1, $() — (T v | G8)

Thanks to the Cauchy inequality, we have:

t

2p? t
Dy, - Dayf? < m]rzﬁ-za - T)‘z“drflf(r, WD) - f(x, y )P

(39)
25 $28-2a-1
A _ppacpopo1, 1- 2a)j|f(r WD) - @, y)Pdr.
(F (1-w)y ! 2
Using the Lipschitz condition of f(¢, y(t)) with respect to the second parameter yields:
, Zﬁztzﬁ‘z"“l _ 5
Dy, — O <—=B(2f -1, 1-2a)Ktly, - pll. 40
[Py = Pl < S5 BOP Ktly; - | (40)
Therefore,
2B2T2ﬁ—2a _ 5 _ "
|D1y; — Doyl < mB(Zﬁ -1, 1-20Klly, - »l5 < Klly; = ¥l (41)
where
B 27282 3
1= 2BTiB(ZB -1, 1-2a)X. (42)
Tra - a)y?

Under the condition of the linear growth, we can conclude that our equation is a unique solution.
We now present a numerical solution to the Cauchy problem with the fractal-fractional derivative with
power law.

FEPD&Py(t) = f(t, y(t) t > O, 43)
¥(0) = ¥ (44)

We consider the following: 0 < < b < 5<...< ty1 = T.
We have that Vt € (0, T)

FEEDEPy(t) = f(t, y(0)). (45)

Can be converted to:

y(t) = B Yt - T)*Yf (1, y(1))dr. (46)
I'(a) !
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But then at t = t,,1, we have:

tn+1

Y(tan) = % ! BY(ty,1 - D (T, y(D)dr,

tj+1

BN (hrgy et
-mo%! T b — D (T y(0)dr

]
Within [¢, tj+l], we approximate:

Fr, y(@) = B = £t y(6) + - 5

y(ti1)) = &, y(@))).

Replacing the aforementioned into the general equation yields:

n ]+1

Y(tr) = jrﬁ 1[f(t,, v + I (F e, yt) - £, y(t,)))]rﬁ 1ty - ) 1dr,
r( 05

i i
_B 5 5 e B | |
“T@ ];) ! [, yt)TF Wty — T2 M7 | + Ia )}z;) I [f(t1, Y(tj41))
i1
(T-1t)

- f(&, y(t))] @ )

~ f(tw y(t))]dT.
t)+1
. . B < 1(f(t,+1,y(t,+1)) £, y@&))
B _ a
= T >,zof(t”y<t’))JT =0l s 0 j(

§
tn+1
) _[ (tne1 = DX(f (tarr, YP(trr1)) = [, y(t)))————

by

(t tn)T

- )t = T T+

We shall put,
tj+1
'[Tﬁ‘l(tml - 7)%dr = @ﬁf.
G
We consider the fractal-fractional with exponential decay kernel.
FEDEPY () = f(t, y() £ > 0,
y(0)ift=0
We convert the system into the following:
GDEY(6) = BEEIf(t, y(©) t > 0
y(0) =y, ift=0

t
y(©) = (1 - DBLPIF(E, y(©) + aﬂjrﬁ*f(r, y@@)dr ift > 0

y(0) = y,.

(bass — Dbl + —P— (tn - D91 g,y

el 4

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
(55)

(56)

(57)
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Att = b1,

y(tn+l) = (1 - a)ﬁt[f:llf(twrl’ Y(tn+1)) + (Xﬁ

The difference produces:
y (tn+1)

Within [t,, t,.1], we approximate f(r, y(r))dt as follows:

G D,y + -

b= g

f(@,y(M) = B(1) =
We replace the approximate function to obtain:

tn+1
tjs
Yot = Yo + B (b, Y2 = taf (b y))(A — @) + @B I P! {

ty

y(ta) = (1 = @BUL LS (tnsr, Y(tn1)) = 5 F (b, y(8))) + aB

DE GRUYTER

tnsq

j B-If (1, y(r))dr

by

tn
y(tn) = (1 = B, f(ta y(t)) + aﬁITﬂ'lf(T, y(r))dr.

tns1

f I (1, y(r))dr.

ty

] f(t}+1’ Y(t}+1))

j+1 ~ l

f(tp }’,) + f(t)+1’ )’1+1)}

. f (& ,y)
y'”l y" + ﬁ(l a)(tn+1f(tn+1a yn+1) - t lf(tm yn)) — j B~ 1(t]+1 - T)dT
l
o o) [
+ aﬁ%yml J' Bz — t)dr,
G
tn+1
) n+ ﬁ ﬁ n 1 tn s
0t
B B+1 B g+1
_pp] DT e D win k) P
B B+1 B B+1
[n+1 X
J(Tﬁil‘r - TB?ltn)dT = il _ Tﬁtﬂ thi1
B+1 B t,
t’l
o thaty e
S B+1 B ﬁ T1 B’
= (A)P+1 (n+ DA n(n+ 1P nf + nB1
B+1 B B+1 p+1)
Va1 =a ﬁ(l - a)(At)ﬁ—l{(n + 1)ﬁ+lf(tn+lx yyﬂl) - nﬁ+1f(tn, yn)}
+ Baf (tn, y,) (AP (n + 1)p+ _(n+ 1)A+1 ~ nf(n + 1) . nh+1
ns Yn B B+ 5 1
n + Pl n(n + 1 nﬁ+1 np+1
+ aﬁAtﬁ+1{( ; +)1 _n( ; > s ﬁ 1 }f( taets V21

|

(58)

(59)

(60)
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(66)

(67)
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where y? | is the predictor, and here, the use of the predictor angle rule is applied:

tnsq

1
BJ v = Bty [ e,

tn

trﬁrl tr?
~ Bf (tus Y -5
Bf( y){ ; B}

B
~ Bf (b y,,)%((n + 1) - nb),

WPy = f(tw, y)AEP{(n + 1P — nf}.
Therefore, the scheme is completed and given as follows:
Yosr = Yo + B = )(AOF(n + DA (ts1, ¥P) — nPf(tn, Y}
(DA e DP ) n/3+1}

+ Baf (tn, yn)(At)ﬁ‘l{

B B+1 B B+1
pea) M+ DF nn+ 1P nﬁ+1 nf+1
+ (XB(A[’) { B 1 B ﬁ i1 B i1 f( n+1s yn+1),

YPy = f(tw y)AEP{(n + 1P — nf},
We carry on our analysis by considering the following Cauchy problem:

FMD&By(t) = f(t, y(t)), t> O
y(0) =yt =0

ABRDRY(t) = BtA-Yf (t, y(£), t > O,
)’(O) = yO if t= Os

t

YO = (1 - B F(E, y(0)) + % AU, yOXE - T T, £ 0
y(0) =y, 1f t=0.
Att = tosts
(tn+1) = (1 - a)ﬁttml (tn+l’ (tn+1))
B-1 _ -1
* j I (@, YON by — Tl
(0) =Y
Y(tn1) = (1 - a)ﬁttmllf(tml» Y(tn+1)
t1+1
i S p-1 _ \a-1
) j AT, YO bt - T
y(0) = yp.
Within [¢, 1+l] we approximate f(7, y(1)) as follows:
i1 — +
Fary@) = Iy + %f(tm, Vi)

t+1 o
Yor1 = (- a)ﬁtfml (tas1s yn+1) + WZJ‘ { : (tl’ y]) + h f(t]+1, y]+1)}(tn+l -T) rh-1dr.

]01

— 9

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(7
(78)

(79)

(80)

(81)

(82)

(83)
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The following are the examples of some fractal-fractional equations:
EEDEY(E) = 1,
Dy () = 1,

ToDhy) = v,
1. We start with the first one,

FEPD&Py(t) = tv = REDAy(t) = pev+h-1.
By applying the RL integral, we obtain:
8 0
t) = —— | rF-Y(t - 7)*\dr,
y(®) @ _[ (t-1)

t

_ L Y+p+a-1
= F(a)t B(¥ + B, a).

Thus, the exact solution for this equation is:

— i ¥+f+a-1
y(t) = F(a)t B(¥ + 83, a).

We present some numerical simulation for different values of fractional orders in Figure 1.

(84)
(85)

(86)

(87)

(88)

(89)

(90)

Fractal-fractional with o =0,95, 3=0.9 Fractal-fractional with o =0,75, 3=0.9

40 30

% p ‘ 2 ///

s} // ‘

25+ / % g
. _ Ve

201

Exactand num
Exactand num
=

/
e o
el < e
o 2 ob—e=2"
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
time time
Fractal-fractional with o =0,35, 3=0.9 Fractal-fractional with « =0,15, 3=0.9
14 ™ T s T 10
9
12 2
P 8
10 : 7
/ o
£ & £ %
=] 3 6 C
8 // e e
© o
|5 c
g / g ° I
5 S 4
g 6 R 4
b / bl 2
4 / 3 /
e 2 /
2 / /
o 1
e
/-v/a/
0= " 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Figure 1: Numerical solution with the power-law case.
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1. With the exponential kernel, we have:

GDEy(0) = BtPr, (o1
t
y(6) = (1 - )B4 aﬁITB+Y‘1dr, (92)
0
(1 - apeprt ¢ B ©3)
(a+7v)
Therefore, the exact solution will be:
tB+Y
y(t) = (1 - a)pthr¥-1 + % (94)
By using the same routine, we obtain the case with the Mittag-Leffler kernel as follows:
y(t) = (1 - a)Bth+¥-1 ¢+ %t“ﬁ”‘lB(y + B, a). (95)

We present some graphical representation for different values of fractional order in Figure 2.
Example 2. Nonlinear equation

We consider a system of nonlinear differential equation, where the nonlinear part is given as follows:

Fractal-fractional with o =0,95, 3=0.9 s Fractal-fractional with « =0,65, 3=0.9
40 1 v : .
/
/ 16 /
35 / &
/
& 14 2
30 Y g o
2 12 {
£ 25 ,.h/ £ /n
5 A 3 &
< 10
o 2 o
5 20 e s /Z/
] // g ° N~
b3
15 w
& y 6 s
Y4 //
e o
10 /( 4 e
5 o o 2 d//g%
7 &
o o
- e 006=
0 1 2 3 4 5 6 7 s 9 10 0 1 2 3 4 5 6 7 8 9 10
time time
Fractal-fractional with « =0,35, 3=0.9 0 Fractal-fractional with o =0,15, 3=0.9
12 T T T v v v T
8 /,,/"
10 q 24
/ / ! 2 ~
8 e 1 6 7/
c - Ss /
S ' s @
5 A g¢ "
Lﬁ e w >
4 // 3 @
2 /(f
/ 2 P
2 / /
2 1
,»/2/
2 o
00 1 ) 3 A p (‘5 7 s p 0 0 1 2 3 4 5 6 7 8 9 10
i time
ime

Figure 2: Numerical solution with the generalized Mittag-Leffler case.
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fi(r, x(1), y(1)) = cos(x(1)) - T°y(1), (96)
L, x(1), y(1)) = 2x(1) + sin(x(1))y(7). (97)

Indeed, the both functions f; and f, satisfy the linear growth and Lipschitz conditions. This is easily
seen if we define the following norm:

X=xy), (98)
[Xlloo = max{Sup¢eoxny|X|,  SUD¢teDxnylY!}s 99)

where Dxny is the intersection of the domain of x and y.

By using the numerical scheme presented earlier, we can now solve the aforementioned problem
numerically.

We next consider the case with exponential decay.

FFPa,f _ 45
{ oDy (t) = cos(x(t)) — t2y(t) (100)

FFED&By(t) = 2x(t) + sin(x(t))y(t).

We consider now the following well-known nonlinear differential equation that we convert into a
fractal-fractional case.
We consider the following system:

X'(t) = cos(x(t)) — t3y(t), (101)
y'(t) = 2x(t) + sin(x(t))y(t). (102)

First, we consider the case with the power law.

D&Y (t) = cos(x(t)) - t5y(t) 103)
FEED&By(t) = 2x(t) + sin(x(t))y(t),
BDAy(t) = Bth-Y(cos(x(t)) — t3y(t)) (104
RDay(t) = BtB-12x(t) + sin(x()y(t)),
t
x(0) = %frﬁ*(cos(x) Byt - D dr,
. 0 (105)

t
y() = %!T’“@xm + sin(x(O)y(O)t - 1) 'dr.

We present a numerical simulation of the aforementioned model using the suggested numerical scheme
in Figure 3.
We next consider the same model where the fractional derivative is with the exponential decay kernel.

EDly(t) = BtB-Y(cos(x(t)) - t5y(t)),
EDEy(t) = BB-12x(t) + sin(x(t)y(t)).
t
X(t) = (1 - @)Bth-Y(cos(x(t)) - t5(t)) + Ba j ™1 (x(1), y(T)dr,

; °, (107)

y(®) = (1 = )ptP(2x(t) + sin(x(O)y(®)) + BaITﬁ’lfz(X(T), y(1))dr.

\ 0

(106)
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Figure 3: Chaos with the power-law case.

By using the numerical scheme presented in this work, we perform numerical simulation of the afore-
mentioned model. The numerical simulation is presented in Figure 4.

We consider the same model by replacing the classical differential operator by the Fractal-fractional
derivative with the generalized Mittag-Leffler function:

ABEDRY(t) = BtB-Y(cos(x(t)) - t3y(t)),
ABCDRY(t) = BtB-12x(t) + sin(x(t)y(t)).

The same routine can be applied to the case with the Mittag-Leffler kernel to obtain:
x(t) = (1 - a)BtF-(cos(x(t)) - t3y(t)) + ﬂjtrﬂ—lﬁ(x(r)’ YOt - T)dr,
re e (108)
y(£) = (1 = Bt (t) + sin(x(O)y(®)) + if(t - DIy (x(), y(1))rh-dr.
I'(a)Jo

Numerical simulations are shown in Figure 5.

Attrator with 8 =1, « = 0.95

Chaos

At

2F

3 L L " "
-15 -10 -5 0 5 10 15

Figure 4: Chaos with exponential decay case.
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Attrator with 8 =1, a« = 0.95

Chaos
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Figure 5: Chaos with the generalized Mittag-Leffler case.

4 Conclusion

Fractal-fractional differential equations have attracted the attention of several authors in the last past years
due to their wider applicability. Several theoretical foundations have been laid down and more are still to be
developed. In this work, a few additional results are presented. We considered three classes of Cauchy
problems with fractal-fractional derivatives, including the class with power law kernel, exponential decay
kernel, and the generalized Mittag-Leffler kernel. For each one of these classes, we presented a detailed
investigation of the existence and uniqueness of the solution, then its numerical solutions with some
simulations.
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