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Abstract: In this article, we considered the pseudo-parabolic equation with Caputo-Fabrizio fractional
derivative. This equation has many applications in different fields, such as science, technology, and so
on. In this article, we gave the formula of mild solution, which is represented in the form of Fourier series by
some operators . In the linear case, we investigated the continuity of the mild solution with respect to the
fractional order. For the nonlinear case, we investigated the existence and uniqueness of a global solution.
The main proof technique is based on the Banach fixed point theorem combined with some Sobolev
embeddings. For more detailed, we obtained two other interesting results: the continuity of mild solution
with respect to the derivative order and the convergence of solution as the coefficient k approaches to zero.
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1 Introduction

Recently, fractional differential equations have been extensively used in describing various mathematical
models of physical processes and natural phenomena, for example, in mechanics, physics, and engineering
sciences, etc. The number of works in this direction is quite abundant and attracts many interested math-
ematicians. We list here some works using fractional derivative models that closely related to this article,
such as [1-19] and references therein.

LetM be a simply connected and bounded domain in R™ with a smooth boundary oM. Let T be a positive
real number. In this article, we are interested in considering the pseudo-parabolic equation as follows:

aDXZ + KLZ) +1PZ = G(Z), inM x (0, T],
Z(x, 0) = zo(x), in M, (1.1)
z(x, t) = 0, in oM,

where ¢ Df is the Caputo-Fabrizio derivative operator of order 8, which is defined as (see [20,21]) follows:
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t
CFDtﬁz(t) = %J‘Dﬁ(t - r)?dr, for t >0,
0

where Dg(r) = exp(—%r) and Y(f) satisfies Y(0) = Y(1) = 1.

It is easy to observe that if § = 1, then problem (1.1) turns to the classical pseudo-parabolic equation.
The pseudo-parabolic equation describes several important physical and biological phenomena, such as
the analysis of unstable processes in [22] and population aggregation in [23]. We encourage the interested
reader to the recent work by Tuan and Caraballo [24] on classical pseudo-parabolic equation, which is in
the spirit of the Fourier series semigroup. Currently, several models with pseudo-parabolic equations,
combined with fractional derivative, have attracted the interest of a number of mathematicians. Luc
et al. in [25] derived the pseudo-parabolic equation with Caputo derivative as follows:

DAZ + 1LZ) +1PZ = G(Z), inM x(0,T],
Z(x, 0) = zo(x), in M, 1.2)
Z(x,t) =0, in oM,

where 0 < S < 1, CDf is a Caputo fractional derivative operator of order . The authors have obtained the
existence of mild solutions in both aspects: local and global sense. The main method is to use the Banach
contraction mapping theorem in Hilbert scales space. In [5], Tuan et al. studied problem (1.2) when the
source function has a logarithmic form. The technique used in this article is quite interesting with many
different embeddings in L? and rather complicated evaluations. In [26], Can et al. focused on the nonlocal
pseudo-parabolic equation with linear case. In [27], Tuan et al. considered the pseudo-parabolic equation
associated with integral condition under nonlinear case. Shen et al. in [28] studied the fractional pseudo-
parabolic equation with the Riemann-Liouville derivative. They obtained the global and local existence of
weak solutions by using the Galerkin method.

To our knowledge, there have been quite a few investigations on diffusion equations with the presence
of the Caputo-Fabrizio derivative. Let us refer some interesting papers that focus on the existence of the
mild solution to some problems, e.g., [29,20,30,31,21]. In [20], Tuan and Zhou established the existence and
uniqueness of the mild solution for diffusion equation (1.1) with k = 0. They also provided the existence of
local mild solutions to the problem, and then a blow-up alternative is established. In [30], Tuan studied the
Cahn-Hilliard equation with the Caputo-Fabrizio operator as follows:

aDPZ+ NZ=NZ-275), inMx(0,T],
Z(x, 0) = zo(x), in M, (1.3)
Z(x,t) =AZ =0, in oM,

and he proved the local existence result for problem (1.3). He first provided that the connections of the mild
solution to problem (1.3) between the Cahn-Hilliard equation in the case 0 < f < 1and 8 = 1. The main key
of the proof is the proficient use of some embeddings between LP spaces and Hilbert scales spaces.
Recently, the time-fractional integro-differential equation with the Caputo-Fabrizio type derivative has
been considered in [31]. Let us refer the reader to some works in the spirit of mild solution with Caputo
Fabrizio derivative, such as [29,32,21,36-39,41-50].

There are two advantages when we investigated the equation using this type of derivative. The most
important thing is that we can avoid the singularity kernel, which frequently occurs in the case of the
Caputo or Riemann-Liouville derivative. The second advantage is that the model with Caputo-Fabrizio is
effectively used in physical models involving an exponential power multiplied to some components of the
equations. To the best of our knowledge, the current article is the first study about pseudo-parabolic
equations with Caputo-Fabrizio derivative.

The main results of this article are described as follows:

— In the linear case, we investigate the continuity of the mild solution respect to the derivative order. This
research direction was inspired by an article by Dang et al. [33]. This article focuses on the question:
“Does Zp tends to Zg in an appropriate sense as g’ — ?”
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— For the nonlinear case, we prove the existence and uniqueness of global mild solution when the Lipschitz
source function is global in Hilbert spaces H”. The main tool is to use Banach’s theorem in suitable
spaces. We also obtained continuous dependence of mild solution respect to derivative order for the
nonlinear case.

— Another interesting contribution of this article is to show that the solution of the pseudo-parabolic
equation converges to the solution of the corresponding parabolic problem. The ideas and methods
are partially found from our recent paper by Tuan et al. [40] and Tuan [30]. To complete the proofs,
we had to overcome many challenges by skillfully evaluating the upper bounds.

This article is organized as follows. Section 2 presents some preliminaries, the formula of the mild
solution, and its representation in the operator form. Section 3 is dedicated to the results on continuity of
fractional order for the linear problem. In Section 4, we showed the global existence of the mild solution in
the nonlinear case. We also obtained the continuity results of fractional order in the case where the function
G is globally Lipschitz function. In Section 5, we investigate the convergence of mild solutions of the
problem (1.1) when k — 0.

2 Preliminaries, mild solution, and solution operators

The Hilbert scale space H™(M) is defined in the following line:

2

ooy = 16 ¢ 2wy, YA JBeow,coax| <ot
I\

n=1

for some m > 0. The norm of H™(M) is also given as follows:

2

1Oy = | Y A2 je<x)z/)n<x)dx L0 € Hm(W).
n=1 M

This Hilbert scales space plays an important role in investigating the properties of regularity for mild
solutions.

Lemma 2.1. (See [4]) There hold that

(a) [H'"/Z(M)HLP(M),forng,lsp<oo, orOSm<g,1spS Nil\;m;
(b) LP(M) = H™2(M), for -5 <m <0, p > 2.

Definition 2.2. (See [35]) Let Y, 4((0, T]; B) denote the weighted space of all functions v € C((0, T]; B)
such that

Iflly, ac0.71; By = sup t%e Y|f(t, )z < co. 2.4)
te(0,T]

The space Y,,4((0, T]; B) is used in proving the global solution of the nonlinear problem. In the
following, we introduce the formula of mild solution to our problem. Let us assume that

Z06 6=y j 206, O, (0dx [y, (0).
n=1

M

Then we obtain the following differential equation:
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CF Dtﬁ[ J—Z(x, t)!,l)n(x)dx] +
]

A )
M[ i Z(x, t)l,bn(x)dx) -

By solving the aforementioned differential equation, the mild solution is given by

1
0 [JI.G(X, t)l/}n(x)dx]. 2.5)

Z(t) = Qpp(t)z0 + juﬁ,p(t V)G, (2.6)

where Qg ,(t) and Jg ,(t) are defined via the Fourier series as follows:

S 1+ ki, —BARt
Qpp(Of () = ,gll i+ (L A7 exp(1 T (o Bw)fnllln(x), 2.7)
R B + kAn) —PAit
Ip.p(Of 0O = Zl 7 kb + (- pADY GXP(1 T (1o ﬁ)}l,f)ﬁ“p"(x)’ (2.8)

for any f € L?(M). Here, f; is Fourier coefficient of f, which is defined by

f = jf(x)zp,,(x)dx. (2.9)
I\

The following lemma is introduced to play an important role in investigating some properties of solutions.

Lemma 2.3. Let m be any real number and 68 € H™P(M). Then we obtain

1Qp ()0 llHmem)y <

1
Ollyym- .
- B" lly1m-2 vy (2.10)

and

19,0 llmemy <

2
N _ﬁ 5 18l vy .11

Proof. In view of Parseval’s equality and noting that e* < 1 for z > 0, we obtain that

S 1+ ’ —2BA;t
08 2, = n A2 n 62
194508 i, z(1+k/1n+(1—ﬁ)/l,{’) " EXp(1+kAn+(1—[})A,{’)

n=1

’ ~2BAPt
2m n 2
<Z((1—ﬁ)/\p) eXp(1+k/\ +(1—B)/1,{’)6"

G Z N = gy oy

where 8, is given by 8, = IM 0(x),(x)dx. By a similar explanation as mentioned earlier, we find that

5 pa+idy Yoo —2BA%t 2
(00 vy = ,;((1 T+ (1 B)/l,f’)z) & exp(l + e + (1 - PAY )9"'

By using the Cauchy inequality (a + b)? > 4ab for any a, b > 0, we find that
A+ Kk, + A=A =41 - BA + KADAL.
Hence, we derive that

B + kAy) e B e B 4
A+l + (A-PAD? ~40-B) " ~a-p "

Hence, by using this inequality, we infer that

(2.12)
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(28 .Y ~2BA Pt
D p ()0 |2 mpys < AP A i 62
195,5(6) ||[H (M)<n§1(1_'8 ) EXp(1+kAn+(1—ﬁ)A,{’)
47 amoapp2 4>
= AP = Ol m=p -
- ﬁ)z Zﬁ n n (1- ﬂ)z I ”H ™)

So, the proof of Lemma 2.3 is completed. Let us continue to introduce the following lemma, showing the
continuity of the derivative order for mild solutions.

Lemma 2.4. Let y > 0 and pu > 0. Then we obtain the following estimate

1Q.p(Of = Qp,p(Of Ny < Ce(IB = B'IVIF Nwam-rerr-vouy + 1B = BIEHf lamerreou)).- (2.13)

Remark 2.1. Since the fact that m —p + py -y < m + y — up, we deduce that the following Sobolev
embedding

H™M+H-EP(M) < H™M-P+PY-Y(W), (2.14)
This follows from Lemma 2.4 that

Qs — Qpr p(Of llnimmy < Cst (B = B'1Y + 1B = B'DIf lhamsn-rogmy .« (2.15)

Remark 2.2. Since the proof of Lemma 2.4, it is easy to obtain the following estimate
1Qp.p(Of = Qpr,p(Of llmmewy < 1B = B'IIf lamemy (2.16)

for any f e H™(M).

Proof. From (2.7), we derive that

Qpp(Of (X) = Qpr p(f ()

- 1+ kA, -BAFt -B'AFt
T lTim - ﬁ)A,f[eXp(l I, + (1 - B)A,{’) ) eXp(l I + (1 - ﬁ')A,f)]f"‘/’"(X)

n=1 (2.17)
- 1+ kA, ~ 1+ kA, -B'APt
" 21[1 i+ A-PAF  1+Kh+ (- ﬁ')A,{']EXp(1 TR+ (- ﬁ')A,{’)f"l/’"(X)

Aq(t, x) + Ay(t, x).

The first term A; is bounded by

AL lZm,

— iAZm 1+ k/ln 2 exp —ﬁ/l,{’l’ _exp —,B’/l,f’t 2 If |2. (2.18)
"1k, + (1= BAY 1+ kA, + (1= BAP T4k, +(1=-pAP )| "

n=1

It is obvious to see that

1+ iy 2< A (2.19)
T+kA, +A-PAY) — @ -B? ’

By using the inequality e — e™?| < C,la — b " for any y > 0, we know that

ex P - ex “PALt
PlTv i, + - par PlTTI, + (1= gy
BAPE B BIAPt Y
1+, + A -BAF 1+ + Q- BHAP

, 1+ Kk, + AP ’
= GUAYI - B 'y[u Ky 5 (- HAD + Kby + (1 ﬁ%%] |

(2.20)

Y
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In view of the two following observations:

p i4 2
L+ [y + Ay < ! < kA, (2.21)
1+, + Q- PAY a-py 1+, + (A -pHAY
we find that
_BAP _BIAP
exp ﬁ/lnt — exp B Ant < C(k’ )’) tyAr{Jy—yw _ ﬁlly' (222)
1+ kA, + (1 - AP 1+, + (1 - BHAY a-py
By combining (2.18), (2.19), and (2.22), we obtain that
|C(k, )’)|2 2 2 S 2m-2p+2py-2y £2
AL Il Fmey < Wt YIB - Bl yrlz::l/lnm P (2.23)
Therefore, we arrive at the following estimate:
C(k,
lALE, Ilmmen) < afiﬁ;/y{ltyw = B'PIF llm-pepr-rim). (2.24)

The second term A, can be bounded as follows. By using Parseval’s equality, we derive that

1AL I

_ OZO:AZm 1+ kA, B 1+ kA, 2 exp —2B'A Pt £ P (2.25)
"1+ - PAT T+ KA+ (- BOAY T+ kA + (- pop )m

n=1

It is not difficult to see that

1+ kA, B 1+ kA, _ 1B - A1 + kKADAP . (2.26)
1+, + A -BAP 1+, + Q- BDHAP A+ + QA -BADA + I, + (1 - BHAD)
By using the Cauchy inequality a + b > 2J/ab for any a, b > 0, we obtain that
1+ Ky + (1= BAL 2 21 + KAy 1 BAP? 2.27)
and
1+ KA, + (1 - BOAP 2 21 + Kl 1 - BAPZ. (2.28)
By summarizing the aforementioned three results, we immediately have
1+ kA, _ 1+ kA, < 1B - B . (2.29)
T+l + (- PAY 1+, + (- BAF |~ 4 T-BJ1-B

By using the inequality e < C,z7* and in view of (a + b)* < C,(a@* + b¥) for any u > 0, we find that

~B'APt B'AYt !
exp <Gy
1+ kA, + (1-BOAP 1+ kA, + (1 - BHAY
<SCt ™1 - B+ AP + KAL)
<tH(G + CAYAP),

(2.30)

where G, depends on y, ', A, and p and G depends on u, k. By combining (2.25), (2.29), and (2.30), we
derive that for any u > 0

|B_B’|2 < 2 24— 24— 2u-2
1AL, ey, < m,&m Wt CUAFTID), P (231

This estimate and Parseval’s equality implies immediately that
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”AZ(t’ ')”[|2_|'"(WD < Cl%lﬁ - ,Bllzt_ZH(lLf|||]24m(M) + |V||[$4M+M*MP(M))’ (2.32)

where C; = max(G, G;) and depends on u, ', Ay, p, and k. By Sobolev embedding H™+*#~#?(M) — H™(W), it
follows from (2.32) that

1A, Jlumeny < CsIB = B IEHIf lamr-rrguy,s (2.33)
where Cs depends on y, ', Ay, p, k, and m. By combining (2.17), (2.24), and (2.33), we derive that

1Qpp(Of = Qpr p(Of ll1mewy < N1ALE, Ilmmeny + 1AL, Hllmmem) 2.34)
< Ce(t|B = B'IYIIf lwm-rr-vony + 1B = B'IEHIf lwamern-rpgmy). O

Lemma 2.5. Let any u > 0. Then we obtain the following estimate:
138,5(Of = I p(Of lltimny < EHIB = BN lmer-rwgmy, (2.35)

where the hidden constant depends on k, u, p, A;, m, 8, and f8'.

Remark 2.3. Since the proof of Lemma 2.5, it is easy to obtain that the following estimate:
198, = B p(Of Ny < 1B = B/ limoumy s (2.36)

for any f e H™(M).

Proof. In view of the two following equalities Jp ,(t) and Jg ,(t), we have

R pa+iy _pAPt
Dpp(Of (x) = ,,;(1 Tk, (- BT p(l TR (1o B)M,)fnlpn(x) (2.37)
and
R pa+kA pARE
W OF = 2 g gy exP(1 ¥ KAy + (- ﬁ’)}l,{’)f"lp"(x) ‘ (2:38)

Two aforementioned equalities provide us that

D p(OF 00) = Dgr p(OFf (X)

o\ B( + kAy) -pARt ~ -B'ARt
- n;(l Tk 1 (- AP [ eXp(l kAt (- /3)/1,5) eXp(l Tkt (- ﬁ')A,f)]ﬁ“/’"(x)

i B(l + kAn) _ B,(l + kAn) exp _B,Arfjt
SlA+ kA +A-PAY? 1+, + (1 - BOAD)? 1+ kA, + (1= BHAP

|B1(t, X) + |B2(t, X).

(2.39)

)fnlli,,(X)

In view of (2.22), we have the following bound for the term B,

S Ba+k) Y
1B 1, Ml immy = EIA" ((1 + I, + (1 - B)Arf’)z)

—)BAr{)t 3 _ﬂyAr{)t 2 ,
X [exp(l + kA, + (1 - B)A,{') exp(l kA, + (1 - ,B’)}l,{’)] Ifn | (2.40)

Clk, y)
a-py

2 0 2
WR _ RIN2 2m+2py-2 B + kA,)
t¥|p /3|VZ/\n Py y((1+k)ln+(l—ﬁ))l,{’)2)'

n=1
By using Cauchy inequality, we find that
A+ Ky, + Q= PAPY =21 - BA + kKADAL. (2.41)

Thus, it also implies that
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2 2
B(L + kAy) LB A, 2.42)
1+ kA, + (1 - PAD) 41 - By
By combining (2.40) and (2.42), we derive that
IB 1t Mgy, < CFIB — B/ Y APV 2, (2.43)
n=1

where C; depends on k, y, and . Hence, we derive that the following estimate:
1B 1(t, Hllumy < C7IB — B IVEVIIF Nlm-p+orrvqw). (2.44)
Let us move to the consideration for the component B,. By using Parseval’s equality, we also find that
”[Bz(t, ')llé’"(m)
© ’ 2 _HpIA P (2.45)
-y Agm[ B + KAy B+ KAy ] exp( 2BALE )Ifn .

A+ K+ A= PAPY? (1 + kA, + (1 - BIAD)? 1+ A, + (1 - BOAP

n=1

It is obvious to see that

B+ kAy) _ B’ + kAy)
A+ Ky + A=A A+ Ky + (1= BHAF)
(L + kAy) ~ (L + kAy) B - B'I( + kAn) (2.46)
A+ + A=-PAF? (L + A+ (A= BHAY) (1 + kA, + (1= BHALY
= D1+ D>,
Let us assume that § > . The term D; is equal to
BIB = B'IAPQL + kA + 2kAn + (2 - B - BOAS)
Dy = : (2.47)
(1 + KA, + (1= PADY( + I, + (1= BOAY)?
It is easy to verify that
242, +2-B-BAF _2-B-P
< . 2.48
T+l + Q- ~ 1-P (2.48)
By using Cauchy inequality, we find that
A+, + A= BAP? =201 - BA + KADAL. (2.49)
From three aforementioned observations, we obtain
BIB - B12-B-p)
< . 2.
S 20 B B+ Ky + (- BOAD) 250
It is easy to obtain the following bound for D,
o BoplasR) BBl 051
A+ + A= BOAR? ~ 1+ kA + (1= AL
By combining (2.46), (2.50), and (2.51), we derive that
B+ kAy) _ B’ + kAy)
1T+k, + (1= BAPY 1+ Ky, + (1 - BHAP)?
( nt Q-PAD?  ( n+ (1= BOAY) 252

B-B1 (. BC-B-B)
T Tk - AT 20 BT - B

Here, Cs depends on 8 and f'. In view of (2.30) and (2.45) and by a similar explanation as in (2.33), we can
claim that

) < Gl - B'l.

IB2(t, Illnmeny < ColB — B'IEFIf lmr-+rquys (2.53)
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where Co depends on u, ', A, p, k and m. By combining (2.44) and (2.53), we deduce that

198,06 = Dpr p(OF Nlrimewy < 1B 1(E, Jllwmony + 1B 2t Illnmewy < Ct¥IB = BIYIF lyam-rerr-rvony + ColB

= BIEHIf lmer-mogmy.»

By a similar claim as shown in Remark 2.1, we complete the proof of Lemma 2.5.

3 Linear inhomogeneous case

— 9

In this section, we will investigate the continuity of solutions of linear problem with respect to 8 — the

fractional order.

Theorem 3.1. Let the initial datum zy € H™"(M) and G € L*(0, T; H™H* #(M)) for any 0 < u < 1. Then

we have
T1-H

1

1ZgCt, ) = Zp(t, Hlwmewy < 1B = Bllzollimewy + 1B = B'IIG |l =0, T; 1+ uy).

Proof. From (2.6), we obtain the formula of two following mild solutions as follows:
t
Zs(t, ) = Qp ()20 + Ilﬁ,p(t )Gy
0
and
t
Zs(t, %) = Qp (D20 + jlﬁ,,p(t —V)GW)dv.
0
By subtracting (3.55) from (3.56) on each side, we obtain
t
Zp(t, x) — Zp(t, x) = (Qp,p(t) — Qp' p(t))zo + I(]ﬁ,p(t - v) = Jp p(t = vV))Gv)dv.
0

This implies the following bound:

1Z5(t, ) = Zp:(t, Dlinmeny < 1(Qp,p() — Qg ()20 ll1mew)

t
" jaﬁ,p(t — V)~ Jp ot — V)G
0

H™(M)
Case 1. zg € H™(M). In this case, we use Remark 2.2 to obtain the following equation:

10Qp p(t) — Qp p(E))z0 ll1mewy < 1B = B'Izollimamy -

In view of Lemma 2.5, we bound the second term on the right-hand side of (3.58) as follows:

t t
I(Iﬂ,p(t =) = Jp p(t = v))G(v)dv <IB - ﬁ’lj(t = VIHFNIGW)lpmenrequydv
0 0

H™ (M)

t
<18 = BIIG Il 1.1 sms-wuy j(t ~vyHdv|.
0

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
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t
Since u < 1, we know that the proper integral JO (t = v) ™ dv is convergent. Therefore, we obtain

¢k

-

t
I(]ﬁ,p(t = V) = Jp p(t = v))G(v)dv . 1B = B'IIG Iz, T; 1wy (3.61)
0

H™(M)

By combining (3.58), (3.59), and (3.61), we complete the proof of Theorem 3.1. O

4 Globally nonlinearity Lipschitz case

In this section, we established some results about the global existence and continuity of solutions for
Problem (1.1). The main results are given in Theorems 4.1 and 4.3.

4.1 Global existence

Let G : HI(M) — HS5(M) such that G(0) = 0 and
1G(B1) — GODlsemy < K161 = Ballagwy, (4.62)

for any 6, 6, € H4(M) and K is a positive constant. Here, s < g < p + s.

Theorem 4.1. Let G be defined as mentioned earlier. Let the initial datum z, € H9"P(M). Then problem (1.1)
has a unique solution Zg € L'(0, T; HI(M)), where 1 < r < %, 0 < a < 1. Moreover, we obtain

2T %t

1Z5(ts Ilmeow) < —— 5 =Y zollwa-Pow) (4.63)
for any dy > 0 large enough.

Proof. The keyidea of this proofis referenced by us in the article of the second author with his colleagues [40].

To use the Banach fixed-point theorem, we need to define the following operator P : Y, 4((0, T];H?(M)) —
Y, 4((0, TI;HI(M)) with d > 0, by

t
POt) = Qp p(t)zo + Ijﬁ,p(t —V)GO())dv. (4.64)
0

Since the property G(0) = 0 and combine with Lemma 2.3, we infer that

1
(IPO) = O)llnagwy = 1Qp,p(t)z0 1wy < 1 zolla-»qm)- (4.65)
By multiplying both sides by t%4, we have
tae—dt Ta
t%e (P (6(t) = O)llnaew) < - IZolls-ren) < —— B||Zo||[Hq"’(M)- (4.66)

The latter estimate provides us that
P(6(t) = 0) € Yq,a((0, T]; HIM)),

for any d > 0. Given any two elements 6; and 8, in the space Y, 4((0, T]|;H?(M)). From equation (4.64),
we have the following equality:
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t
PO:\(t) — PO(E) = Ilﬁ,p(l‘ = V)(G(6:1(v)) — G(6x(v)))dv. (4.67)
0
By applying Lemma 2.3, we derive that
2 t
IP61(t) = POAOImaemy < 1 _'Bﬁ I 1G(6:(v)) = G(62(v))lma-pemydv. (4.68)
0
It is obvious to see that Sobolev embedding
H3M) = HIP(M), (4.69)

since we note that g < p + s. This fact combined with the globally Lipschitz property of G yields to

t t
2 2
IPOLE) ~ POO)lron < - ¥ ; [ 166102 - GO vy < - P ; [16:) - 800wy, @70
0 0
Hence, we derive that
t
t%e 4 |PO1(t) — PO(O)llnsqu) < 12/3 3 taIv‘“e-d<‘-v>v“e'dV||61(v) = 02(V)llmeenydv. (4.71)
0

It is obvious to see that

161 = 65 lly, s0,71; My = Sup vae [|6:(v) = 6,(V)llmaqw)-

o<v<T

This implies immediately that

t

f“jv_ae_d(t_v)dv 161 = 02 ll'y, 40, T1; HIGMY)- (4.72)
0

2
t%e 4P O1(t) — PO(O)lInegw) < 1 :

By change variable v = t&, we derive that dv = tdé¢. Then we have

t 1
ta j y-e-dt-ndy = tIf‘“e‘d‘(1‘5)d§. (4.73)
0 0

Let us provide the following lemma, which is presented in [35], Lemma 8, p. 9.

Lemma 4.2. Let a; > -1, a, > -1 such that a; + a, > -1, p > 0 and t € [0, T]. For h > 0, the following limit
holds

1

lim| sup thjval(l — Vv)&ePt-vidy [ = 0.
p—oo tef0,T]

Let us look into the right-hand side of (4.73). Since a < 1, we note that
-a > -1.

According to Lemma 4.2, we obtain the following statement:

d—+00p<t<T

1
lim sup tj{‘“e‘dt(l‘f)d£ =0.
0
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Hence, there exists a positive dy > 0 such that

t

sup | t¢ jv‘“e‘do(t‘v)dv < 1 (4.74)
0<t<T 2
Combining (4.72) and (4.74), we deduce that
tae=dot P B(t) — PO(t)[|naqw) < %I|91 = 02 1, 40,71 H9M)- (4.75)
Thus, we provide the following confirmation:
PO — PO, |ly, 4(0.7]; HIM)) < %”91 = 02 ||y, 4,0, T3; HM))- (4.76)

From here on, we can conclude that P is the mapping from Y, 4,((0, T];H4(M)) to itself. By applying the
Banach fixed-point theorem, we deduce that P has a fixed point Zg € Y, 4,((0, T];H4(M)). It means that Zg is
the mild solution to the Problem (1.1). Let us claim the regularity of the mild solution Zs. Indeed, from (4.64)
and (4.76), we obtain the following bound:

1Z5 1y, 40, Tism9my) = P Zp(t, 21, 40, TI:H M)

< sup t%e P (O(t) = O)llneem) + IPZp(t, x) — P(B = O)lly, 4 (0. T119(m))
0<t<T (4-77)

Ta
1-B

This aforementioned inequality implies that

1
lzolla-rany + E”Zﬁ 1Y g0, T1;H9M))-

2 a
ZollHarmv - 4.78
1o ﬁ” olHarany ( )

128 11¥, a0, TIm9M)) <

Thus, we can provide that

2T et
1Z5Ct, Ilmamy <

-y = zolma-remy (4.79)

which shows that the regularity property
Zp € L'(0, T;HI(M)),

wherel <r < i, 0 < a < 1. This completes the proof of our theorem. O

4.2 Continuous dependence

Theorem 4.3. Let zop € HI(M) and G : HI(M) — HI(M) such that G(0) = 0 and
1G(61) — G(ODlnawy < KO — Ballwagwy, (4.80)

for any 0y, 6, ¢ HI(M) and K is a postive constant. Then we obtain

2Ke%T

1Z5(t, ) — Zp(t, Jllmagny < exp(K)|B - ﬁ'|(||20||[Hq(M) + m

”ZOH[I-I‘H’(M))- (4.81)

Proof. Since Zg and Z are two mild solutions to Problem (1.1) corresponding to § and f'. Since (4.64),
we have
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t
Zy(t, x) = Q)20 + j],;,p(t V)G(Zy(v))dv (4.82)
0
and
t
Zs(t, %) = Qg (D20 + jjﬁ,,p(t V)GZp ). (4.83)
0
By combining (4.82) and (4.83), we have that

t
Zp(t, x) — Zp(t, x) = (Qpp(t) — Qg x(D))zo0 + _[(lﬁ,p(t = V) = Jprp(t = v))G(Zp(v))dv
0

t (4.84)
+ Ilﬁ’,p(t = V)(G(Zp(v)) — G(Zp(v)))dv
0
=08, x) + Dy(t, x) + Ds(t, x).
By using Remark 2.2, we have immediately that forany0 <t < T,
[131Ct, Dllmaey = 10Qp,p(t) = Qpr ()20 llnaemy < 1B = B'llZolmagwy- (4.85)
Let us now treat the second term J,. In view of Remark 2.3, one has
t
19206 lwson < 18 = B [ 16D lsondv. (4.86)
0

By using the globally Lipschitz property of G as shown in (4.80) and combining with (4.63), we arrive at

ZKT“edoT
1G(Zg(WDlImagmy < KllZg(W)llmagwy < g

for any O < v < T. By combining (4.86) and (4.87), we infer that

V7Y zolla-rguy (4.87)

t

2K T4%dT
Hb@meWs————w—ﬂW%mww>Ifﬂv
1-8 d
2K TaedoT (4.88)
T R A
d-pd-a)
2KedT
<K 5 Bizoleron-
d-pd-a)

Finally, we continue to consider the third term J3. By using Remark 2.3 and (4.80), we bound it as follows:

t
1956, llpsony < IMAPwMM%@D—@%@mm
0

H7M™)

t
< j 1G(Zs(v)) — G(Zg(W)lImeqmydv (4.89)
0

< K | 11Z5(v) ~ Zg@)laondv.

O t— ~

By combining (4.84), (4.85), (4.86), and (4.89), we derive that
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1Z5(t, ) = Zg:(t, Illmaony < N191CE Illmaewy + 19208, Illmony + 193, Illnamy

<18 — Bllzolbreny + 18~ Bllzolheron + K j 12 (4.90)

KedoT
B)(l
= Zg/(V)||nagwydv.
By applying Gronwall’s inequality, we obtain that
odoT

1Zs(t, ) = Zg(t, llnem) < exp(KOIB - B’I(IIZo"MM) Taopa-a

||Zo||[H”(M))- (4.91)

5 The convergence to parabolic diffusion equation

This section consists of two parts. The first part is to prove that the solution of equation (1.1) converges to the
solution of the corresponding parabolic equation. The second part examines the continuity of the solution
with respect to the order of derivatives.

Theorem 5.1. Let zo € HI(M) and G : HI(M) — HI(M) such that G(0) = 0 and
1G(81) — G(BDlhamy < Kl = Oallnagwy, (5.92)

for any 6,, 6, € HI(M), and K is a postive constant. Let us assume that% < p < 1. Let Zi g be the mild solution
to Problem (1.1) with k > 0. Let Z* be the mild solution to following parabolic diffusion:

eDPZ +1PZ = G(Z), inM x (0, T],
Z(x, 0) = zo(x), inM, (5.93)
Z(x,t) =0, in oM.

Then we obtain the following estimate:
* ,Q 7Q *
12k = Zj | oo, rammeny S K72120 Ml yyma-g ) + <’<l 2+ k)||Z/; Il =0, Tspamwy)- (5.94)

Proof. From (2.6), we can rewrite the formula of two mild solutions Z g and Z* as follows:

t

Zip(t, %) = R p(D)2000) + I[Fk,,;,p(t V)G(Ze v, X))V (5.95)
0
and
t
Zy(t, x) = Ry p,p(t)zo(x) + J[Fﬁ’P(t - V)G(Zj(v, x))dv, (5.96)

0

where the aforementioned operators are defined as follows:

_ - B+ IA) -BAPt
Frep.p(Of () = Zlu TR T P exp(1 TR (1o Wp)fn!,b ), (5.97)
= N B -PATt
[Fﬁ,p(t)f(x) = El a+d- ﬁ)Ar{,)z eXp(l T - B)Ar{,)fn'abn(x)a (5.98)
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- 1+ kA, -BAFt
Riep,p(Of (x) = Z T+ i, : 1= pA7 eXp(1 TR+ _Bw,)fann(X)
_ - 1 —-BAFt
Ripp(f (x) = lel NCEOY exp(1 N (f_ ﬁ)A,{’)f"lp"(X)'

To make it clearer, the proof is divided into three steps as follows.

Step 1. Estimate of |[Fi. g p()f (X) — Fp p(6)f COllpmem).-
From the two aforementioned equalities, we find that

Fiep,p()f 00) — Fg p(Of ()

e[ gk B gt
- ;[(1+k/\n+(1—ﬁ)/\f)2 (1+<1—ﬁ>/t,f>2]exp(1+k/t +(1—ﬁ)/1”)f"¢()

3 B At At
' Z 1+ 1 - PAYY [ eXp(1 + kA, + (1 - B)Anp) ) eXp(l +(1- ﬁ)/\n”)] F9l2)

n=1

Si(t, x) + Sy(t, x).

To consider the term S, we have

‘ B(L + kAy) B

A+, + (1 -PAP? A+ (1-PAP)?
B + kA1 + (1 = BAD)? - B(L + KAy + (1 = PAFY?
(1 + KAy + (1= PADA + (1 - PAD)?

A1 - ﬁ)z/l,f” +1+KkA,)
T Ak + (- PADHL+ (1 - PAFY

Since p > %, we know that
(1= BYPAF + 1+ KAy = KA P((1 = B + A% + KA, ) < kA" (1 = B)° + AT + KA ).
By using the inequality 1 + y > yg forany y > 0 and 1 < 6 < 2, we obtain that
0
(1=BAZ +1+ kA, > 1+ kA, > koAZ.

Thus, we derive that

A+ Iy + (1= PADA + A - AT > kg/\n%(l + KAy + (1= PADA + (1 - PIAD)?
- KA - BAL( - B2
=K1 - pPAT 2
By combining (5.103) and (5.105), we derive that

1 - B)2 -2p 1-2p . 6
The right-hand side of (5.102) < kl‘g( By + A7 + Iy /1,} P72

1-py
PP A I -
1-py
where in the last line, we note that1 - p < % < g. By using Parseval’s equality, we infer that
1+ kA,) B i ~2BAPt
S t 2m Azm ﬁ( n — e n 2
IS:CE M, = Z Qv ra-pare  axa-piy | v +apap !

< k20 ZAgmlfn |2

n=1

= k2—6”f ”If%"'(M)'

—_— 15

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)
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To treat the second term S,, we use the inequality |e@ — e™?| < |a — b| to obtain that

-PALt -PASt BALt BAYt
eXp(1 T, + (- ﬁ))l,{’) B exp(l +(1 —B)/\,{’) ‘S

1+, +(1-PAP 1+ (1-PAF
BktA P (5.108)
A+, + A= BADA + (- AP

< BkeALP.

This estimate together with p > % yield that

(s Y —pApt i e [
||§2(t, -)”[%—V"(M) < rg(m) [eXp(l N kAn N (1 ~ B)/lnp] EXP(W)} lfrl |2

(11341<2BT)24 iAZmAZ 6plfn |2 (5.109)

47,2723 2~ 6p
< BAkAT?A
(1-py
Combining (5.107) and (5.109), we deduce that

1 12

IFs,,6(OF (O = T p(OF COllaamn < (1848, linmony + 1828, oy < (K172 + k)IIf gy (5.110)

Step 2. Estimate of ||R g, ,(t)f (x) - Fﬁ,p(t)f(x)ll[Hm(M).
From the aforementioned equalities, we find that

Ripp(f (X) = Ry p o (Of (X)
B Z 1+ kA, B 1 o —BADt
T+ i+ A-pAF  1+a-pA7 | TP T+ ik, + (1= pAP

S B
" 211 (- PAY [ eXp(1 KAyt (- ﬁ)}[r{’) eXp(l T B)Ar{,)}fnlpn(x)
= S3(t, x) + S4(¢, x).

)fnl/)n(X)
(5.111)

It is obvious to see that

_\ k(1 - PA;P —BAPE
S5t x) = Zl(l T, + (- BADYA + (1= BAP) eXp(l TR+ (- /i)Ap)f"lp . GI12)

By a similar approach as in Step 1, we can obtain that

1+p 6
— Ay < K- 2 (5.113)
(1 + kA, + (1 - /3)/11’)(1 +(1-pAD) "
Thus, we derive the following estimate:
& k(1 - PAL> ’ ~2BAPE
S3(t, I|Zmm = n - 2
1S5 liimgn, Z [(1 T, + (- PANA+ (1 —B)Ap)] P\ i, + - poar !
< k2—9 2A3m+2—9|ﬁ1|2 (5-114)
n=1
=ICFN2,
H™1-50m)’

By using (5.108), we obtain
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n=1

2 2
om -BALt B -BATt 2
IS4Cts Mgmeyy = Z/\ (1+(1-ﬁ)/l”) [eXp(1+k)ln+(1—ﬁ))l,{’) exP(1+(1—ﬁ)/\,{’H Ifnl

< k2 ZAr%mﬂ 4plfn |2 (5'115)

n=1

= KU 2

It is easy to observe thatm + 1 - 2p <m + 1 - g. Thus, from (5.111), (5.114), and (5.115), we derive that

IR s O OO = R (OF COllmrny < 1858, My + 1SaCt, llwmony < K gy (5.116)
Step 3. Estimate of || Zy (¢, .) — Z(t, )llmmem).
From the two formulas (5.95) and (5.96), we can easily obtain the following calculation:
t
Zi gty x) = Zp(t, x) = Ry pp(t) — Rp ()20 + I[Fk,B,p(t = V)(G(Z p(v, x)) = G(Zg(v, x)))dv
0
t (5.117)
" _[ Frpplt - v) - Fppt - VIGEZiv, x))dv
0
= Ju(t, x) + Jo(t, x) + Jis(t, X).
In view of (5.116) and the assumption that z, € [H’"“*%(M), we have the following bound for J;;
st llmmon = IR o6) = RppE)20 lmon < K781120 | ymer 2, - (5.118)
For the term J,, by using Lemma 2.3 and the globally Lipschitz property of G, we find that
t
i2Ct, Ilmmeny = I":k,ﬁ,p(t = V)(G(Z p(v, X)) = G(Zg(v, x)))dv
0 H™(M)
) t
2 160, 0) = 6300, Xl (5.119)
0
t
< 25 (12500, 0 - 240, O llrondv.
0
For the third term J;3, by using 5.110, we obtain the following estimate:
VisCe, Dlrony < (k-5 + &) 16500 3D lrondy
(5.120)
<K(k-4 + k) Inz;(v, Ollsmondv
< KT(kl"% + ’<)||ZE I o0, 7; Hmem))-
By combining the aforementioned four observations, we deduce that
1Zep(ts ) = Z(t, Dlrrn < K820 sty + KT8+ K)IZ llc0,rm0my
(5.121)

ZKB

t
f 1259, %) — Z3(, )l
0
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By applying Gronwall’s inequality, we can conclude that
1Zep(t, ) = Z(t, Hlrrony < K820 Il mor-ggy + (K5 + ) 125 o, oy (5.122)

which allows us to complete (5.94). O
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