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Abstract: In this article, we will prove the existence of infinitely many solutions for a class of quasilinear
Schrédinger equations without assuming the 4-superlinear at infinity on the nonlinearity. We achieve our
goal by using the Fountain theorem.
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1 Introduction

In this article, we are concerned with quasilinear Schrédinger equation of the form

{—Au + VOu - Aw?u = Ag(x, u) in RV, )

u € HY(RM),

where g(x, u) € C(RY x R, R) is g-superlinear with 2 < g < min(4, p),2 < p < 22*2* = %, N > 3, Ais posi-

tive parameter, and V(x) € C(RN, R*) n L2(RM).

We would like to mention that quasilinear Schrédinger equation (P) arises in various branches
of mathematical physics and has been derived as models of several physics phenomenon see [1-3].
The quasilinear problem has been studied extensively in recent years with a huge variety of conditions
on the potential V and the nonlinearity g, see, for example, [4-8] and references therein.

Alves et al. [9] assumed nonlinearity to be 4-superlinear and that the potential V' is continuous and
satisfies:

() Ve CRY,R) and V(x) = V(0) > 0, for all x € RN,

(V) limyy 1oV (X) = V, and V(x) < V,, for all x € RY,

Under these two conditions, they combined the variational method with perturbation arguments to
obtain a solution. In [10,11], the authors obtained the multiplicity of solutions and made an assumption on
V and also the nonlinearity to be 4-superlinear, where they have used variational methods. Most of the
works requires the condition on the nonlinearity to be 4-superlinear in that sense p > 4. This condition that
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makes the application of the Fountain theorem is fluid. Indeed, if 4 < p < 22%, the boundedness of the
Cerami sequences of the energy functional associated with the problem (P) follows by compactness embed-
ding of HI(RY) into L>(RY). So, the energy functional satisfies the Cerami condition for any c. Consequently,
we obtain a set of unbounded of critical values. In contrast, if the nonlinear term g(x, u) changes its sign
and without the aid of condition 4 < p < 22*, we will have difficulties to obtain the delamination of the
Cerami sequences, as well as the convergence, to complete the hypotheses of the Fountain theorem [12].
To the best of our knowledge, there are only a few recent papers that deal with the nonlinearity to be not
4-superlinear and the sign-changing potential case for problem (P). Motivated by papers [10,11], in the
present article, we shall consider problem (P) with more generally on the nonlinearity of g(x, u). Namely,
when powers of the nonlinearity are 2 < g < min(4, p), 2 < p < 22* and can be allowed to sign-changing.
By a dual approach and Fountain theorem, we establish the existence of infinitely many solutions. We state
below our hypotheses on the potential V and on the nonlinearity g(x, u) in the subcritical case:

(V) Ve CRY,R) n L®RN) and 0 < V; = inf, zgvV(X).

(Vo) (V)™ e LI(RN).

(G) g€ CRN xR, R) such that g(x, —u) = —g(x, u) for all x, u € RN x R, there exit positive functions

i !
e r(4) RM n LARY), (%) is the conjugate ofg and 7 € L°(RY) n L2(R") such that
lgCx, O < EQOIE [T + TEOIE P, V(x, ) € RN x R.

t
(Gy) LetG(x,t) = Iog(x, u)du, limHm| G(:q’ Ol = too uniformly in x, 2 < g < 4 and there exists 1, > 0 such

that G(x,t) >0 V(x,t) e RY xR, |t| > 1.
(G3) There exists ¢y > 0 and 6, > 0 such that

_p_
('G(’t‘izt)')” < coG(x, t) forall (x,t) € RN x R\[-8, bo],

where G(x, t) = ig(x, t)t — G(x, t) is the positive function and g < u < p.

The main result is the following:

Theorem 1.1. Let 2 < p < 22* and 2 < q < min(4, p). Suppose that (V;), (), (Gy), (G>), and (Gs) are satisfied.
Then for all A > 0, the problem (P) has infinitely many solutions.

Remark 1. Example of nonlinearity meets all requirements of Theorem 1.1.
Let2<gq=25<4,4<p=45<22"andqg<u=4<p.

. o 5
Vix) = e +1 and gx,u) = (M)Wﬁu - (Loslxl)ml;u
+ |X

1+ x|V 1+ |xN
We take
£ = —2— ¢ I®RY 0 PRY),
1+ |x]?
2
100 = LS Ry o 2R,
1+ |x]?
So,

5 1+ sin?|x|

2 7
X, u)| < ul2 ulz,
180601 < e lult + =2

by the definition given for G(x, u), we have

12 2
Glx, u) = 3(1 + sin |X|)|u|3 B %(1 + COS |X|)|u|§ >

Vix,u) e RN xR, |ul >1,
ol 1+ x|V 1+ x|V O w) ul

1
5
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as well as

~ 2 P2
Glx, u) = 3 (1+cos x| |u|% N 1(1+sin |x| |u|% >0,
200 1+ |x]¥ 36 1+ |x|¥

(|G<x,u)|)% .
2
AL 36( 2 )5 > 0.

Gx, w) o 9

Notation. In this article, we make use of the following notation:

e C, Co, Cy, G,,... denote positive (possibly different) constants.
e For 2 < s < 0o, the usual Lebesgue space is endowed with the norm

1/s

Il = Tl e, = j|u(x>|5dx . ue SRV,
[RN

e H(RN) = {u € I2(RY) : Vu € I?(RN)} endowed with the norm
1/2
lullgp gy = I|Vu(x)|2 + uldx
[RN

¢ S denotes the best constant that verifies

1/2
(j[RquFdx)

S= 1in£ MO ([ e N2
ueH'(RM\{0 .
(-[[RNlulz dx)

ey

e For any s € (2, 2%), Sg denote by

) lull R
Sg= inf —1&) @
ueHIRMVO} s

2 Reformulation of the problem

From the embedding results, it is well known that H'(RY) < LP(RN) is continuous for 2 < p < 2* and is
compact when 2 < p < 2*. For more general facts about the embedded, we refer the reader to the previous
articles [13,14].

To find solutions of (P), we will use a variational approach. Hence, we will associate a suitable func-
tional to our problem. More precisely, the Euler-Lagrange functional related to problem (P) is given by
Ji : H(RY) — R defined as follows:

T = = I VuP + Voowdx | + = J IVa2)Pdx - A J G(x, wydx.
2 RY 4[RN RrRY
Since,

1 j V(ud)Pdx = j juP? [VuPdx,
4 RN RN
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we obtain

_1 29y 12 1 2dy _
I =3 J;(l + 2OVuPdx + 3 LV(x)u dx AJ:VG(X, w)dx.
R R R

Because of the term .[[R +Iul?|Vu?dx, the functional J, is not defined on space H'(RV). For this, we follow the
argument developed by Liu et al. [15] (see also [4]), and we change the variables v = f~'(u), where f is defined by

ey 1
I'O= a2
f(t)==f(-t) on [0, +00).

Let us assemble some properties of the change of variables f : R — R, which will be used in the continued
from the article.

on [0, +00),

Lemma 2.1. The function f(t) and its derivative satisfy the following properties:
(fl) f is uniquely defined, C* and invertible;
) If'()] <1forallt € R;
(f3) If@®)] < |t| forallt € R;
(f4) @Hlastﬁo;
(f5) % — V% ast — +oo;
(fe) ft)/2<tf'(t) <f(t) forallt > 0;
() f2(6) /2 <t (Of' ) < f2(t) for all t € R;
(f8) If(O)| < 2Y4t|Y% for all t € R;
(f9) There exists a positive constant C such that

) = e, if <1,
Clel2, if 1t > 15

(f10) For each a > 0, there exists a positive constant C(a) such that
[f?(at)] < C()If*(t)];
(f11) [F@OF' O] < 1/2.

Proof. Proofs may be found in [4,8]. O

Under this change the functional J; will be
Bo) = 5| [19ve + veoreax - A [ 6o faax
RY RY

Obviously, I € C'(H'(RY), R) and

L), w) = j Vv Vwdx + j VOOFW)F wdx - A j g0, F)F vywix,
RN RN RN

for any w € HY(RY).
Moreover, the critical points of I; are the weak solutions of the following equation:

A = (g(x, f(V)) - VXOF(Y)) in RV, 3)

V1+2f()P

Considering that if v is a critical point of the functional I}, so u = f(v) is a critical point of the functional J;,
that is, u = f(v) is a solution of problem (P).
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3 The boundedness of the Cerami sequences

Lemma 3.1. Let ry > 0. There exists ko > O such that

j WV + VOOF2()dx 2 kolvIP

RY

Hl([RN) Yv € Hl([RN) N ||V||H1([RN) < 1o.

Proof. The proof of analogous results can be found in [4,8]. O

Definition 1. Let X be a Banach space with the norm |-| and F : X —» R a function.

A Gateaux differentiable function F satisfies the Cerami condition locally at ¢ ((C).-condition for short)
if any sequence {v,} ¢ X such that F(v,) — ¢ and (1 + |[v)])F'(v,) — 0, as n — +oo, has a convergent
subsequence.

The first step for the (C).-condition to hold is bounded.

Lemma 3.2. Assume that V and G(x, v) satisfy (W), (15), (Gy1), (G>), (G3), and {v,} is (C).-condition for I, then
{vu} is bounded in X for any A > 0.

Proof. We have
L) —»c and (A + [VallpweD(va) = 0 in H(RN). (4)

We claim that there exists C > 0 such that

[ 19w + vooramax = i < c. )

Next we use Lemma 3.1 to deduce that {v,} is bounded in H(RY).
Assume by contradiction that [[vllf — +oco.
We have from (4)

¢+ 04(1) = % j (Vv + VOOF2()dx - Aj G(x, Fv))dx,
RN RN

SO,
c + 0y(1) 1
G(x, dx = — =22 4 vl
IN (x, F)dx D+l
and
G(x, f(vn)) )) 1
n—+oo ||V || ) ﬁ > 0. (6)
RN mf
Then
0<— = lim IG(X f(V"))dx < lim J'M . (7)
n—+co [vall} n—+0o Ivall7
Let w, = 1. Clearly, lwallgey, < 1.

Uptoa subsequence we may assume that

w, — w in H(RY).
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Because H(RN) — L'(RV) is compact for all 2 < r < 2*, this implies
wy, —» w in I(RY), 2 <r< 2%
wr(x) = w(x) a.eon RV,

Since y > 4 and (4), this implies that

¢+ 13w - —<IA< V), L) >

f'(va)
(1 1f1+4F°w) 11
= j(z (1 +2f2(v) ))IVVHIde + ( ) j VOOF2(v)dx

[RN

| ig(x,f(vn»f(vn) - Gx, f(u))dx
IRN

> A j G0, Fv)dx,

then
~ c+1
| Gec ppax < 2. ®)
[RN
Let us consider
Qua,b) ={x e RN/0 < a < |f(vy)| < b}.
By (G,) and (G3), there exists §, > O such that
I’ p
G(x, fr(x))) > =22yt 2)<7), Vx € Qu(r, 00), Vr > 6.
Co
Moreover, by (8), we can write
P
0 < &7 10-9(%) meas (Q(r, 00)) < I GOx, fv))dx < Ié(x, Fonpdx < SHL
C
0 Qu(r,00) RN
Thus, this implies that
0 < meas(Q,(r, c0)) < — A+
AC%I’([I_Z)(IH)
Then
meas(Q,(r, 0)) —» 0 as r — +oo. 9)

We have 1 < 2 < 2% there exists 0 < £ < 1 such that 2 = & + 2*(1 - £). By (f,), the Hoélder inequality and
Sobolev inequality, thus, we can write

j IF2()ldx
Qn(r,00)N(vy>1)
3 1-¢
< f IF(v)ldx j () dx
Qn(r,00)N(vy=1) Qn(r,00)N(vy=1)
; ; 1-¢
< j V(0)dx j VOOF2(v(0)dx j v I dx
Qn(r,00)N(vy>1) Qu(r,00)N(v>1) Qu(r,00)N(vy>1)
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2°1-§)
£ ’
< Vy 2(meas(@u(r, o) Inlfs 204 [ 17y, Pax
[RN
; (10)
< Vo 2(meas(Qu(r, 00))2 vyl S2 A=)y, 209
¢
-2 £
<V, 2(meas(Qu(r, 00)))2 Vil
By using the fact that (a + b)* < a* + b*, ifa, b > 0 and kx € [0, 1], (f4) and (10), we obtain
K K
[ wdax| =] [ e [ i
Qn(r,00) Qn(r,00)N(|al<1) Qn(r,00)N(|vnl21)
K
1
<(meas@ (o)) + o [ Powidx v
Qn(r,00)N(val21)
.
< (meas(Qn(r, 00)))* + gk (meas (Qq(r, OO)))%KIIVnII%"-
Since 2 < p < 22%, there exists 0 < 6 < 1 such thatg =0+ 2(1-0).
By using (11) and considering x = %, we can write
2
P
1 P
| [ e
lIvalle
Qn(r,00)
20 2(1-6)
p p
1 «
e g Y
lIvall7
Qp(r,00) Qp(r,00) (12)
20 2'(1-9)
_2°1-9) 4 P
< Sl miax| | [ wpax
lIvalle
Qn(r,00) Qn(r,00)
2%(1-6) wa-0 %
=5 S V,°C?
< 2" _(meas(Qu(r, )7 + 2 " 0 = " (meas(Qu(r, 00)))7.
Ivalls"? (IVallp
f
Thus, it follows from ||[v,lf > 1, (G3), (8), (9), and (12) that
J‘ IG()E, fu(zvn))l dx
v
Qu(r,o0 Y
p-2 2
_p_ P P
G(x, f(v p-2 1
_ I(I 06 € n»|) dx f Fompdx | L )
f2(v) Ivalle
Qpu(r,00)
p-2 2
p p
p=2 ~ )4 1
< 20o? | [Goesomax| | [ x|
i Ival?
R Qp(r,00)
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p-2 +
—n 2°1-6)
21/4C0p S » {c+1

1+20
il LA

)”(meas(gn(r, )7

p-2 &

21/“COTV67C"%S"ZZ*(II'_9) c+1\7 ®
meas (Q,(r, P
L (1) (meas(@(r, copy’ )
1/4 p-2 wa-ofc+ 1 p;z 20
< Mhey? ST 1 (meas(Qu(r, 00)))»
p2 0 saefc+ 17 %
+ R4 PV PC oS p ( 1 ) (meas (Qu(r, 00)))7 — 0,
as r — oo uniformly in n.
By (G) and |wyl2r®) — lwlzgy, as n — +oo, we find that for fixr > 0
j |G(X,f(Vn))IdX
Ivall7
Qn(0,r)
[ Sl + T2 )P )
<
[vall}
Qn(0,r)
el ol e el 0
< — 2RV lWnl2ryy + TN IWnlli2ryy — O, as n — oo.
qlvally - EOTTEED T ply T EOTTEED

Combining (7), (13), and (14), we have
0 to [IO0SUN g [ 1S, [ IGCSOD g,

= 2 2
Ivally Ivally

> 0, asn,r— oo.
27 ) vl
R Qn(0,r) Qy(r,00)

This is inconsistent with (6). Hence, there exists M > 0 such that|lw|lf < M foralln € N. Then by Lemma 3.1,
the sequence {v,} is bounded in H(RN). (|

Lemma 3.3. Assume that V and G(x, v) satisfy (1), (V5), (Gy), (G,), and (Gs). Then, the functional I satisfies
the (C).-condition for all ¢ > 0 and for all A > 0.

Proof. Consider a (C).-sequence {v,;} for I}, that is,
hvp) —» ¢ and (1 + Wil — 0 in HY(RY).

From Lemma 3.2 {v,} is bounded in H(RY). Going if necessary to a subsequence, we can assume that

- B i Hl RN s
Vi v . in HY(R"Y) (15)
Vo — v, in L'(RN), 2<r<2%
From (75), we conclude thatj| ‘ RV*ldx — 0as R — +o0.
X|>
1/2 1/2
I [V — v|dx < I V-ldx J V(O)|vy — v Pdx
|x|>R [x|>R |x|>R
1/2
<| | viax| - vix (16)

|x|>R
/2

1
<M J Vldx| — 0, as R — +oo uniformlyin n.

|x|>R
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Moreover, since v, — v in L} (RV), I vy = v|[dx — 0, as n — +o0o0, which implies that

Ix|<R
I [V = v|[dx - 0, as n — +oo. )
RN

By using (17), g =60+2*(1-06)forsome0 < 0 <1and|v, - V||§§(1u;3§ < M for some M > 0, we can write

p
5 »
Ve = VII% | = j [V — v |2dx
L2(R™)
[RN

0 1-6
< I [V — v|dx J [V — v dx
RY RY
9 2*(1279)
<5209) [ - viax | | [ 1905 - viPdx 18)
RY RY
0
<5700 [y - vidx | Iy - VEERLD
[RN
0
< M§-20-6) I [V —vldx| — 0 as n — +co.
[RN
With similar arguments in Lemma 3.1, we have
There exists C > 0 such that
I [V = VP + VOOF)f' (V) = FOWF (V) (v — v)dx = Cllvy, — VI (19)
[RN

Because v, — v in HY(RY) and I}(v,) — 0 in H}(RN) as n — +co, we have
(V) — Li(v), vy — V) — 0 as n — +o0.
By the Holder inequality, (15), (18), (19), (), (Gy), 2 < p < 22*, and 2 < g < min(4, p), we can write
0n(1) = (L(vn) = V), Vo = V)
= I [V = VIP + VOO W)f' (W) = FOF' () (v = v)dx = A f 8O, fFv)f' (V) — 806, FF' (V) (Vn
RY RY

- v)dx
2 Cllva = VIEj gy = A I(f(x)[f(v,,)ﬂ‘l + 7O WP + ECOIF W + TCOIfF MIP Iy — vIdx
[RN

> Ol = iy = A [ (§00I 1 + 700l 1+ £00M [£1 + 2GOl 1)y - vidx
[RN
q-2 q-2

_vIP _ , 2 2 _
2 Clva = VIgs gy Allé’llL(g)(RN)(IIVnIILz([RN)+||VI|L2([RN))IIVn Vil

p-< p-2

-2
— 2 2 —
A||r||m(||vn||L§(RN) + ||v||L5(RN))uvn Yz,
2 kO"Vn - V”%_Il([RN) + On(l)-

Therefore, [|v;, - VlggY) — 0asn — +oo. Hence, I satisfies the (C).-condition for any ¢ > 0. This completes
the proof. O
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4 Proof of the main result

In this section, we show the existence of infinitely many solutions via the Fountain theorem [12].
Let X be a Banach and separable. Since X is separable (see [16]), there exist {ep}ney € X and {f ey € X*
with

X = span{e;}2;, X* = span{f,};

) 1 ifi=j,
<ff’e'>‘{o ifi4],

where (, ) is the duality pairing between X and X*.

69

Let X; = span{ej}, Y,= %Xj, Zy =
j=0 j=n

>

Lemma 4.1. ([12] Fountain theorem). Consider an even functional I) € C(X, R). If, for every k € N, there exist
Py > 1 > 0 such that

(1) ax = max{li(v) : v € Y, [VIx = p} <0,

(2) by =infi(v) : v € Z, |Vllx = p,} = o0 as k — +oo,

(3) I satisfies the (C).-condition for every ¢ > 0.

Then I has an unbounded sequence of critical values.

Proof of Theorem 1.1. The functional I, is even, I} ¢ C(H'(RY), R). By Lemma 3.3 I satisfies the (C).-con-
dition for every ¢ > 0. We only need to verify I, satisfying (1) and (2) of Lemma 4.1.
For k > 1. Denote

ag = sup v

L®RM)
VeZi [Vl Ny =1

®N)=
Then we have a; — 0 as k — +0o. In fact, suppose to the contrary that there exist £y > 0,ko € N and the
sequence {vi} in Z such that ||vlpgy) =1 and ”Vk"Lg(RN) > g for all k > ko. Since the sequence {vy} is
bounded in H'(RY), there exist v € H'(RN) such that vy — v in X as n — +oo and

(i v) = lim {fj,v) =0 forj=1,2,...
k—+0c0

Hence, we obtain v = 0. However, we have

go< lim Vel zg = V1,2 = O,
which provides a contradiction.

Fixr > 0.
Since ay — 0 as k — +oo0,

P \s

koS#
P iy
Ang>0:Vk>nO<a<|—2—1|r>r. (20)
° ’ 27Tl

Forallv € Z such that||[v| g~y = r.It follows from the assumptions (G,), (fg), 2 < p < 22*,2 < g < min(4, p),
and Lemma 3.1, we have
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1
oR ij R+ Veofwdx - 224 j £ fidx - 224 fr(x)|v| dx
[RN RN
Vv P + VOO0 - —usn g = 2 ||v||2
2 (@) @™ Mgy p I RY
[RN
21/4/\5-2
21 4/1 2 q I27 b
konvnHl(RN) = 22813 g M, ~ ¢ oM
21/4)1557

1 214 -4 .
ZEko —Tsz II{"()(IRN) 2

1 1), 2.2
Zko(z—g)r p =5, 2l L(4)

2 5 4
- ———®|Tlor>
p

er—>+oo, as r — +oo,
RY)
which implies (2).

For the first item (1), let us suppose that this condition is not meant for a certain k. So, there exists a
sequence {v,,} in ¥, such that

||Vn||H1(RN) — +00, and D(vy) = 0. (21)

fm)

vall g e

We consider w, = . Then it is obvious that |walpgy) < 1. As Y is of finite dimension, there

exists w € Y, with w # O such that

wy, — w stronglyin ¥ and wy(x) - w(x) a.eon RN as n — +oo.

Let
Q, ={x RN : w(x) + 0}
Then meas(Q,) > 0.
For all x € Q,, we have

[f (vaOCO)| = |‘Un(X)|||Vn||H1([RN) — 400, as n — +oo.

For ry > 0, we have Q, ¢ Qu(r, oo) for large n.
Hence, for all x € Q, and by (G,), we have

m GOSOD _ i OGSO i SO e,
n—+0o ”Vn”%{l([RN) n—+oo fZ( n( )) +oo |f|( n( ))lq

Thus, it follows from (14), (21), and Fatou’s lemma that

Ly,
0 < liminf _hv)
n—+oo ”Vn”Hl([RN)

<1 limintA| f GOx, Fv)dx — GO, Py
2 n—+00 Vn“X f2(va)
0,70) Qn(1o,00)
1 gt P! . GO, f(w)
E + T”f"LZ(RN)"w”LZ(RN) + 7||T||L2([RN) lwlzgyy — A ), lr}gl:(r)lof 2 )n X0, (r0,00) [ Wn [Pdx =

which provides a contradiction. So, I, satisfies (2). All the assumptions of Lemma 4.1 are satisfied. There-
fore, this concludes the proof of Theorem 1.1. O
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