
Research Article

Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, and Kamsing Nonlaopon*

Duality for convolution on subclasses of
analytic functions and weighted integral
operators

https://doi.org/10.1515/dema-2022-0168
received May 21, 2022; accepted September 28, 2022

Abstract: In this article, we investigate a class of analytic functions defined on the unit open disc
z z: 1� { ∣ ∣ }= < , such that for every f β γ,α� ( )∈ , α 0> , β0 1≤ ≤ , γ0 1< ≤ , and z 1∣ ∣ < , the inequality
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holds. We find conditions on the numbers α β, , and γ such that β γ SP λ,α� ( ) ( )⊆ , for λ ,π π
2 2( )∈ − , where

SP λ( ) denotes the set of all λ-spirallike functions. We also make use of Ruscheweyh’s duality theory to

derive conditions on the numbers α β γ, , and the real-valued function φ so that the integral operator V fφ( )

maps the set β γ,α� ( ) into the set SP λ( ), provided φ is non-negative normalized function φ t td 1
0

1
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1 Introduction

Let � be the set of analytic functions defined on the open unit disc z z; 1�� { ∣ ∣ }= ∈ < possessing the
property that f z z a zn n

n
2( ) = + ∑

=

∞ and λ be a real number. Then, by λSP( ) we denote the subclass of � of all

λ-spirallike functions for which λ ,π π
2 2( )

∈ − (see, e.g., [1–6]). Every analytic function f in � is a convex

λ-spirallike function on � if and only if zf z( )′ is a λ-spirallike function on � . For α β0, 0 1> ≤ ≤ , and
γ0 1< ≤ , we denote by β γ,α� ( ) the set of all functions f in � provided
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For a set 0� �⊆ , the dual set �∗ is defined as g f g z f z: 0, , .0� � � �{ ( )( ) }= ∈ ∗ ≠ ∀ ∈ ∈

∗ The second

dual or the dual hull of � is defined by � �( )=

∗∗ ∗ ∗. Indeed, we have, � �⊆

∗∗ (see, e.g., [7] and [8]).
Let x k( ) denote the Pochhammer symbol [6]

x x x x x k k1 and 1 1 , for .k0 �( ) ( ) ( ) ( )= = + … + + ∈

Then, the Gaussian hypergeometric function is defined by ([1–27])
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The classical theory of integral transforms and their applications have been studied for a long time, and
they are applied in many fields of mathematics [28–32]. Several integral transforms are extended to various
spaces of distributions [29], tempered distributions [33], distributions of compact support [34], ultradis-
tributions [35], and many others. In a classical sense, Fourier and Ruscheweyh introduced the integral
transform V :φ � �⟶ ,
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where φ is a real-valued integrable function satisfying the normalizing condition [4]

φ t td 1.
0

1
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In the literature, the integral operator V fφ( ) has been discussed by many authors on various choices of φ
(see, e.g., [9,11,12,36,37]). In what follows, we introduce the function g gα γ

λ
,≔ as a solution to the differential
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which can be expressed in terms of an integral equation as
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However, we find conditions on α β, , and γ so that β γ λ, SPα� ( ) ( )⊆ , for given λ π
2∣ ∣ < . We refer to the

monographs [38] and [10] for more details on a variety of sufficient conditions on the λ-spirallike functions.
For detailed analysis of various integral operators we refer readers to [14–19] and references cited therein.
In Section 2, we present several lemmas which simplify our results. Section 3 is devoted for our main results
and applications. One more result establishes the inclusion P β γ λ, SPα( ) ( )⊆ for α 0> , β0 1≤ < , γ0 1< < , λ
being real number but λ π

2∣ ∣ < . In another conclusion, we impose conditions on the set P β γ,α( ) to be

univalent. Several remarks, corollaries, and theorems are also derived in some detail.
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2 Preliminary lemmas

The following are preliminary lemmas which are very useful in our next analysis.

Lemma 2.1. (Duality principle, see [8]). Let 0� �⊆ be a compact subset having the property

f x f f z f xz1 : , .x x� �∣ ∣ ( ) ( )∈ ⇒ ∀ ≤ ∈ = (2)

Then, for all continuous linear functionals φ on � we have φ φ� �( ) ( )=

∗∗ and co co¯ ¯ ,� �( ) ( )⊆

∗∗ where cō
stands for the closed convex hull of the set.

Lemma 2.2. [7] Let f �∈ . Then, the function f belongs to λSP( ) if and only if
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Lemma 2.3. [13] Let γ0 1≤ < and β �∈ such that β 1≠ . Let
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Lemma 2.4. Let γ0 1≤ < and β β, 1�∈ ≠ , and Vβ γ, be given by (3). Then, we have

g
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for every g Vβ γ,∈

∗ and some f Vβ γ,∈ , where Γ , Γ1 2 are continuous linear functionals on Vβ γ, with VΓ 0β γ2 ,( ) ≠ .

It is clear from the context that the set Vβ γ, in (3) does not satisfy the property (2), i.e., if f Vβ γ,∈ then
f xz Vβ γ,( ) ∈ for all x 1∣ ∣ ≤ , which is the requirement of the Duality Principle. Therefore, the Duality Principle
can be stated with a slightly weaker condition, but more complicated, whenVβ γ, satisfies [7]. In the present
article, we apply the duality principle on the setVβ γ, and hence we will not state it in its most general form.

3 Main results

In this section, we discuss various results involving spirallike functions, hypergeometric functions, and
certain class of integral transforms. We immense our section by establishing the following theorem.
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Theorem 3.1. Let α 0> , β0 1≤ < , γ0 1< < , x 1∣ ∣ = , and λ be a real number such that λ π
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Therefore, we obtain a one-to-one correspondence between P β γ,α( ) and Vβ γ,
∗∗ . Thus, by aid of Theorem 2.2,
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Corollary 3.2. The function F x z,( ) can be expressed in terms of Gaussian hypergeometric function as
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Theorem 3.4. Let f P β γ,α( )∈ , α 0> , β0 1≤ ≤ , and γ0 1< ≤ . Define
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1 1
1

,

0

1

γ
αγ

1⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

( ) ⎛

⎝
( ) ⎞

⎠
(( ) ( ) )

⎛

⎝
( ) ⎞

⎠

⎛

⎝

⎜⎜
⎛

⎝
( ) ⎞

⎠

⎞

⎠

⎟⎟

⎛

⎝
( ) ⎞

⎠
( )

∫

′ =

+

−

+ −

+

−

∗ − +

=

+

−

+ −

+

−

∗ −

−

+

=

+

−

+ −

+

−

∗

−

(13)

where

G z β
t z

β t1 1
1

d .
0

1

γ
αγ

1⎜ ⎟( ) ⎛

⎝
( ) ⎞

⎠
∫= −

−

+
−
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Therefore, we have

G z β
t

β t β K βRe 1 1
1

d 1 ,α γ

0

1

,γ
αγ

1⎜ ⎟( ) ⎛

⎝
( ) ⎞

⎠
( )∫≥ −

−

+ = − +
−

where Kα γ, satisfies (9). Note that if β K K1 2 2 1α γ α γ, ,( ) ( )≥ − ∕ − , then G zRe 1 2( ) ≥ ∕ . Also, it is well-known that

functions with real parts greater than 1/2 preserve the closed convex hull under convolution [10, p.23].
Therefore, from (13) we write

f z γ
xz

G z γ
yz

G z

γG xz γ γ G yz γ
γG xz γ G yz

2
1

1 1 2
1

1

2 2 1 1
2 2 1 1.

⎜ ⎟( ) ⎛
⎝

⎞
⎠

( ) ( )⎛

⎝

⎞

⎠
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

′ =

−

− ∗ + −

−

− ∗

= − + − − −

= + − −

But, since Ref z 0( )′ > , we have f P 0, 1α( )∈ . □

Theorem 3.5. Let f P β γ,α( )∈ , α 0> , β0 1≤ ≤ , γ0 1< ≤ . Let the following integral equation

β
β

φ t g t t
1

d
0

1

( ) ( )∫

−

= − (14)

hold. Then, for every real λ, λ π
2∣ ∣ < , we have V f λSPφ( ) ( )∈ if and only if

t h tz
tz

t e t
e t

tRe Π 1
1

d 0,γ
iλ

iλ
0

1

2⎜ ⎟( )⎛

⎝

( ) ( )

( )
⎞

⎠
∫ −

− + +

+

≥

−

−

where

t s s s t φ σ σ γΠ Λ d , Λ d 0γ

t

γ γ

t
αγ

γ

1
2

1

1

αγ
γ1( ) ( ) ( )

( )
( )∫ ∫= = >

−

−

−

and

h z
z

z
x z

1
, 1, .

x e
e1

2

iλ

iλ

2

2
�( )

( )
∣ ∣=

+

−

= ∈

−

+

−

−

Proof. Let α 0> , γ 0> , and F z V fφ( ) ( )= . Then F λSP( )∈ if and only if

F z
z

h z
z z

φ t f tz
t

t h z
z

φ t t
tz

f z
z

h z
z

0 1 d d
1

.
0

1

0

1
( ) ( )

( )
( ) ( ) ( ) ( ) ( )

∫ ∫≠ ∗ = ∗ =

−

∗ ∗ (15)

Hence, by applying equation (12), equation (15) is equivalent to

β φ t
z

h tw
tw

g t w t ψ z γ xz
xz

γ yz
yz

1 1 d d 1
1

1 1
1

0,
z

0

1

0

⎜ ⎟( ) ( ) ⎛

⎝

( )
( )⎞

⎠
( ) ⎛

⎝
( ) ⎞

⎠
∫ ∫− − ∗ ∗

+

−

+ −

+

−

≠ (16)

where g t( ) is defined by (1). Equation (16) indeed holds if and only if

β φ t
z

h tw
tw

g t w t ψ zRe 1 1 d d 1
2

.
z

0

1

0

⎧

⎨
⎩

( ) ( ) ⎛

⎝

( )
( )⎞

⎠
( )

⎫

⎬
⎭

∫ ∫− − ∗ >

Now, by using the fact β φ t g t t1 1 d 1
0

1
( ) ( )( ( ))∫− − = we derive
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φ t
z

h tw
tw

g t w t ψ zRe 1 1
2

d d 0.
z

0

1

0

⎧

⎨
⎩

( ) ⎛

⎝

( ) ( ) ⎞

⎠
( )

⎫

⎬
⎭

∫ ∫ −

+

∗ ≥

Using the definition of ψ given by (10), the above expression becomes

φ t
z

s αγ
γ

h tw
tw

g t s w tRe 1
1

1
2

d d d 0.
z

0

1

0 0

1
1αγ

γ1
⎧

⎨
⎩

( ) ⎛

⎝

( ) ( ) ⎞

⎠

⎫

⎬
⎭

∫ ∫∫

−

−

+

≥

−

−

By the definition of g presented in (1), it is easy to see that

g t αγ
γ

s e e st
e st

e
e

st
st

s1
2 1

1
2

1 2
1

2 1 log1 d .
iλ iλ

iλ

iλ

iλ
0

1
1αγ

γ1 ⎜ ⎟

( ) ⎛

⎝ ( )

( ) ⎞

⎠
∫

+

=

−

+

− −

+

−

− +
−

− −

−

−

−

−

By substituting in the left-hand side of the previous inequality and using the change of variables υ st= in
the resulting equation, it follows that

φ t
t

v
z

h wv
wv

t e e v
e v

e
e

v
v

w v tRe 1
2

1 2
1

2 1 log1 d d d 0.
t z

iλ iλ

iλ

iλ

iλ
0

1

0

1

0

αγ
γ

αγ
γ

1

1 ⎜ ⎟

⎧

⎨
⎩

( ) ⎛

⎝

⎜
⎜

⎧

⎨
⎩

( ) ⎛

⎝ ( )

( ) ⎞

⎠

⎫

⎬
⎭

⎞

⎠

⎟
⎟

⎫

⎬
⎭

∫ ∫ ∫ − +

− −

+

−

− +

≥

−

− −

−

−

−

−

− (17)

By integrating by parts, Inequality (17) yields

t t
z

h tw
w

t e e t
e t

e
e

t
t

w tRe Λ 1
2

1 2
1

2 1 log1 d d 0,γ

z
iλ iλ

iλ

iλ

iλ
0

1
2

0

αγ
γ1 ⎜ ⎟

⎧

⎨
⎩

( )
⎧

⎨
⎩

( ) ⎛

⎝ ( )

( ) ⎞

⎠

⎫

⎬
⎭

⎫

⎬
⎭

∫ ∫ − +

− −

+

−

− +

≥

−

− −

−

−

−

−

where t σΛ dγ t
φ σ

σ

1
αγ

γ1
( )

( )
∫=

−

. Once again, integrating by part suggests the following compact form:

t h tz
tz

t e t
e t

tRe Π 1
1

d 0,γ
iλ

iλ
0

1

2⎜ ⎟

⎧

⎨
⎩

( )⎛

⎝

( ) ( )

( )
⎞

⎠

⎫

⎬
⎭

∫ −

− + +

+

≥

−

−

where t s s sΠ Λ dγ t γ
1 2αγ

γ1( ) ( )∫=

−

− . Thus, F λSP( )∈ . To extend our result from the particular choice of f given in

(12) to all of β γ,α� ( ) we refer to Lemma 2.4. Note thatVφ defines a linear functional and the condition on the

λ-spirallikeness eRe 0 0iλ zF z
F z

( )

( )( )
> >

′ is expressed as a quotient of two linear functionals. Therefore,

Lemma 2.4 can be applied. Finally, to prove the sharpness, let f P β γ,α( )∈ be in the form

f z γ
αγ

zf z γ β xz
xz

γ β yz
yz

β1 1 1
1

1 1 1
1

.( ) ( ) ( ) ( )( )′ +

−

″ = −

+

−

+ − −

+

−

+

Let x y 1= = . Using a series expansion, we obtain

f z z β αγ
n αγ n γ

z2 1
1 1

.
n

n

2
( ) ( )

( ( )( ))
∑= + −

+ − −

=

∞

Therefore, we can write

F z V f z φ t f tz
t

t z β
αγμ

n αγ n γ
zd 2 1

1 1
,φ

n

n n

0

1

2
( ) ( )( ) ( )

( )
( )

( ( )( ))
∫ ∑= = = + −

+ − −

=

∞

where μ λ t t tdn
n

0

1 1( )∫=

− . Furthermore, it is easy to write g t( ) in (1) in a series expansion as

g t
e

n e
n

αγ
αγ n γ

t1 2 1 2
1 1

.iλ
n

n
iλ

n

1
( ) ( )

( )
∑= +

−

−

+ −

+ + −

−

=

∞
−

(18)
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Now by equations (14) and (18), we have

β
β

φ t g t t

φ t
e

n e
n

αγ
αγ n γ

t t

e
n e

n
αγμ

αγ n γ

1
d

1 2 1 2
1 1

d

1 2 1 2
1 1

.

iλ
n

n
iλ

n

iλ
n

n
iλ

n

0

1

0

1

1

1

1

⎜ ⎟

( ) ( )

( )
⎛

⎝

( )
( )

⎞

⎠

( )
( )

∫

∫ ∑

∑

−

= −

= − +

−

−

+ −

+ + −

= − −

−

−

+ −

+ + −

−

=

∞
−

−

=

∞
−

+

Hence, we obtain

β e
n e αγμ
n αγ n γ

1
1

2 1
1

1
.iλ

n

n
iλ

n

2

1( )
( ( ))

∑

−

=

−

−

+ −

+ −

−

=

∞

−

−

Computing F 1( )′ − , indeed gives

F β
αγμ

n γ αγ

e β e
αγμ

n n γ αγ

e β
αγμ

n n γ αγ

e F

1 1 2 1
1

1 1

1 2 1 1
1
1 1

1 1 2 1
1
1 1

1 1 .

n

n
n

iλ iλ

n

n
n

iλ

n

n
n

iλ

1

1

2

1

2

1

⎜ ⎟

( ) ( )
( )

( )( )

( ) ( )( )
( )

(( )( ) )

( )
⎛

⎝

( )
( )

(( )( ) )

⎞

⎠

( ) ( )

∑

∑

∑

′ − = + −

−

− − +

= − + − −

−

− − +

= − + −

−

− − +

= − − −

=

∞
−

− −

=

∞
−

−

=

∞
−

−

Hence, we obtain

e F
F

Re 1
1

0.iλ⎧

⎨
⎩

( )

( )

⎫

⎬
⎭

− ′ −

−

<

This implies that our result is sharp for the λ-spirallike function. □

4 Concluding remarks

In this article, a class of analytic functions was discussed on a unit open disc z z: 1� { ∣ ∣ }= < . Certain
conditions on the numbers α β, , and γ were imposed so that β γ,α� ( ) defines a subset of the set λSP( ) of

λ-spirallike functions for all λ ,π π
2 2( )

∈ − . Ruscheweyh’s duality theory was employed in predicting condi-
tions on the numbers α β γ, , and the real-valued functions φ so that the integral transform V fφ( ) maps

β γ,α� ( ) into λSP( ) for nonnegative and normalized functions φ.
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