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Abstract: In this article, we investigate a class of analytic functions defined on the unit open disc
U = {z : |z| < 1}, such that for every f € P(B,y),a>0,0<<1,0<y<1,and]z| <1, the inequality

@) + 2 of"(2) - B
1-8

Re >0

holds. We find conditions on the numbers a, 8, and y such that £,(8, y) < SP(A), for A € (—%, %), where

SP(A) denotes the set of all A-spirallike functions. We also make use of Ruscheweyh’s duality theory to
derive conditions on the numbers a, 8, y and the real-valued function ¢ so that the integral operator V,(f)

1
maps the set (B, y) into the set SP(A), provided ¢ is non-negative normalized function (IO @(t)dt = 1) and

1
V,(F)2) = f«p(t)@dt.
0

Keywords: convolution, Hadamard product, duality principle, A-spirallike functions, dual set, Gaussian
hypergeometric function

MSC 2020: 05A15, 11B68, 26B10, 33E20

1 Introduction

Let A be the set of analytic functions defined on the open unit disc U = {z € C; |z|] < 1} possessing the
property that f(z) = z + }.;”,a,z" and A be a real number. Then, by SP(A) we denote the subclass of A of all

A-spirallike functions for which A € (—%, %) (see, e.g., [1-6]). Every analytic function f in A is a convex

A-spirallike function on U if and only if zf'(z) is a A-spirallike function on U. Fora > 0,0 < <1, and
0 <y < 1, we denote by £,(B, y) the set of all functions f in A provided
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@) + 2 ) 2f"(@) - B
1-5

Re >0 forall ze U.

For f and g in A (or Ay, Ag=1{g:8() = @; feA}), f(z) =Y, anz" and g(z) = Y7 bnz", the con-
volution product (Hadamard product) of f and g, denoted by f * g, is a function in A (or A() defined by

(f* 8)@) = ) apbnz", zeU.
n=0
For a set V € Ay, the dual set ‘V*is defined as V* = {g € Ag: (f * g)(z) # 0, Vf € V, z € U}. The second
dual or the dual hull of V is defined by V** = (V*)*. Indeed, we have, V ¢ V** (see, e.g., [7] and [8]).
Let (x)x denote the Pochhammer symbol [6]

xX)o=1 and ) =x(x+1..x+k+1), forkeN.
Then, the Gaussian hypergeometric function is defined by ([1-27])

JFi(a,b,cz) = ) mz".

k=0 (C)kk!

The classical theory of integral transforms and their applications have been studied for a long time, and
they are applied in many fields of mathematics [28—-32]. Several integral transforms are extended to various
spaces of distributions [29], tempered distributions [33], distributions of compact support [34], ultradis-
tributions [35], and many others. In a classical sense, Fourier and Ruscheweyh introduced the integral
transform V, : A — A,

1

Vy(F)2) = f o(0)

0

@)y,

where ¢ is a real-valued integrable function satisfying the normalizing condition [4]
1
Igo(t)dt -1,
0

In the literature, the integral operator V,(f) has been discussed by many authors on various choices of ¢
(see, e.g., [9,11,12,36,37]). In what follows, we introduce the function g := gof‘y as a solution to the differential
equation

1-y 2-e—tet 21 -e™)logl +t)
t) + tg'(t) = - - - ,
80 ay g el +¢t) et t

which can be expressed in terms of an integral equation as

1
« _ il _ ppmid _ ik
g(t) = ay jS%,l 2 g te™ 21 'e ) log(1 + t) ds. 1)
1-y eM1+¢t) e t
0

However, we find conditions on a, §, and y so that £,(8, y) € SP(A), for given |A| < % We refer to the

monographs [38] and [10] for more details on a variety of sufficient conditions on the A-spirallike functions.
For detailed analysis of various integral operators we refer readers to [14-19] and references cited therein.
In Section 2, we present several lemmas which simplify our results. Section 3 is devoted for our main results
and applications. One more result establishes the inclusion B(f, y) € SP(A) fora > 0,0 < <1,0<y < 1,A
being real number but |A| < g In another conclusion, we impose conditions on the set F(f, y) to be

univalent. Several remarks, corollaries, and theorems are also derived in some detail.
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2 Preliminary lemmas
The following are preliminary lemmas which are very useful in our next analysis.

Lemma 2.1. (Duality principle, see [8]). Let V < A, be a compact subset having the property
fe V=V <1:fi €V, fi(z) = f(x2). )
Then, for all continuous linear functionals ¢ on A we have (V) = @(V**) and co(‘V) < co(‘V**), where co

stands for the closed convex hull of the set.

Lemma 2.2. [7] Let f € A. Then, the function f belongs to SP(A) if and only if
L@ k@) #0, zew,
z

where
X — e—zi/\

Z+ T
h(z) = —%—, |x|=1
(1-2)

Lemma 2.3. [13] Let 0 < y < 1 and B € R such that B + 1. Let

1+ xz

1-xz

V/s,y={y(1—ﬂ) +(1-y)(1—ﬁ)t£+ﬁ, =yl =1, ze'L{}. 3)

Then, we have

Viy = {f € Ap: Ja eR, Re{g(z) - 21(1__27;)} >0, g@)=fE), X< 1}
and
Vgy = {fe Ao Re{g(l%;;ﬁ} >0, 8@ =fi2), Ixl< 1}-

Lemma 2.4. Let0 <y <1land B €R, B # 1, and Vp, be given by (3). Then, we have

L) _ ()
LE) )

for every g € Vi, and some f € Vg, where I, T, are continuous linear functionals on Vg, with I)(Vg,,) # 0.

It is clear from the context that the set Vg, in (3) does not satisfy the property (2), i.e., if f € V3, then
f(xz) € Vp, forall|x| < 1, which is the requirement of the Duality Principle. Therefore, the Duality Principle
can be stated with a slightly weaker condition, but more complicated, when Vj , satisfies [7]. In the present
article, we apply the duality principle on the set V3, and hence we will not state it in its most general form.

3 Main results

In this section, we discuss various results involving spirallike functions, hypergeometric functions, and
certain class of integral transforms. We immense our section by establishing the following theorem.
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Theorem 3.1. Let a >0, 0<f <1, 0<y<1,|x| =1, and A be a real number such that |A| < g Then
BB, y) € SP(A) if and only if

O kx+ D+l
F(x,z) = ayz G+ Diay + (1 y)k)z , (4)
where
1+ cos24
Re{F(x, _.
e{F(x, z)} > ) (5)

Proof. Let f be a function in the class (8, y) and g, (z) = f'(z) + - yzf” (2). Then, we have g, , € Vg,
If f(z) = 32 1akz , a =1, then

[ee]

gy @) =1+ Z((k + Dy + !

k=1

Yk + 1)ak+1)zk
y

=1+ Y (k+ 1)ak+l(1 + 1_—yk)z"
ay

k=1

(k + 1)ak+1(1 + 1- yk)z"
ay

( Y - 1))zk-1.
ay

@ = N k-1 _ % N ay k-1
z k;akz 8ay(?) Z‘lk(ay+ aA-phk-10)

Therefore, we obtain a one-to-one correspondence between F(B, y) and V). Thus, by aid of Theorem 2.2,
BB, y) ¢ SPQA) if and only if

S

Hence, we have

o k-1 14+ X2,
Z ayz * 1+e22A +#0, VgeV,Vix|=1, VzeU. (6)
i k(ay + (1 - y)(k - 1)) 1-2)

8a,y(2) *

For z € U, let us consider the continuous linear functional A, : Ay — C such that

—2iA
0 k-1 1+

A(h) = h(z) * Z ayz " 1+e72

Sklay+ (1 -yk-1) (1-2)7

By the Duality Principle, we obtain A,(V) = A,(Vg)). Therefore, (6) holds if and only if

B 0 W, 0 ayzk K|, © X — e—ZiA X
(1 +2(1 ﬁ)g:lz ) (1 + ,{Z::](k+ ey + (L= y)k)z ) (1 + Z(k+ 1+ - e_mk)z ) #0.

k=1

Hence, we have

_ -2
2(1 [23)/ Z kx+D+1+e & 4 0. )
1+e 1k + D(ay + A - k)
Using the properties of the convolution, we reformulate (7) as
1+e2

OZO: k(x+1) +1+e2 kg .
o (ke + Day + (1 - k) 21-p)

Forall z € U, |x| = 1, the equality on the right side of (8) takes its value on the line Rew # — lzz ff’sﬁz)’l. So (8) is
equivalent to (4).

(8)
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Corollary 3.2. The function F(x, z) can be expressed in terms of Gaussian hypergeometric function as

-2id _ (1 - -2iA
F(x,z) = -(1 + 2 + ay(e X)llog 1 A-pd+e?) +aylx+ 1)2Fl 1, ay s &y +1; z|.
ay+y-1z 1-2z ay+y-1 y

1-y 1-

Proof. By taking into account definitions and following simple computations we obtain

ay o k(x+1)+1+e2

2ay(1 - B)

k=1

F(x,z)=
— ay
Vo (k+ D(E + k)
. ay
ay(e‘z”1 - x) Z 1 —(1 -+ e 4 ay(x + 1) °Z°: -y K
ay +y - k+1 ay +y -1 kzll‘i—yy+k
—2iA _ (1 _ -2iA —2iA _
_(ay(e X) N 1-yQa+e )+0{y(x+1))+ ay(e )2F1(1 1,2 2)
ay+y-1 ay+y-1 ay +y —
(1 -2
A-ya+e*H) +ayx+1) a ay ’ ay 1 2).
ay+y-1 1-vy
That is,
-2id - -2id -2id _
F(X’Z):_ay(e +1D)-QAQ-y)Q+e )+ay(e X)+y—1
ay+y+1 ay
-2id _
ie.=—(1+e2) 4 ay(e X) llog !
ay+y-1 z 1-z
(1 -2id
N A-y)Qa+e )+ocy(x+1)2 a, ’ ay 11 2) O
ay+y -1 1-y 1-y
The following remark expresses a new form of Inequality (5).
Remark 3.3. The following inequality holds.
1+cosZ/\+Re°Z°: 1 Al OZ": k Sk OZO: 1 k
ay+1-ypk | | S+ Dy + A - yk) ko (k+ D(ay + (1 - y)k)

Proof. Following the previous analysis, we write

1+ cos2A o k r S 1 ‘
’ Re{z BN } ' Re{z (k+ Doy + A - k) }

2ay(1 - B) o1 e+ Diay + (1 k=1
- k _ 1
> Re{-x ) + Re —ez"‘z zk L.
o e+ Diay + (A - y)k) o (ko + D(ay + A - k)

This indeed satisfies the above inequality when

1+cosZ/l+Re Z 1 1 £
ay+(1—y)k

3 (k+ D(ay + (1 - y)k)

Zk

HM8

20y(1 - B) P g k+ 1)((1)’ +(1- Y)k)

Therefore, we obtain

1+cos2d i Al
2y@-p) |G (1 k[ *

HMS

ay + (1 - y)k
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Theorem 3.4. Let f € B(B,y),a > 0,0 < B <1,and 0 < y < 1. Define
1

dt

1-ta
0

Ka,y = (9)

Then, the function f belongs to B0, 1) and, hence, it is univalent for
5 1-2K,,

2 .
21 - Kq)

Proof. Let & > 0 and y > 0. Define

$@z) =1+ i(l . 1{;—yyn)z

n=1
and
(o) (o) 1
ay z" 1
YP)=1+ ) ————2z"=1+ — :j —dt.
n;ay+(1—y)n ,le+l—yn 1-taz
ay 0
By using change of variables, we rewrite 1(z) in the form
1
b = 1’
1-z Y
Y(2) = Low, (10)
&y J‘SH ds, 0<y<1
1-y 1-sz
0
In view of these representations, we can write
F@) + @) = @)+ 9@) and (f’(Z) . 1;—yyzf”<z)) Y@ = f1(2). ay

Now, we let f € (B, y). Then, in view of the Duality Principle (see Lemma 2.1), we may restrict our attention
to the function f € B(f, y) for which

1- 1+ xz 1+yz
@) + —Y2f"(z) = y1 - B) FA-pa-p—2
ay 1-xz 1-yz
Thus, in view of (11), the preceding observation reveals
1+ xz 1+yz
fi(2) = (y(l ) FA-pa-p—L, ﬁ) * P(2). (12)
1-xz 1-yz
Hence, equation (12) is equivalent to
1 1+yz
F@=|y—Z s Q- —2 |« (@ - B + B,
1-xz 1-yz
1
R P L j((l—ﬁ) - +B)dt 13)
1-xz 1-yz 1-twz
0
_ y1+xz +(1_)/)1+yz « G(2),
1-xz 1-yz
where
1
Gz) = j((l Y —— +B)dt.
1-twoz

0



DE GRUYTER Duality for convolution on subclasses of analytic functions and weighted integral operators = 7

Therefore, we have

1
1
ReG(2) > j((l B + B)dt = (1~ B)Kay + B,
o 1-tw
where K, , satisfies (9). Note that if > (1 — 2K, )2(1 — Kq,,), then ReG(z) > 12. Also, it is well-known that

functions with real parts greater than 1/2 preserve the closed convex hull under convolution [10, p.23].
Therefore, from (13) we write

i(z) = 1) - N T
f(z)—y(l_m 1) G(z) + (1 y)(l—yz 1) G(z)

=2yG(xz) -y + 2(1 - y)G(yz) - (1 - y)
=2yG(xz) + 2(1 - y)G(yz) - 1.

But, since Ref'(z) > 0, we have f € B(0, 1). O

Theorem 3.5. Let f € P(B,y), a > 0,0 < B <1,0 <y < 1. Let the following integral equation
8 1
_— = - tg(t)dt 14
SR GH0 (14
0

hold. Then, for every real A, |A| < %, we have V,(f) € SP(A) if and only if

l .
ReJ’Hy(t)(h(tz) C—t+ea+ r))dt S0,
0

tz e (1 + t)?

where

1 1

I, (¢) = J‘Ay(s)s%‘zds, AD) = %’)da(y > 0)

t t 1-vy

and
z+ X
h(z) = (1_17*;)22“ X=1, zeU.

Proof. Let a > 0, y > 0, and F(z) = Vy(f). Then F € SP(A) if and only if

1 1
045D L O L[y @)y, M) _ [0 f) he) )
z z z ! t z ! 1-tz z z
Hence, by applying equation (12), equation (15) is equivalent to
1 z
B 1 htw) . . 1+ xz o l+yz
a B)!W)Z !(—M 80 Jawd + ) (Vl -t yz) +0, (16)

where g(t) is defined by (1). Equation (16) indeed holds if and only if
1 z
Rel(1 - B) I qu(t)lj(M - g(t))dwdt s s L
z tw 2
0 0

Now, by using the fact (1 - ,B)f;go(t)(l - g(t))dt = 1 we derive
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1 z
Re J‘go(t)éj‘(% _ l%g(t))dwdt < P2t > 0.
0

0

Using the definition of i given by (10), the above expression becomes

1

z 1
Re j¢(t)ljjs%‘1 &y (h(tw) _1+80®) )dsdwdt > 0.
z y 2
00

tw
0

By the definition of g presented in (1), it is easy to see that

1
a _ p A _ ik _ piA
1+ g(t) _ sﬁ’ll 1 2 ? est 21 Ie )log1 + st ds.
2 1-y e (1 + st) e A st

By substituting in the left-hand side of the previous inequality and using the change of variables v = st in
the resulting equation, it follows that

1 t z
t « _ il _ ok |
Re J"”Eiy) J‘vﬁ’1 1[hw) ¢ 1+ 2 —?/1 elv_A _if )logl +v dw ¢dv (dt ; = 0. 17)
tiy z wv 2 e (1 +v) e v
0 0

By integrating by parts, Inequality (17) yields

_ il _ pil _ il
Re J.Ay(t)t*’z 1J’h(tw) t 14 2 e et 21 e )logl + t dw bdel s o,
e M1+ t) e t

where A(t) = I ‘P(U) —~do. Once again, integrating by part suggests the following compact form:
al y

Re J‘Hy(t)(h(tz) —t+e‘“(1+t))dt >0,

e (1 + t)?

1
where IL(t) = L Ay(s)s% ~2ds. Thus, F € SP(A). To extend our result from the particular choice of f given in

(12) to all of Px(B, y) we refer to Lemma 2.4. Note that V, defines a linear functional and the condition on the

AZF' (2)
Fz)

Lemma 2.4 can be applied. Finally, to prove the sharpness, let f € B(f, y) be in the form

A-spirallikeness Re(el > 0) > 0 is expressed as a quotient of two linear functionals. Therefore,

F@) + @) =y - B+ (- B)l 2 .
Let x = y = 1. Using a series expansion, we obtain
_ ay 2"
J@ =2+ ﬁ>zn(ay+(n_1)(1_y)) '
Therefore, we can write
ayu, n
F(z) = Vo(f)(2) = J“P(U dt =z+201- ﬁ)z < n(ay + (n - (1 - y))z ’

1
where u, = foil(t)t"‘1dt. Furthermore, it is easy to write g(t) in (1) in a series expansion as

-2 & n+2-et ay
gt) =1+ —=) (-1 tr. (18)
et &= n+1 ay+n(l-y)
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Now by equations (14) and (18), we have

% p(Dg(t)dt

-B

n+1l ay+nl-y)

O “— O%.ﬂ

© —il
<0(t)(1 + — Z ant2- 4 t")dt

=-1- —2§ 2o et @ .
n = n+1 ay+n(l-y)

Hence, we obtain
n+1-eayu,
n(ay + n(1 - y))’

1 -2 ¢
ey R DAl

Computing F'(-1), indeed gives

(o]

F!( 1) 1+ 2(1 _ ﬂ)z (_l)nilayyn

(n-1DA-y)+ay
lA - (_l)n_layyn
)Z “n((n - DA -y) +ay)

< (D" layp
=1-eM1+20- 2
« )( FA-B 2 G ha y)+ay)]

=(1-e?+21-p)1-

=—(1 - eMF(-1).
Hence, we obtain
_Fl(-
Relen=E DL g
F(-1)
This implies that our result is sharp for the A-spirallike function. O

4 Concluding remarks

In this article, a class of analytic functions was discussed on a unit open disc U = {z : |z| < 1}. Certain
conditions on the numbers a, 8, and y were imposed so that £,(8, y) defines a subset of the set SP(A) of

A-spirallike functions for all A € (—%, %) Ruscheweyh’s duality theory was employed in predicting condi-

tions on the numbers a, B, y and the real-valued functions ¢ so that the integral transform V,(f) maps
Px(B, y) into SP(A) for nonnegative and normalized functions ¢.
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