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Abstract: Generalized approximate weak greedy algorithms (gAWGAs) were introduced by Galatenko
and Livshits as a generalization of approximate weak greedy algorithms, which, in turn, generalize weak
greedy algorithm and thus pure greedy algorithm. We consider a narrower case of gAWGA in which
only a sequence of absolute errors { }

=

∞ξn n 1 is nonzero. In this case sufficient condition for a convergence
of a gAWGA expansion to an expanded element obtained by Galatenko and Livshits can be written as
∑ < ∞

=

∞ ξn n1
2 . In the present article, we relax this condition and show that the convergence is guaranteed

for
( )

=ξ on n
1 . This result is sharp because the convergence may fail to hold for ≍ξn n

1 .
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1 Introduction

In this article, we consider generalized approximate weak greedy algorithms (gAWGAs), which were intro-
duced by Galatenko and Livshits [1]. Let us recall the definition of gAWGA.

Definition 1.1. Let H be a Hilbert space over �, D be a symmetric unit-normed dictionary in H (i.e.,
=D Hspan , all elements in D have a unit norm, and if ∈g D, then − ∈g D). In addition, let { } ( ]⊂

=

∞t 0, 1n n 1 ,
{ } [ )⊂ ∞

=

∞q 0,n n 1 be weakness sequences and �{( )} ⊂
=

∞ε ξ,n n n 1
2 be an error sequence. For an expanded ele-

ment ∈f H , coefficients �{ } ⊂
=

∞cn n 1 , remainders { } ⊂
=

∞r Hn n 0 and expanding elements { } ⊂
=

∞e Dn n 1 are defined
as follows.

Initially,r0 is set to f . Next, if ∈
−

r Hn 1 ( �∈n )hasalreadybeendefined, thenan (arbitrary) element satisfying
( ) ( )⩾ −

− ∈ −
r e t r e q, sup ,n n n e D n n1 1 is selected as en. We set cn = ( )( )+ +

−
r e ε ξ, 1n n n n1 and define rn = −

−
r c en n n1 .
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The process described earlier is called a gAWGA. The series ∑

=

∞ c en n n1 is called a gAWGA expansion of f
in the dictionary D with the weakening sequences { }

=

∞tn n 1, { }
=

∞qn n 1 and the error sequence {( )}
=

∞ε ξ,n n n 1.

It immediately follows from the definition of gAWGA that

�( )∑= − ∈

=

r f c e N ,N
n

N

n n
1

and hence, the convergence of the expansion to an expanded element is equivalent to that of the remain-
ders rn to zero.

As a selection of an expanding element en is potentially not unique, there may exist different realiza-
tions of gAWGA expansion for a given expanded element f and a given dictionary D. Furthermore, if =t 1n
and =q 0n for at least one �∈n , gAWGA expansion may turn out to be nonrealizable due to the absence of
an element ∈e D which provides ( )

∈ −
r esup ,e D n 1 .

If = =q ξ 0n n for every �∈n , then gAWGA coincides with the approximate weak greedy algorithm
(AWGA) proposed by Gribonval and Nielsen [2]. If = = =q ξ ε 0n n n for every �∈n , then gAWGA coincides
with the weak greedy algorithm (WGA), which was introduced by Temlyakov in [3]. If = = =q ξ ε 0n n n and

=t 1n for every �∈n , then gAWGA coincides with the pure greedy algorithms [3], also known as “projection
pursuit regression” or “matching pursuit” [4,5].

The error sequence {( )}
=

∞ε ξ,n n n 1 can be separated into two sequences, i.e., into a relative error sequence
{ }

=

∞εn n 1 and an absolute error sequence { }
=

∞ξn n 1. As each computational error can be quantified by its absolute
value, here we consider the error sequences {( )}

=

∞ξ0, n n 1. Furthermore, we assume that all tn and qn have their
default values – 1 and 0, respectively.

Let us note that if >c 0n for all n, then we can interpret this realization of a greedy expansion as a
special case of a greedy algorithm with prescribed coefficients (GAPCs), which was initially introduced by
Temlyakov [6,7]. Indeed, we can take the sequence of coefficients { }

=

∞cn n 1 from the realization of gAWGA, and
consider GAPC for the same expanded element with this sequence of coefficients (treated as “predefined”).
GAPC in this case has a realization with the expanding elements coinciding with element selected in
gAWGA, and these realizations of gAWGA and GAPC are identical. Thus, if { }

=

∞cn n 1 in gAWGA satisfy con-
ditions sufficient for the convergence of GAPC, it guarantees convergence of gAWGA as well.

Galatenko and Livshits found sufficient conditions on weakening sequences and error sequences for a
convergence of gAWGA expansion [1, Theorem 2]. For the considered case, these conditions take the form

∑ < ∞

=

∞ ξn n1
2 . In the same article, they also showed [1, Theorem 3] that if ≍ξn n

1 , then the convergence can

be violated. Thus, there remained a gray zone between l2 and
n

1 .

Similar results for GAPC were obtained in [8]. More precisely, it was shown that if the sequence of
coefficients satisfies conditions ∑ = ∞

=

∞ cn n1 and ∑ < ∞

=

∞ cn n1
2 , then GAPC expansion converges to an ex-

panded element, but for ≍cn n
1 , the convergence may fail to hold. However, for GAPC, the specified

gray zone was eliminated. Specifically, in [9, Theorem 2.2], the authors showed that the convergence is

guaranteed for { }
=

∞cn n 1 satisfying conditions ∑ = ∞

=

∞ cn n1 and
( )

=c on n
1 .

2 Main result

In this article, we present a result for gAWGA, similar to the one proved in [9] for GAPC, which removes

the gray zone between l2 and
n

1 for gAWGA. This result can be stated as follows.

Theorem 1. Let H be a Hilbert space, D be a symmetric unit-normed dictionary in H , weakening sequences
{ }

=

∞tn n 1 and { }
=

∞qn n 1 be identically equal to 1 and 0, respectively, and a relative error sequence { }
=

∞εn n 1 be

identically equal to 0. Let an absolute error sequence { }
=

∞ξn n 1 satisfy the condition ( )
=ξ on n

1 . Then, for every

Convergence of greedy expansions  255



element ∈f H , its gAWGA-expansion in dictionary D with the weakening sequences { }
=

∞tn n 1, { }
=

∞qn n 1 and the
error sequence {( )}

=

∞ε ξ,n n n 1 converges to f .

The proof of Theorem 1 uses certain methods and technique that were used in the proof of the similar
result for GAPC [9, Theorem 2.2]. However, a straightforward adaptation of the proof of [9, Theorem 2.2] is
insufficient for proving Theorem 1: to obtain the result for gAWGA, we introduce new ideas in steps 2 and,
especially, 4 and 5, as well as new Lemmas (specifically, Lemmas 3, 5, 6, and 9).

3 Proof of Theorem 1

In the following text, we write “gAWGA expansion” as a short form of “gAWGA expansion in dictionary
D with the weakening sequences { }

=

∞tn n 1, { }
=

∞qn n 1 and the error sequence {( )}
=

∞ε ξ,n n n 1.”
We note that for proving Theorem 1, it is sufficient to show that

‖ ‖ =

→∞

rlim 0.
n

n

We split the proof into nine steps. Steps 1–5 are the preparation for the main part of the proof. Step 6 is
the proof for one simple case, and steps 7–9 constitute the proof for the more difficult case.

1. We begin the proof by showing that there exists the limit

‖ ‖ < ∞

→∞

rlim .
n

n

We split the proof of this fact into two lemmas.

Lemma 1. Let αn = ( )

‖ ‖

−

−

arccos r e
r

,n n

n

1

1
(i.e., [ ]∈α π0,n is the angle between

−
rn 1 and en), and let hn = ‖ ‖

−
r αsinn n1 .

Then { }
=

∞hn n 1 is a nonincreasing sequence.

Proof. Let βn = {( ) ( )}−
̂ ̂r e r emin , , ,n n n n , where ( ) ̂a b, denotes the angle between vectors a and b. Then

= ‖ ‖h r βsinn n n. Since the expansion is greedy with ≡t 1n and ≡q 0n , we have ⩽
+

α βn n1 , and so

= ‖ ‖ ⩽ ‖ ‖ =
+ +

h r α r β hsin sin . □n n n n n n1 1

Lemma 2. The limit

‖ ‖ < ∞

→∞

rlim
n

n

exists.

Proof. Similar to Lemma 1, we set hn = ‖ ‖
−

r αsinn n1 . In view of Lemma 1, the sequence { }
=

∞hn n 1 is non-
increasing. Hence, there exists a limit =

→∞
h hlimn n .

For gAWGA, we have

‖ ‖ = +r h ξ .n n n
2 2 2 (1)

Hence, ‖ ‖ ⟶r hn as ⟶ ∞n . □

2. We prove Theorem 1 by contradiction. Let us assume that ‖ ‖ >
→∞

rlim 0n n . If ‖ ‖ =r 0k for some >k 0, and
then it is obvious that the expansion converges to the expanded element. Otherwise, there exists a number

>r 0, such that for every �∈k

‖ ‖ ⩾r r.k (2)

Let us note that in the considered case of gAWGA expansion, we can always assume that ⩾c 0n . Indeed,
assume that an expanding element ∈

+
e Dn 1 was selected at step +n 1. If <

+
c 0n 1 , then the same element

256  Artur R. Valiullin et al.



+
en 1 will be selected as

+
en j until ( ) ( )⩾

+ + − +
r e r e, ,n n n j n1 1 1 for some >j 1. It follows from the fact that if

= +
+ − +

r r αen j n n1 1 with >α 0 for >j 1, then

( ) ( ) ( ) ( )= + > + =
+ − + + + + −

r e r e α r αe e r e, , , ,n j n n n n n n j1 1 1 1 1

for every { }∈ ⧹
+

e D en 1 .

But if the sequence { }
=

∞ξn n 1 satisfies the condition ( )
=ξ on n

1 , then it is obvious that every subsequence

{ }
=

∞ξn k 1k
satisfies the condition

( )
=ξ on k

1
k

. Therefore, we can combine several consecutive steps (namely,

consecutive steps with identical selection of an expanding element) into one and consider the sequence
of errors { }

=

∞ξn k 1k
instead of { }

=

∞ξn n 1. As a result, we ensure that all ⩾c 0n . If =c 0n for some n, then at step n,
the remainder stays unchanged, and we can simply exclude such steps from consideration. Therefore,
for the same reason, we can assume that >c 0n for every �∈n .

Note that due to Lemma 2, the assertion of the theorem, i.e., the convergence of rn to zero, follows from
the convergence of a subsequence rnk to zero.

We need the following lemma.

Lemma 3. If ‖ ‖ ⩾ >r r 0k for all >k 0, then

∑ = ∞

=

∞

c .
n

n
1

Proof. We prove this lemma by contradiction. Assume on the contrary that

∑ < ∞

=

∞

c .
n

n
1

Then the series ∑

=

∞ c en n n1 converges. Therefore, since

∑= −

=

r f c e ,n
k

n

k k
1

there exists the limit ⟶ ≠r a 0n . As =D Hspan and since D is symmetric, there exists ∈d D such that
( ) = >a d b, 0. Consequently, there exists a number �∈n such that ( ) ( )< ⩽

+
r d r e, ,b
n n n2 1 , ∣ ∣ <

+

ξn
b

1 4 , and
<

+
cn

b
1 4 simultaneously. Therefore, for this n, we have

( )> = + > − =
+ +

+

b c r e ξ b b b
4

,
2 4 4

.n n n n1 1 1

This contradiction completes the proof of Lemma 3. □

3. For every nonzero element ∈f H , we set

( )
( )

( ) ( )
( )

≔

‖ ‖

≔ =

‖ ‖
∈

∈F g f g
f

r f F g
f g

f
, , sup

sup ,
.f D

g D
f

g D

Let Sk be the kth partial sum of the sequence { }
=

∞cn n 1, i.e., = ∑

=

S ck j
k

j1 .
We need the following lemma.

Lemma 4. If ‖ ‖ ⩾ >r r 0k for all >k 0, then

( ) >

→∞

−
S r rliminf 0.

n
n D n 1

Proof. As mentioned earlier, assume on the contrary that

( ) =

→∞

−
S r rliminf 0.

n
n D n 1
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The monotonicity of Sn implies that

( ) =

→∞

S r rliminf 0.
n

n D n

Therefore, there exists a subsequence { }
=

∞nk k 1, such that

( ) =

→∞

S r rlim 0.
k

n D nk k

Let us consider a sequence of functionals { }
=

∞Fr k 1nk
of norm 1. By the Banach-Alaoglu theorem, the unit

sphere is weakly✱ compact. Hence, there exists a weakly✱-converging subsequence { }
=

∞Fr i 1nki
. For simplicity,

we set Frnki
= Fi. As noted earlier, there exists the weak✱-limit

≔

→∞

F Flim .
i

i

The dictionary D is symmetric, and hence,

( )
⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )∑ ∑= + = ‖ ‖ + ⩾ −

= =

f r c e r c e r S r rF F F .i i n
j

n

j j n
j

n

j i j n D n
1 1

ki

ki

ki

ki

ki ki

Passage to the limit, we have ( ) ⩾F f r, which implies that ≠F 0.
Conversely, for every g from the dictionary D, we have

( ) ( )

( ) ( )

( )

( )

= ⩽ =

− = − ⩽ =

→∞ →∞

→∞ →∞

F g g r r

F g g r r

F

F

lim lim 0,

lim lim 0.
i

i
i

D n

i
i

i
D n

ki

ki

Hence, ( )F g = 0 for all ∈g D and, since D is complete, we obtain =F 0. The contradiction completes
the proof of the lemma. □

4. We split the set of indices �∈k into two parts.

Let M be the set of indices k such that ∣ ∣
( )

<

−ξk
r e,

10
k k1 , and let �͠

= ⧹N M .

If ͠
∈k N , then

( ) ∣ ∣= + ⩽
−

c r e ξ ξ, 11 .k k k k k1 (3)

If 
∈k M , we have

( )
( )

( )
( )

= + >

= + <

−

−

−

−

c r e ξ r e

c r e ξ r e

, 9 ,
10

,

, 11 ,
10

.

k k k k
k k

k k k k
k k

1
1

1
1

(4)

We further split M into the disjoint sets  
…M M, ,1 2 , which satisfy the following conditions:

(1) Every set consists of sequential indices.
(2) The union of any two consecutive sets does not consist of sequential indices.

In other words, Mj are maximum blocks of consequent elements in M .

Let lj be the first element of Mj. For every lj, we find the index 
∈p Mj j (if it exists) such that ⩽

+
ci

c
1 2

i for

every { }∈ + … −i l l p, 1, , 1j j j , but not for =i pj. Let Mj be defined as Mj if such an index does not exist, and

as { }+ … −l l p p, 1, , 1,j j j j otherwise; Mj = 
⧹M Mj j (some of these Mj may be empty).

Let N be defined as the union of N͠ and all Mj , and let M = �⧹N . We note that = ⋃M Mj j.
Thus, we have split the set of indices �∈k into two sets N and M with the aforementioned properties.

258  Artur R. Valiullin et al.



5. Now, consider the sequences

⎧

⎨
⎩

⎧

⎨
⎩

=

∈

=

∈

x c k M

y c k N

, if ,
0, otherwise;

, if ,
0, otherwise.

k
k

k
k

Let also Sn
M and Sn

N be the nth partial sums of the sequences { }
=

∞xn n 1 and { }
=

∞yn n 1, respectively.
We note that

( )

( )

( )

( )

( ) ( )

∑ ∑

∑ ∑ ∑ ∑

‖ ‖ =

= − −

= ‖ ‖ − +

= … = ‖ ‖ − +

= ‖ ‖ − + − +

− −

− −

=

−

=

⩽

∈

−

⩽

∈

⩽

∈

−

⩽

∈

r r r
r c e r c e
r c r e c

r c r e c

r c r e c c r e c

,
,

2 ,

2 ,

2 , 2 , .

n n n

n n n n n n

n n n n n

k

n

k k k
k

n

k

k n
k M

k k k
k n
k M

k
k n
k N

k k k
k n
k N

k

2

1 1

1
2

1
2

0
2

1
1

1

2

0
2

,
1

,

2

,
1

,

2

(5)

We also note that

( ) (( ) )( ) (( ) ) ( )∑ ∑ ∑ ∑ ∑ ∑− = + − + = −

⩽

∈

−

⩽

∈

⩽

∈

− −

⩽

∈

−

⩽

∈

−

⩽

∈

c r e c r e ξ r e r e ξ r e ξ2 , 2 , , , , .
k n
k M

k k k
k n
k M

k
k n
k M

k k k k k
k n
k M

k k k
k n
k M

k k
k n
k M

k
,

1
,

2

,
1 1

,
1

2

,
1

2

,

2

(6)

If ∈k M , then by (4) and since 
⊂M M , we have

( ) ( )
( ) ( )

⎛
⎝

⎞
⎠

( )
( )

− > − = > ⋅ >
− −

− −

−

−r e ξ r e r e r e c r e c r e, , ,
100

99 ,
100

99
100

10
11

, ,
2

.k k k k k
k k k k k

k k
k k k

1
2 2

1
2 1

2
1

2
1

1

Combining this estimate with (5) and (6), we find that

( ) ( )

( ) ( )

∑ ∑ ∑ ∑

∑ ∑ ∑

‖ ‖ = ‖ ‖ − + − +

⩽ ‖ ‖ − − +

⩽

∈

−

⩽

∈

⩽

∈

−

⩽

∈

⩽

∈

−

⩽

∈

−

⩽

∈

r r r e ξ c r e c

r c r e c r e c

, 2 ,

1
2

, 2 , .

n
k n
k M

k k
k n
k M

k
k n
k N

k k k
k n
k N

k

k n
k M

k k k
k n
k N

k k k
k n
k N

k

2
0

2

,
1

2

,

2

,
1

,

2

0
2

,
1

,
1

,

2
(7)

Rewriting inequality (7) in terms of the sequences { }
=

∞xk k 1 and { }
=

∞yk k 1, we have

( ) ( )∑ ∑ ∑‖ ‖ ⩽ ‖ ‖ − − +

=

−

=

−

=

r r x r e y r e y1
2

, 2 , .n
k

n

k k k
k

n

k k k
k

n

k
2

0
2

1
1

1
1

1

2 (8)

Now, using the inequality

( ) ( ) ⎛
⎝

⎞
⎠

− ⩽ ⩽ <
− −

r e ξ r e c c, , 10
9

2 ,k k k k k k k1
2 2

1
2

2
2 2

which holds for ∈k M , we additionally obtain the complementary estimate:

( )∑ ∑ ∑‖ ‖ ⩾ ‖ ‖ − − +

= =

−

=

r r x y r e y2 2 , .n
k

n

k
k

n

k k k
k

n

k
2

0
2

1

2

1
1

1

2 (9)

6. There are two possible cases for the sequence { }
=

∞yk k 1: the series ∑

=

∞ yk k1
2 either converges or diverges.

In the first case, using (4) and passing to the limit in (8), we obtain that

∑ < ∞

=

∞

x .
k

k
1

2
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It implies that

( )∑ ∑+ = < ∞

=

∞

=

∞

x y c .
k

k k
k

k
1

2

1

2

At the same time, taking into account Lemma 3, we have ∑ = ∞

=

∞ ck k1 .
But due to [8, Theorem 2], which gives sufficient condition for the convergence for GAPC expansion,

we have ⟶r 0n . This is a contradiction to (2). Therefore, the first case ∑ < ∞

=

∞ yk k1
2 is not possible.

7. It remains to show that the case ∑ = ∞

=

∞ yk k1
2 is also impossible.

We first prove two lemmas, which describe the properties of the sequences { }
=

∞xk k 1 and { }
=

∞yk k 1 that follow

from the convergence of ∑

=

∞ yk k1
2.

Lemma 5. Under the aforementioned conditions,

⎛

⎝

⎞

⎠
=y o

n
1 .n (10)

Proof. From the construction of the set N , it follows that

͠
= ⋃ ∪N M N .

j
j

Let ∈n Mj for some index j. Similar to the fourth step of the proof, let lj be the first element of the set Mj.
Then ͠

− ∈l N1j , and so, by (3) and (4), we have:

∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( )= < < − ⩽ + ⩽ + =
− − − − − − −

− − −

y c r e r c e e r e c ξ ξ ξ11
10

, 2 , 2 , 2 20 22 42l l l l l l l l l l l l l l1 2 1 1 2 1 1 1 1 1j j j j j j j j j j j j j j

(if =j 1 and =l 1j , then we omit this estimate).
It follows from the selection of the index pj that for { }∈ + + …i l l p1, 2, ,j j j (or for all 

∈ ⧹i M lj j if such

an index pj does not exist for this j), then ⩽

−yi
y
2
i 1 holds. Thus, the sequence { }

∈ ⧹
yi i M Mj is decreasing at least

as fast as the geometric progression with the common ratio 1
2
.

If ͠
∈n N , then by (3), we have:

( ) ∣ ∣= = + ⩽
−

y c r e ξ ξ, 11 .n n n n n n1

Now Lemma 5 follows from the aforementioned estimates and the fact that
( )

=ξ on n
1 . □

Lemma 6. Under the aforementioned conditions,

∑ < ∞

=

∞

x .
n

n
1

2 (11)

Proof. Let us consider an arbitrary nonempty set Mj. The set Mj is finite, since otherwise ∑ < ∞

=

∞ yn n1 , which
contradicts the condition of the considered case. Combining (1) and (4) for ∈n Mj, we obtain that

( ) ( )

( ) ( )

+ = ‖ ‖ = = − −

= ‖ ‖ − + = + − +

⩽ + − + = + −

− −

− − −
−

−

−
−

−
−

h ξ r r r r c e r c e
r c r e c h ξ c r e c

h ξ c c h ξ c

, ,
2 , 2 ,

20
11

9
11

.

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n n

2 2 2
1 1

1
2

1
2

1
2

1
2

1
2

1
2

1
2 2 2

1
2

1
2 2

(12)

Let qj and = +s p 1j j be the last and the first elements of the set Mj, respectively. Summing (12) over all
∈n Mj, we obtain

∑+ ⩽ + −
−

−

=

h ξ h ξ c9
11

.q q s s
i s

q

i
2 2

1
2

1
2 2

j j j j
j

j

(13)
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Note that 
− = ∈s p M1j j j, and so, <

−
c c2s s1j j due to the selection of the index pj. Therefore,

∣ ∣
( )

⩽ < <

−

− − −ξ
r e c c,

10 9
2
9

.s
s s s s

1
2 1 1

j

j j j j (14)

From (13) and (14), we have:

∑ ⩽ + − − < − +

=

−
−

−

c h ξ h ξ h h
c9

11
4
81

.
i s

q

i s s q q s q
s2

1
2

1
2 2 2

1
2 2

2

j

j

j j j j j j
j

As a result,

∑ < −

=

−

c h h1
2

.
i s

q

i q s
2 2

1
2

j

j

j j (15)

Summing (15) over all j (with nonempty Mj) and using the fact that { }
=

∞hn n 1 is monotone (Lemma 1),
we find that

∑ ∑= < ∞

∈ =

∞

c x ,
j M

j
n

n
2

1

2

which completes the proof of Lemma 6. □

8. In this step, we need to prove two more auxiliary lemmas.

Lemma 7. Under the conditions of this case,

( ) =

→∞

−
S r rliminf 0.

n
n
N

D n 1 (16)

Proof. By Lemma 5, we have ∑ = ∞

=

∞ yn n1 and
( )

=y on n
1 .

In view of these properties, the proof of the lemma can be carried out so as in [9, Lemma 1]. For the sake
of completeness, we provide all the details below.

Assume on the contrary that there exists a number >c 0 and �∈p such that

( ) ( )⩾ ⩾
−

r r S c k p .D k k
N

1

Without the loss of generality, let us assume that =p 1 (we can achieve that by shifting the sequence of
the remainders; if ≡S 0k

N , then the conclusion of the lemma is obvious).
From (8), we obtain

( ) ( )

( )

∑ ∑ ∑

∑ ∑

∑ ∑

‖ ‖ ⩽ ‖ ‖ − − +

⩽ ‖ ‖ − ‖ ‖ +

⩽ ‖ ‖ − +

=

−

=

−

=

=

− −

=

= =

r r x r e y r e y

r
y
S

r r r S y

r cr
y
S

y

1
2

, 2 ,

2

2 .

n
k

n

k k k
k

n

k k k
k

n

k

n
k

n
k

k
N k D k k

N

k

n

k

n
k

n
k

k
N

k

n

k

2
0

2

1
1

1
1

1

2

2

1
1 1

1

2

2

1 1

2

(17)

It is known (see Abel-Dini theorem [10]) that if ∑ = ∞

=

∞ yk k1 , then ∑ = ∞

=

∞

k
y
S1

k

k
N . Also, in our case, we have

∑ = ∞

=

∞ yk k1
2 .

Next, since there exists a number >a 0 such that <yk
a
k
for all �∈k , there exists a number >A 0 such

that <S A kk
N for all k . As

( )
=y ok k

1 , there exists a function ( )f k (here, we assume that ( )f k might be

equal to ∞) such that
( )

=yk k f k
1 and ( ) → ∞f k as → ∞k . Therefore,

( ) ( )
∑ ∑ ∑= ⩾

= = =

y
S k f k S Akf k

1 1 .
k

n
k

k
N

k

n

k
N

k

n

1 1 1
(18)
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We note that in the considered case

( )
∑ ∑= = ∞

=

∞

=

∞

y
kf k

1 ,
k

k
k1

2

1
2

and so

( )
∑ = ∞

=

∞

kf k
1 .

k 1
(19)

Combining (17)–(19), we obtain the estimate

⎜ ⎟

( ) ( ) ( )
⎛

⎝ ( )
⎞

⎠
∑ ∑ ∑< ‖ ‖ ⩽ ‖ ‖ − + = ‖ ‖ − − ⟶ −∞

= = =

r r cr
Akf k kf k

r
kf k

cr
A f k

0 2 1 1 1 2 1 ,n
k

n

k

n

k

n
2

0
2

1 1
2 0

2

1

as ⟶ ∞n . This contradiction completes the proof of Lemma 7. □

Lemma 8. In the considered case,

( ) =

→∞

−
S r rliminf 0.

n
n
M

D n 1 (20)

Proof. We argue by contradiction. Assume, on the contrary, that there exists a number >β 0 such that

( ) >
−

S r r βn
M

D n 1 for every �∈n (similarly to the previous lemma).
Let us note that if ∑ < ∞

=

∞ xk k1 , then the inequality >S Sn
N

n
M holds for all sufficiently large indices.

Therefore, using Lemma 7, we obtain

( ) =

→∞

−
S r rliminf 0,

n
n D n 1

which contradicts the assertion of Lemma 4. Thus,

∑ = ∞

=

∞

x .
k

k
1

(21)

Now, we note that from Lemma 2 and inequalities (9) and (11), we have

( ( ) )∑ − < ∞

=

∞

−
y r e y2 , .

k
k k k k

1
1

2 (22)

Now by using (2) and applying the Abel-Dini theorem from [10] to the sequence { }
=

∞xk k 1, we find that

( ) ( )∑ ∑ ∑= ‖ ‖ > ⟶ ∞ ⟶ ∞

=

−

=

− −

=

x r e x
S

S r r r rβ x
S

n, , ,
k

n

k k k
k

n
k

k
M k

M
D k k

k

n
k

k
M

1
1

1
1 1

1

which together with (8) contradicts (22) . This contradiction proves Lemma 8. □

9. In this step, we finalize the proof of Theorem 1 by proving the following lemma.

Lemma 9. In the considered case,

( ) =

→∞

−
S r rliminf 0.

n
n D n 1 (23)

Proof. Assume on the contrary, that there exists a number >α 0 such that for all �∈n , the inequality

( ) ⩾
−

S r r α.n D n 1 (24)

In view of (2) and (20), there exists a number l1 such that

( ) <
−

S r e α,
4

.l
M

l l11 1 1
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By (2) and (16), there exists a number >k l2 1 such that

( ) <
−

S r e α,
4

.k
N

k k12 2 2

Let k1 be the largest number such that <k k1 2 and

( ) <
−

S r e α,
4

.k
M

k k11 1 1

Combining these estimates with (24), we obtain
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As a result, we have
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and hence,

< ⩽ <S S S S1
3

1
3

1
9

.k
M

k
N

k
N

k
M

1 1 2 2 (25)

Lemma 6 implies that in the considered case we have ( )→ → ∞x k0,k , and so by selecting a suffi-
ciently large l1, we can guarantee that <x S2 k k

M for every ∈k M exceeding k1.

It is easy to see that, for ⎡⎣ )
∈x 0, 1

2 , the following inequality

( )⩾ − −x x4 ln 1

holds.
From (25), we have
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(26)

Using (26) and the fact that for < ⩽k k k1 2, we have

( ) ⩾
−

S r e α,
4

,k
M

k k1

and then we obtain that

( ) ( )∑ ∑ ∑= ‖ ‖ ⩾ >
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Now, we find a number >l k2 2 such that

( ) <
−

S r e α,
4

.l
M

l l11 1 1
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Similar to the selection of k1 and k2, we select k3 and k4 ( < <k k k2 3 4) to satisfy

( )∑ >

= +

−
x r e rα, ln3

8
.

k k

k

k k k
1

1
3

4

Continuing this procedure, we obtain that ( )∑ = ∞

=

∞

−
x r e,k k k k1 1 , which together with (22) contradicts (8).

This competes the proof of Lemma 9. □

The assertions of Lemmas 4 and 9 contradict each other, and this contradiction comes from the
assumption that ( )→ → ∞r n̸ 0,n . Thus, →r 0n and the proof of Theorem 1 is complete.
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