მ

Research Article

Osama Moaaz, Ali Muhib, Thabet Abdeljawad*, Shyam S. Santra, and Mona Anis

Asymptotic behavior of even-order noncanonical neutral differential equations

https://doi.org/10.1515/dema-2022-0001 received November 18, 2021; accepted December 3, 2021

Abstract: In this article, we study the asymptotic behavior of even-order neutral delay differential equation

$$(a\cdot (u+\rho\cdot u\circ \tau)^{(n-1)})'(\ell)+h(\ell)u(g(\ell))=0,\quad \ell\geq \ell_0,$$

where $n \ge 4$, and in noncanonical case, that is,

$$\int_{0}^{\infty} a^{-1}(s) \mathrm{d}s < \infty.$$

To the best of our knowledge, most of the previous studies were concerned only with the study of n-order neutral equations in canonical case. By using comparison principle and Riccati transformation technique, we obtain new criteria which ensure that every solution of the studied equation is either oscillatory or converges to zero. Examples are presented to illustrate our new results.

Keywords: differential equations, even-order, oscillatory behavior, noncanonical case

MSC 2020: 34C10, 34K11

1 Introduction

The neutral DDEs have many interesting applications in various branches of applied science, as these equations appear in the modeling of many technological phenomena, see [1,2]. It is well known that the modeling of natural and technological phenomena produces differential equations, often of higher-order; see, for instance, the papers [3,4]. Oscillation theory is a branch of qualitative theory that investigates the oscillatory and non-oscillatory behavior of solutions to differential equations.

In this work, we consider the even-order NDDE

$$(a \cdot (u + \rho \cdot u \circ \tau)^{(m-1)})'(\ell) + h(\ell)u(g(\ell)) = 0, \tag{1}$$

Osama Moaaz: Mathematics Department, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia; Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt; Section of Mathematics, International Telematic University Uninettuno, CorsoVittorio Emanuele II, 39, 00186 Roma, Italy, e-mail: o_moaaz@mans.edu.eg

Ali Muhib: Department of Mathematics, Faculty of Education – Al-Nadirah, Ibb University, Ibb, Yemen, e-mail: muhib39@yahoo.com

Shyam S. Santra: Department of Mathematics, JIS College of Engineering, Kalyani 741235, India, e-mail: shyamsundar.santra@jiscollege.ac.in

Mona Anis: Department of Mathematics, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt, e-mail: mona_anis1985@yahoo.com

^{*} Corresponding author: Thabet Abdeljawad, Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia; Department of Medical Research, China Medical University, Taichung 40402, Taiwan, e-mail: tabdeliawad@psu.edu.sa

³ Open Access. © 2022 Osama Moaaz *et al.*, published by De Gruyter. © This work is licensed under the Creative Commons Attribution 4.0 International License.

where $\ell \geq \ell_0$, $m \geq 4$ is an even integer and a, ρ , τ , h, and g are continuous real-valued functions on $[\ell_0, \infty)$. We also assume that $a \in C^1([\ell_0, \infty), (0, \infty))$, $a'(\ell) > 0$, $\rho(\ell) \in [0, \rho_0]$, $\rho_0 < 1$ is a constant, $h \geq 0$, $h \equiv 0$ on any half-line $[L, \infty)$ for all $L \geq \ell_0$, $\tau(\ell) \leq \ell$, $g(\ell) \leq \ell$, $\lim_{\ell \to \infty} \tau(\ell) = \lim_{\ell \to \infty} g(\ell) = \infty$ and $\int_{\ell_0}^{\infty} a^{-1}(s) ds < \infty$.

A solution of (1) is a function $u \in C([\ell_u, \infty), \mathbb{R})$, $\ell_u \ge \ell_0$, which satisfies the properties $u + \rho u(\tau) \in C^{(m-1)}([\ell_u, \infty), \mathbb{R})$, $a(u + \rho u(\tau))^{(m-1)} \in C^1([\ell_u, \infty), \mathbb{R})$ and u satisfies (1) on $[\ell_u, \infty)$. We consider only the proper solutions u of (1), that is, u is not identically zero eventually. A solution u of (1) is called *oscillatory* if it is neither positive nor negative, ultimately: otherwise, it is called *nonoscillatory*.

For several decades, an growing interest in presenting criteria for oscillation of different classes of DDE has been observed. Recently, the works [5–9] have developed many techniques and approaches for studying the oscillations of delay and advanced second-order equations. However, neutral second-order equations have been studied in many techniques through works [10–15]. The development in the study of second-order DDEs was reflected on the study of even-order equations, see for delay [16–21] and for neutral [22–28]. On the other hand, the works ([29,30] for third-order, and [31–33] for odd-order) contributed to the development of the oscillatory theory of odd-order delay differential equations.

Zhang et al. [19] investigated the oscillatory behavior of a higher-order differential equation

$$(a(\ell)(u^{(m-1)}(\ell))^{\alpha})' + h(\ell)u^{\beta}(g(\ell)) = 0, \tag{2}$$

where α , β are ratios of odd natural numbers and

$$\int_{t_0}^{\infty} a^{-1/\alpha}(s) \mathrm{d}s < \infty. \tag{3}$$

Zhang et al. [19] obtained results which ensure that every solution u of (2) is either oscillatory or satisfies $\lim_{\ell\to\infty}u(\ell)=0$. Zhang et al. [20] studied the oscillation of (2) for $\alpha\geq\beta$ and improved the results reported in [19].

For fourth-order, Zhang et al. [21] studied

$$(a(u''')^{\alpha})'(\ell) + h(\ell)u^{\alpha}(g(\ell)) = 0$$

and presented some oscillation criteria (including Hille-and Nehari-type criteria). Moreover, Moaaz and Muhib [17] presented criteria for fourth-order DDE

$$(a(u''')^{\alpha})'(\ell) + f(\ell, u(g(\ell))) = 0,$$

under the conditions $f(\ell, u) \ge h(\ell)u^{\beta}$ and α, β are the ratios of odd natural numbers.

For neutral delay equations, Zhang et al. [28] studied the even-order nonlinear NDDE

$$(u + \rho \cdot u \circ \tau)^{(m)}(\ell) + h(\ell)f(u(g(\ell))) = 0,$$

under the conditions uf(u) > 0 for all $u \neq 0$, and f is nondecreasing. Moaaz et al. [25] investigated the asymptotic behavior of solutions of the higher-order NDDE

$$(a((u + \rho \cdot u \circ \tau)^{(m-1)})^{\alpha})'(t) + f(\ell, u(g(\ell))) = 0,$$

where $|f(\ell, u)| \ge h(\ell)|u|^{\beta}$.

To the best of our knowledge, the previous studies in the literature which considered the asymptotic behavior of solutions of NDDEs of m-order were concerned only with the canonical form $\int_{-\infty}^{\infty} a^{-1}(s) ds = \infty$. In this paper, we obtain new conditions for testing oscillation of NDDE (1) in noncanonical case, using Riccati substitution along with comparison principles with first-order DDE. Examples are presented to illustrate our new results.

In the following, we present useful lemmas that will be used throughout the results.

Lemma 1.1. [34, Lemma 2.2.3] Assume that $\varpi \in C^m([\ell_0, \infty), \mathbb{R}^+)$, $\varpi^{(m)}$ is not identically zero on a subray of $[\ell_0, \infty)$ and $\varpi^{(m)}$ is of fixed sign. Suppose that $\varpi^{(m-1)}\varpi^{(m)} \leq 0$ for $\ell \in [\ell_1, \infty)$, where $\ell_1 \geq \ell_0$ large enough. If $\lim_{\ell \to \infty} \varpi(\ell) \neq 0$, then there exists a $\ell_{\lambda} \in [\ell_1, \infty)$ such that

$$\varpi \geq \frac{\lambda}{(m-1)!} \ell^{m-1} |\varpi^{(m-1)}|,$$

for every $\lambda \in (0, 1)$ and $\ell \in [\ell_{\lambda}, \infty)$.

Lemma 1.2. [35, Lemma 1] Let $f \in C^m([\ell_0, \infty), \mathbb{R})$, $f^{(r)} > 0$, r = 0, 1, ..., m and $f^{(m+1)} \le 0$ eventually. Then, for every $\eta \in (0, 1)$

$$f(\ell) \geq \frac{\eta \ell}{m} f'(\ell)$$
.

Lemma 1.3. [36, Lemma 1.2] Assume that $B \ge 0$, A > 0, $w \ge 0$ and $\alpha > 0$. Then,

$$Bw - Aw^{(\alpha+1)/\alpha} \leq \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{B^{\alpha+1}}{A^{\alpha}}.$$

Lemma 1.4. [20, Lemma 2.1] Let $f \in C^n([t_0, \infty), (0, \infty))$. If the derivative $f^{(n)}(t)$ is eventually of one sign for all large t, then there exist a t_x such that $t_x \ge t_0$ and an integer l, $0 \le l \le n$, with n + l even for $f^{(n)}(t) \ge 0$, or n + l odd for $f^{(n)}(t) \le 0$ such that

$$l > 0$$
 implies $f^{(k)}(t) > 0$ for $t \ge t_x$, $k = 0, 1, ..., l - 1$

and

$$l \le n-1$$
 implies $(-1)^{l+k} f^{(k)}(t) > 0$ for $t \ge t_x$, $k = l, l+1, ..., n-1$.

2 Main results

For the convenience, we use notation $v = u + \rho \cdot u \circ \tau$.

Lemma 2.1. Assume that $u \in C([\ell_0, \infty), (0, \infty))$ is a solution of (1), eventually. Then, v > 0, $(av^{(m-1)})' \le 0$ and v satisfies one of the following:

- (1) v', $v^{(m-1)}$ and $(-v^{(m)})$ are positive;
- (2) $v', v^{(m-2)}$ and $(-v^{(m-1)})$ are positive;
- (3) $(-1)^k v^{(k)}$ are positive, for all k = 1, 2, ..., m 1,

for ℓ large enough.

Proof. Assume that u is an eventually positive solution of (1). It follows from (1) that

$$(a(\ell)\nu^{(m-1)}(\ell))' = -h(\ell)u(g(\ell)) \le 0.$$

Now, from above inequality and Lemma 2 that there exist three possible cases (1)–(3) for $\ell \geq \ell_1$ large enough.

Lemma 2.2. Assume that $u \in C([\ell_0, \infty), (0, \infty))$ is a solution of (1), where v satisfies case (3). If

$$\int_{\ell_0}^{\infty} \int_{\varrho}^{\infty} (\zeta - \ell)^{m-3} \left(\frac{1}{a(\zeta)} \int_{\ell_1}^{\zeta} h(s) ds \right) d\zeta d\varrho = \infty, \tag{4}$$

then, $\lim_{\ell\to\infty} u(\ell) = 0$.

Proof. Assume that u is an eventually positive solution of (1), where v satisfies case (3). Then, $\lim_{\ell \to \infty} v(\ell) = D$. We claim that D=0. Suppose that D>0, and so for all $\varepsilon>0$, there exists $\ell_1\geq \ell_0$ such that $u(g(\ell))\geq D$ for $\ell \geq \ell_1$. Integrating (1) from ℓ_1 to ℓ , we get

$$a(\ell)v^{(m-1)}(\ell) = a(\ell_2)v^{(m-1)}(\ell_2) - \int_{\ell_1}^{\ell} h(s)u(g(s))ds \le -D\int_{\ell_1}^{\ell} h(s)ds,$$

that is,

$$v^{(m-1)}(\ell) < -D\frac{1}{a(\ell)} \int_{\ell_1}^{\ell} h(s) ds.$$
 (5)

Integrating (5) twice from ℓ to ∞ , we obtain

$$-\nu^{(m-2)}(\ell) < -D \int_{\ell}^{\infty} \left(\frac{1}{a(\varsigma)} \int_{\ell_1}^{\varsigma} h(s) ds \right) d\varsigma$$

and

$$v^{(m-3)}(\ell) < -D \int_{\ell}^{\infty} \int_{s}^{\infty} \left(\frac{1}{a(\varsigma)} \int_{\ell_{1}}^{\varsigma} h(s) ds \right) d\varsigma ds = -D \int_{\ell}^{\infty} (\varsigma - \ell) \left(\frac{1}{a(\varsigma)} \int_{\ell_{1}}^{\varsigma} h(s) ds \right) d\varsigma.$$
 (6)

Similarly, integrating (6) m-4 times from ℓ to ∞ , we find

$$\nu'(\ell) < -D\int_{\ell}^{\infty} (\varsigma - \ell)^{m-3} \left(\frac{1}{a(\varsigma)} \int_{\ell_1}^{\varsigma} h(s) ds \right) d\varsigma.$$

Integrating this inequality from ℓ_1 to ∞ , we obtain

$$\nu(\ell_1) > D \int_{\ell_1}^{\infty} \int_{\varrho}^{\infty} (\varsigma - \ell)^{m-3} \left(\frac{1}{a(\varsigma)} \int_{\ell_1}^{\varsigma} h(s) ds \right) d\varsigma d\varrho,$$

which is a contradiction with (4). Thus, D = 0. This completes the proof.

Theorem 2.1. Let (4) hold. If there exists a $\lambda_0 \in (0, 1)$ such that the first-order delay differential equation

$$y'(\ell) + h(\ell) \frac{\lambda_0 (1 - \rho(g(\ell))) (g(\ell))^{m-1}}{(m-1)! a(g(\ell))} y(g(\ell)) = 0$$
 (7)

is oscillatory and

$$\limsup_{\ell \to \infty} \int_{\ell_0}^{\ell} \left(\frac{\lambda_1 h(s)(1 - \rho(g(s)))g^{m-2}(s)}{(m-2)!} \delta(s) - \frac{1}{4a(s)\delta(s)} \right) ds = \infty$$
 (8)

holds for some constant $\lambda_1 \in (0, 1)$, then every nonoscillatory solution u of (1) satisfies $\lim_{t \to \infty} u(t) = \infty$.

Proof. Suppose that (1) has a positive solution u which satisfies $\lim_{\ell \to \infty} u(\ell) \neq 0$. It follows from (1) that

$$(a(\ell)\nu^{(m-1)}(\ell))' = -h(\ell)u(g(\ell)) \le 0.$$
(9)

From Lemma 2.1, there are three possible cases for the behavior of ν and its derivatives.

Let (1) hold. From Lemma 1.1, we have

$$\nu(\ell) \ge \frac{\lambda \ell^{m-1}}{(m-1)!} \nu^{(m-1)}(\ell) \tag{10}$$

for every $\lambda \in (0, 1)$. It follows from the definition of $\nu(\ell)$ that

$$u(\ell) = \nu(\ell) - \rho(\ell)u(\tau(\ell)) \ge (1 - \rho(\ell))\nu(\ell). \tag{11}$$

Combining (9) and (11), we get

$$(a(\ell)\nu^{(m-1)}(\ell))' \le -h(\ell)(1 - \rho(g(\ell)))\nu(g(\ell)). \tag{12}$$

From (10), we obtain

$$(a(\ell)\nu^{(m-1)}(\ell))' + h(\ell)\frac{\lambda(1-\rho(g(\ell)))(g(\ell))^{m-1}}{(m-1)!}\nu^{(m-1)}(g(\ell)) \le 0.$$

Now, we define the function $y(\ell) = a(\ell)v^{(m-1)}(\ell)$. Clearly, y is a positive solution of the first-order delay differential inequality

$$y'(\ell) + h(\ell) \frac{\lambda(1 - \rho(g(\ell)))(g(\ell))^{m-1}}{(m-1)! a(g(\ell))} y(g(\ell)) \le 0.$$
(13)

Thus, using [40, Theorem 1], equation (7) has also a positive solution for all $\lambda_0 \in (0, 1)$, this contradicts the assumption that (7) is oscillatory.

Let (2) hold. We define ω by

$$\omega(\ell) = \frac{a(\ell)\nu^{(m-1)}(\ell)}{\nu^{(m-2)}(\ell)}, \quad \ell \ge \ell_1. \tag{14}$$

Then, $\omega(\ell) < 0$ for $\ell \ge \ell_1$. Noting that $(a(\ell)\nu^{(m-1)}(\ell))' \le 0$, we find

$$a(s)v^{(m-1)}(s) \le a(\ell)v^{(m-1)}(\ell), \quad s \ge \ell \ge \ell_1.$$
 (15)

Dividing (15) by a and integrating it from ℓ to ∞ , we obtain

$$0 \le v^{(m-2)}(\ell) + a(\ell)v^{(m-1)}(\ell)\delta(\ell),$$

which yields

$$-\frac{a(\ell)\nu^{(m-1)}(\ell)\delta(\ell)}{\nu^{(m-2)}(\ell)} \le 1.$$

Thus, by (14), we get

$$-\omega(\ell)\delta(\ell) \le 1. \tag{16}$$

Differentiating (14), we arrive at

$$\omega'(\ell) = \frac{(a(\ell)\nu^{(m-1)}(\ell))'}{\nu^{(m-2)}(\ell)} - \frac{a(\ell)(\nu^{(m-1)}(\ell))^2}{(\nu^{(m-2)}(\ell))^2},$$

which follows from (1) and (14) that

$$\omega'(\ell) = -\frac{h(\ell)u(g(\ell))}{\nu^{(m-2)}(\ell)} - \frac{\omega^2(\ell)}{a(\ell)}.$$
(17)

From the definition of $v(\ell)$ and the fact that $v'(\ell) > 0$, we get that (11) holds. Hence, it follows from (17) that

$$\omega'(\ell) \le -\frac{h(\ell)(1 - \rho(g(\ell)))\nu(g(\ell))}{\nu^{(m-2)}(\ell)} - \frac{\omega^2(\ell)}{g(\ell)}.$$
(18)

Using Lemma 1.1, we get

$$\nu(\ell) \ge \frac{\lambda \ell^{m-2}}{(m-2)!} \nu^{(m-2)}(\ell)$$

for every $\lambda \in (0, 1)$ and for all sufficiently large ℓ . Then, (18) becomes

$$\omega'(\ell) \leq -\frac{\lambda h(\ell)(1-\rho(g(\ell)))g^{m-2}(\ell)\nu^{(m-2)}(g(\ell))}{(m-2)!\nu^{(m-2)}(\ell)} - \frac{\omega^2(\ell)}{a(\ell)}.$$

Since $\ell \geq g(\ell)$ and $\nu^{(m-2)}(\ell)$ are decreasing, we have

$$\omega'(\ell) \le -\frac{\lambda h(\ell)(1 - \rho(g(\ell)))g^{m-2}(\ell)}{(m-2)!} - \frac{\omega^2(\ell)}{a(\ell)}.$$
(19)

Multiplying (19) by $\delta(\ell)$ and integrating it from ℓ_1 to ℓ , we have

$$0 \geq \delta(\ell)\omega(\ell) - \delta(\ell_1)\omega(\ell_1) + \int_{\ell_1}^{\ell} \frac{\omega(s)}{a(s)} ds + \int_{\ell_1}^{\ell} \frac{\delta(s)}{a(s)} \omega^2(s) ds + \int_{\ell_1}^{\ell} \frac{\lambda h(s)(1 - \rho(g(s)))g^{m-2}(s)}{(m-2)!} \delta(s) ds.$$

Setting $A = \delta(s)/a(s)$, B = 1/a(s), and $w = -\omega(s)$, and using Lemma 1.3, we have

$$\int_{\ell_1}^{\ell} \left(\frac{\lambda h(s)(1-\rho(g(s)))g^{m-2}(s)}{(m-2)!} \delta(s) - \frac{1}{4a(s)\delta(s)} \right) ds \le \delta(\ell_1)\omega(\ell_1) + 1,$$

due to (16), which contradicts (8).

Assume that case (3) holds. From Lemma 2.2 and (4), we see that $\lim_{\ell\to\infty}u(\ell)=0$, which is a contradiction.

This completes the proof.

Corollary 2.1. Assume that (4) and (8) hold. If

$$\liminf_{\ell \to \infty} \int_{g(\ell)}^{\ell} h(s) \frac{(1 - \rho(g(s)))(g(s))^{m-1}}{(m-1)! a(g(s))} ds > \frac{1}{e}, \tag{20}$$

for some $\lambda_1 \in (0, 1)$, then every nonoscillatory solution u of (1) satisfies $\lim_{t\to\infty} u(\ell) = \infty$.

Proof. By [38, Theorem 2.1.1], assumption (20) ensures that the differential equation (7) has no positive solutions. Application of Theorem 2.1 yields the result. \Box

Remark 2.1. Combining Theorem 2.1 and the results reported in [39] for the oscillation of equation (7), one can derive various oscillation criteria for equation (1).

Example 2.1. We consider the NDDE

$$(e^{\ell}(u(\ell) + \rho_0 u(\theta \ell))^{\prime\prime\prime})^{\prime} + h_0 e^{\ell} u(\varepsilon \ell) = 0, \tag{21}$$

where $h_0 > 0$ and θ , $\varepsilon \in (0, 1)$. Note that, $a(\ell) = e^{\ell}$, $\rho(\ell) = \rho_0$, $\tau(\ell) = \theta \ell$, $h(\ell) = h_0 e^{\ell}$ and $g(\ell) = \varepsilon \ell$. It is easy to see that $\delta(\ell) = e^{-\ell}$.

Now, from Corollary 2.1, we have

$$\begin{split} \int\limits_{\ell_0}^{\infty} \int\limits_{\varrho}^{\infty} (\varsigma - \ell)^{m-3} & \left(\frac{1}{a(\varsigma)} \int\limits_{\ell_1}^{\varsigma} h(s) \mathrm{d}s \right) \mathrm{d}\varsigma \mathrm{d}\varrho = \int\limits_{\ell_0}^{\infty} \int\limits_{\varrho}^{\infty} (\varsigma - \ell) \left(\frac{1}{e^{\varsigma}} \int\limits_{\ell_1}^{\varsigma} h_0 e^s \mathrm{d}s \right) \mathrm{d}\varsigma \mathrm{d}\varrho = \infty, \\ & \liminf_{\ell \to \infty} \int\limits_{g(\ell)}^{\ell} h(s) \frac{(1 - \rho(g(s)))(g(s))^{m-1}}{(m-1)! \, a(g(s))} \mathrm{d}s = \liminf_{\ell \to \infty} \int\limits_{g(\ell)}^{\ell} h_0 e^s \frac{(1 - \rho_0)(\varepsilon s)^3}{3! \, e^{\varepsilon s}} \mathrm{d}s = \infty > \frac{1}{e} \end{split}$$

and

$$\limsup_{\ell \to \infty} \int_{\ell_0}^{\ell} \left(\frac{\lambda_1 h(s)(1 - \rho(g(s)))g^{m-2}(s)}{(m-2)!} \delta(s) - \frac{1}{4a(s)\delta(s)} \right) ds = \limsup_{\ell \to \infty} \int_{\ell_0}^{\ell} \left(\frac{\lambda_1 h_0 e^s (1 - \rho_0)(\varepsilon s)^2}{2!} e^{-s} - \frac{1}{4e^s e^{-s}} \right) ds$$

$$= \infty.$$

Thus, (4), (20), and (8) are satisfied. Therefore, every solution of (21) is oscillatory or tends to zero.

Example 2.2. Consider the equation

$$(\ell^2(u(\ell) + \rho_0 u(\theta \ell))''')' + \frac{h_0}{\ell^2} u(\varepsilon \ell) = 0, \tag{22}$$

here $h_0 > 0$ and θ , $\varepsilon \in (0, 1)$. We note that m = 4, $a(\ell) = \ell^2$, $\rho(\ell) = \rho_0$, $\tau(\ell) = \theta \ell$, $h(\ell) = h_0/\ell^2$, and $g(\ell) = \varepsilon \ell$. It is easy to see that $\delta(\ell) = 1/\ell$ and (4) holds. Next, (20) reduces to

$$h_0(1-\rho_0)\ln\frac{1}{\varepsilon} > \frac{3!}{\varepsilon e}.$$
 (23)

Moreover, (8) becomes

$$\lim_{\ell\to\infty}\sup\int_{\ell_0}^{\ell}\left(\frac{h_0\lambda_1(1-\rho_0)\varepsilon^2}{2!}-\frac{1}{4}\right)\frac{1}{s}ds=\infty,$$

which is verified if

$$h_0(1-\rho_0) > \frac{1}{2\varepsilon^2}.$$
 (24)

Using Corollary 2.1, if

$$h_0 > M := \max \left\{ \frac{3!}{e(1-\rho_0)\varepsilon \ln \frac{1}{\varepsilon}}, \frac{1}{2(1-\rho_0)\varepsilon^2} \right\},$$

then every solution of (22) is oscillatory or tends to zero, where

$$M = \frac{1}{2(1 - \rho_0)\varepsilon^2}$$
 if $\varepsilon \in (0, 0.28464]$

and

$$M=\frac{3!}{e(1-\rho_0)\varepsilon\ln\frac{1}{\varepsilon}}\quad\text{if }\varepsilon\in(0.28464,1).$$

It is easy to notice that (20) does not apply in the ordinary case ($g(\ell) = \ell$). So, in the following theorem, we set new conditions for testing the oscillation of (1) when m = 4, which apply in the ordinary case.

Theorem 2.2. Assume that m = 4 and (4) hold. If

$$\limsup_{\ell \to \infty} \int_{\ell_0}^{\ell} \left(\frac{\lambda_1 h(s)(1 - \rho(g(s)))g^2(s)}{2!} \delta(s) - \frac{1}{4a(s)\delta(s)} \right) ds = \infty, \tag{25}$$

for some constant $\lambda_1 \in (0, 1)$. Assume further that there exist two positive functions $\zeta(\ell)$, $\vartheta(\ell) \in C^1[\ell_0, \infty)$, such that

$$\int_{\ell_0}^{\infty} \left(\zeta(s)h(s)(1 - \rho(g(s))) \left(\frac{g(s)}{s} \right)^{3/\eta} - \frac{1}{2} \frac{(\zeta'(s))^2}{\zeta(s)} \frac{a(s)}{\lambda_2 s^2} \right) ds = \infty$$
 (26)

and

$$\int_{\ell_0}^{\infty} \left(\vartheta(s) \int_{s}^{\infty} \left(\frac{1}{a(v)} \int_{v}^{\infty} h(\varsigma) (1 - \rho(g(\varsigma))) \left(\frac{g(\varsigma)}{\varsigma} \right)^{1/\eta} d\varsigma \right) dv - \frac{(\vartheta'(s))^2}{4\vartheta(s)} \right) ds = \infty$$
 (27)

for some constant $\lambda_2 \in (0, 1)$. Then, every nonoscillatory solution u of (1) satisfies $\lim_{t\to\infty} u(t) = \infty$.

Proof. Assume that (1) has a nonoscillatory solution u which is eventually positive and $\lim_{\ell\to\infty}u(\ell)\neq 0$. It follows from (1) and Lemma 2.1 that there exist four possible cases for the behavior of ν and its derivatives:

- (i) $\nu'(\ell) > 0$, $\nu''(\ell) > 0$, $\nu'''(\ell) > 0$ and $\nu^{(4)}(\ell) \le 0$;
- (ii) $\nu'(\ell) > 0$, $\nu''(\ell) < 0$, $\nu'''(\ell) > 0$ and $\nu^{(4)}(\ell) \le 0$;
- (iii) $v'(\ell) < 0, v''(\ell) > 0$ and $v'''(\ell) < 0$;
- (iv) $v'(\ell) > 0$, $v''(\ell) > 0$ and $v'''(\ell) < 0$.

Let (i) hold. Define the function $\phi(\ell)$ by

$$\phi(\ell) = \zeta(\ell) \frac{a(\ell)\nu'''(\ell)}{\nu(\ell)}.$$

Then, clearly $\phi(\ell)$ is positive for $\ell \geq \ell_1$ and satisfies

$$\phi'(\ell) = \frac{\zeta'(\ell)}{\zeta(\ell)}\phi(\ell) + \zeta(\ell) \left(\frac{(a(\ell)\nu'''(\ell))'}{\nu(\ell)} - \frac{a(\ell)\nu'''(\ell)\nu'(\ell)}{\nu^2(\ell)} \right). \tag{28}$$

From (1) and (28), we have

$$\phi'(\ell) = \frac{\zeta'(\ell)}{\zeta(\ell)}\phi(\ell) - \zeta(\ell)\frac{h(\ell)u(g(\ell))}{\nu(\ell)} - \zeta(\ell)\frac{a(\ell)\nu'''(\ell)\nu'(\ell)}{\nu^2(\ell)}.$$
 (29)

Using (11) and (29), we get

$$\phi'(\ell) \le \frac{\zeta'(\ell)}{\zeta(\ell)}\phi(\ell) - \zeta(\ell)\frac{h(\ell)(1 - \rho(g(\ell)))\nu(g(\ell))}{\nu(\ell)} - \zeta(\ell)\frac{a(\ell)\nu'''(\ell)\nu'(\ell)}{\nu^2(\ell)}.$$
(30)

Now, it follows from Lemmas 1.1 and 1.2 that

$$v'(\ell) \ge \frac{\lambda_2 \ell^2}{2} v'''(\ell) \tag{31}$$

and so

$$\frac{\nu(g(\ell))}{\nu(\ell)} \ge \left(\frac{g(\ell)}{\ell}\right)^{3/\eta},\tag{32}$$

respectively. Substituting (31) and (32) into (30), we get

$$\phi'(\ell) \leq \frac{\zeta'(\ell)}{\zeta(\ell)}\phi(\ell) - \zeta(\ell)h(\ell)(1-\rho(g(\ell)))\left(\frac{g(\ell)}{\ell}\right)^{3/\eta} - \frac{\lambda_2\ell^2}{2}\frac{\zeta(\ell)a(\ell)(\nu'''(\ell))^2}{\nu^2(\ell)}.$$

From the definition of $\phi(\ell)$, we obtain

$$\phi'(\ell) \leq \frac{\zeta'(\ell)}{\zeta(\ell)}\phi(\ell) - \zeta(\ell)h(\ell)(1-\rho(g(\ell))) \left(\frac{g(\ell)}{\ell}\right)^{3/\eta} - \frac{\lambda_2\ell^2}{2\zeta(\ell)a(\ell)}\phi^2(\ell).$$

Setting $A = \lambda_2 \ell^2 / 2\zeta(\ell) a(\ell)$, $B = \zeta'(\ell) / \zeta(\ell)$, and $\zeta = \phi(s)$ and using Lemma 1.3, we have

$$\phi'(\ell) \le -\zeta(\ell)h(\ell)(1 - \rho(g(\ell))) \left(\frac{g(\ell)}{\ell}\right)^{3/\eta} + \frac{1}{2} \frac{(\zeta'(\ell))^2}{\zeta(\ell)} \frac{a(\ell)}{\lambda_2 \ell^2}. \tag{33}$$

Integrating (33) from ℓ_1 to ℓ , we have

$$\int_{\ell_1}^{\ell} \left(\zeta(s)h(s)(1-\rho(g(s))) \left(\frac{g(s)}{s} \right)^{3/\eta} - \frac{1}{2} \frac{(\zeta'(s))^2}{\zeta(s)} \frac{a(s)}{\lambda_2 s^2} \right) ds \le \phi(\ell_1),$$

which contradicts (26).

Assume that case (ii) holds. Define the function $\varphi(\ell)$ by

$$\varphi(\ell) = \vartheta(\ell) \frac{\nu'(\ell)}{\nu(\ell)}.$$

Then, clearly $\varphi(\ell)$ is positive for $\ell \geq \ell_1$ and satisfies

$$\varphi'(\ell) = \frac{\vartheta'(\ell)}{\vartheta(\ell)} \varphi(\ell) + \vartheta(\ell) \left(\frac{\nu''(\ell)}{\nu(\ell)} - \frac{(\nu'(\ell))^2}{\nu^2(\ell)} \right).$$

From the definition of $\varphi(\ell)$, we obtain

$$\varphi'(\ell) = \frac{\vartheta'(\ell)}{\vartheta(\ell)} \varphi(\ell) + \vartheta(\ell) \frac{\nu''(\ell)}{\nu(\ell)} - \frac{\varphi^2(\ell)}{\vartheta(\ell)}.$$
 (34)

Integrating (1) from ℓ to ∞ , we have

$$-a(\ell)v'''(\ell) = -\int_{\ell}^{\infty} h(s)u(g(s))ds.$$
 (35)

Using (11) and (35), we get

$$-a(\ell)\nu'''(\ell) = -\int_{\ell}^{\infty} h(s)(1 - \rho(g(s)))\nu(g(s))ds.$$
(36)

From Lemma 1.2, we get

$$\nu(\ell) \geq \eta \ell \nu'(\ell)$$

that is,

$$\frac{\nu(g(\ell))}{\nu(\ell)} \ge \left(\frac{g(\ell)}{\ell}\right)^{1/\eta}.\tag{37}$$

Combining (37) and (36), we get

$$-a(\ell)\nu'''(\ell) \leq -\nu(\ell)\int_{\ell}^{\infty}h(s)(1-\rho(g(s)))\left(\frac{g(s)}{s}\right)^{1/\eta}ds,$$

that is,

$$-\nu'''(\ell) \leq -\frac{\nu(\ell)}{a(\ell)} \int_{\ell}^{\infty} h(s)(1-\rho(g(s))) \left(\frac{g(s)}{s}\right)^{1/\eta} \mathrm{d}s.$$

Integrating the above inequality from ℓ to ∞ , we have

$$v''(\ell) \leq -\nu(\ell) \int_{\ell}^{\infty} \left(\frac{1}{a(\nu)} \int_{\nu}^{\infty} h(s)(1 - \rho(g(s))) \left(\frac{g(s)}{s} \right)^{1/\eta} ds \right) d\nu.$$

Combining the above inequality with (34), we obtain

$$\varphi'(\ell) \leq -\vartheta(\ell) \int_{\ell}^{\infty} \left(\frac{1}{a(\nu)} \int_{\nu}^{\infty} h(s)(1 - \rho(g(s))) \left(\frac{g(s)}{s} \right)^{1/\eta} ds \right) d\nu + \frac{\vartheta'(\ell)}{\vartheta(\ell)} \varphi(\ell) - \frac{\varphi^2(\ell)}{\vartheta(\ell)}.$$

Thus, we have

$$\varphi'(\ell) \le -\theta(\ell) \int_{\ell}^{\infty} \left(\frac{1}{a(\nu)} \int_{\nu}^{\infty} h(s)(1 - \rho(g(s))) \left(\frac{g(s)}{s} \right)^{1/\eta} ds \right) d\nu + \frac{(\theta'(\ell))^2}{4\theta(\ell)}. \tag{38}$$

Integrating (38) from ℓ_1 to ℓ , we have

$$\int_{\ell_1}^{\ell} \left(\vartheta(s) \int_{s}^{\infty} \left(\frac{1}{a(\nu)} \int_{\nu}^{\infty} h(\varsigma) (1 - \rho(g(\varsigma))) \left(\frac{g(\varsigma)}{\varsigma} \right)^{1/\eta} d\varsigma \right) d\nu - \frac{(\vartheta'(s))^2}{4\vartheta(s)} \right) ds \le \varphi(\ell_1),$$

which contradicts (27).

The proof of the case where (iii) or (iv) holds is the same as that of Theorem 2.1.

This completes the proof.

Example 2.3. Consider the equation

$$(\ell^2(u(\ell) + \rho_0 u(\theta \ell))''')' + \frac{h_0}{\ell^2} u(\ell) = 0, \tag{39}$$

here $h_0 > 0$ and $\theta \in (0, 1]$. It is easy to see that $\delta(\ell) = 1/\ell$ and (4) holds. Let $\zeta(\ell) = \theta(\ell) = \ell$. Next, using Theorem 2.2, we find

$$\limsup_{\ell \to \infty} \int_{\ell_0}^{\ell} \left(\frac{\lambda_1 h(s)(1 - \rho(g(s)))g^2(s)}{2!} \delta(s) - \frac{1}{4a(s)\delta(s)} \right) ds = \limsup_{\ell \to \infty} \int_{\ell_0}^{\ell} \left(\frac{h_0}{s^2} \frac{\lambda_1 (1 - \rho_0)s^2}{2!} \frac{1}{s} - \frac{1}{4s^2(1/s)} \right) ds = \infty,$$

which is verified if

$$h_0(1-\rho_0)>\frac{1}{2}$$

Moreover,

$$\int_{\ell_0}^{\infty} \left(\zeta(s)h(s)(1-\rho(g(s))) \left(\frac{g(s)}{s} \right)^{3/\eta} - \frac{1}{2} \frac{(\zeta'(s))^2}{\zeta(s)} \frac{a(s)}{\lambda_2 s^2} \right) ds = \int_{\ell_0}^{\infty} \left(s \frac{h_0}{s^2} (1-\rho_0) \left(\frac{s}{s} \right)^{3/\eta} - \frac{1}{2} \frac{1}{s} \frac{s^2}{\lambda_2 s^2} \right) ds = \infty,$$

which is verified if

$$h_0(1-\rho_0) > \frac{1}{2}$$

and

$$\begin{split} & \int\limits_{\ell_0}^{\infty} \left(\vartheta(s) \int\limits_{s}^{\infty} \left(\frac{1}{a(v)} \int\limits_{v}^{\infty} h(\varsigma) (1 - \rho(g(\varsigma))) \left(\frac{g(\varsigma)}{\varsigma} \right)^{1/\eta} \mathrm{d}\varsigma \right) \mathrm{d}v - \frac{(\vartheta'(s))^2}{4\vartheta(s)} \right) \mathrm{d}s \\ & = \int\limits_{\ell_0}^{\infty} \left(s \int\limits_{s}^{\infty} \left(\frac{1}{v^2} \int\limits_{v}^{\infty} \frac{h_0}{\varsigma^2} (1 - \rho_0) \left(\frac{\varsigma}{\varsigma} \right)^{1/\eta} \mathrm{d}\varsigma \right) \mathrm{d}v - \frac{1}{4s} \right) \mathrm{d}s = \infty. \end{split}$$

Thus, every solution of (39) is oscillatory or tends to zero if $h_0(1 - \rho_0) > \frac{1}{2}$.

3 Conclusion

In this paper, we have presented new theorems for studying the asymptotic behavior and oscillation of (1). By using comparison principle and Riccati transformation technique, we obtained new criteria which ensure that every solution of the studied equation is either oscillatory or converges to zero. Suitable illustrative examples have also been provided. It will be of interest to investigate the odd-order equations.

Conflict of interest: The authors state no conflict of interest.

References

- [1] J. Blakely and N. Corron, Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator, Chaos 14 (2004), 1035–1041, DOI: https://doi.org/10.1063/1.1804092.
- [2] N. MacDonald, *Biological Delay Systems: Linear Stability Theory*, Cambridge University Press, Cambridge, 1989; Academic Publishers Group, Dordrecht, 1993; Translated from the 1985 Russian original.
- [3] T. Li, N. Pintus, and G. Viglialoro, *Properties of solutions to porous medium problems with different sources and boundary conditions*, Z. Angew. Math. Phys. **70** (2019), 86, DOI: https://doi.org/10.1007/s00033-019-1130-2.
- [4] Y. Benia and A. Scapellato, Existence of solution to Korteweg-de Vries equation in a non-parabolic domain, Nonlinear Anal.-Theory Methods Appl. 195 (2020), 111758, DOI: https://doi.org/10.1016/j.na.2020.111758.
- [5] J. Džurina and I. Jadlovská, *A note on oscillation of second-order delay differential equations*, Appl. Math. Lett. **69** (2017), 126–132, DOI: https://doi.org/10.1016/j.aml.2017.02.003.
- [6] G. E. Chatzarakis, O. Moaaz, T. Li, and B. Qaraad, *Some oscillation theorems for nonlinear second-order differential equations with an advanced argument*, Adv. Differ. Equ. **2020** (2020), 160, DOI: https://doi.org/10.1186/s13662-020-02626-9
- [7] S. S. Santra, A. K. Sethi, O. Moaaz, K. M. Khedher, and S.-W. Yao, *New oscillation theorems for second-order differential equations with canonical and non-canonical operator via riccati transformation*, Mathematics **9** (2021), no. 10, 1111, DOI: https://doi.org/10.3390/math9101111.
- [8] S. S. Santra, O. Bazighifan, H. Ahmad, and Sh. Yao, Second-order differential equation with multiple delays: oscillation theorems and applications, Complexity 2020 (2020), 8853745, DOI: https://doi.org/10.1155/2020/8853745.
- [9] S. S. Santra, K. M. Khedher, O. Moaaz, A. Muhib, and S.-W. Yao, Second-order impulsive delay differential systems: Necessary and sufficient conditions for oscillatory or asymptotic behavior, Symmetry 13 (2021), 722, DOI: https://doi.org/10.3390/sym13040722.
- [10] R. P. Agarwal, Ch. Zhang, and T. Li, *Some remarks on oscillation of second order neutral differential equations*, Appl. Math. Comput. **274** (2016), 178–181, DOI: https://doi.org/10.1016/j.amc.2015.10.089.
- [11] O. Bazighifan, M. Ruggieri, S. S. Santra, and A. Scapellato, *Qualitative properties of solutions of second-order neutral differential equations*, Symmetry **12** (2020), 1520, DOI: https://doi.org/10.3390/sym12091520.
- [12] S. R. Bohner, I. Grace, and I. Jadlovska, *Oscillation criteria for second-order neutral delay differential equations*, Electron. J. Qual. Theory Differ. Equ. **2017** (2017), 1–12, DOI: https://doi.org/10.14232/ejqtde.2017.1.60.
- [13] O. Moaaz, E. M. Elabbasy, and B. Qaraad, *An improved approach for studying oscillation of generalized Emden-Fowler neutral differential equation*, J. Ineq. Appl. **2020** (2020), 69, DOI: https://doi.org/10.1186/s13660-020-02332-w.
- [14] O. Moaaz, M. Anis, D. Baleanu, and A. Muhib, More effective criteria for oscillation of second-order differential equations with neutral arguments, Mathematics 8 (2020), 986, DOI: https://doi.org/10.3390/math8060986.
- [15] S. S. Santra, T. Ghosh, and O. Bazighifan, Explicit criteria for the oscillation of second-order differential equations with several sub-linear neutral coefficients, Adv. Diffrence Eqs. 2020 (2020), 643, DOI: https://doi.org/10.1186/s13662-020-03101-1.
- [16] O. Moaaz, P. Kumam, and O. Bazighifan, On the oscillatory behavior of a class of fourth-order nonlinear differential equation, Symmetry 12 (2020), 524, DOI: https://doi.org/10.3390/sym12040524.
- [17] O. Moaaz and A. Muhib, New oscillation criteria for nonlinear delay differential equations of fourth-order, Appl. Math. Comput. 377 (2020), 125192, DOI: https://doi.org/10.1016/j.amc.2020.125192.
- [18] C. Park, O. Moaaz, and O. Bazighifan, Oscillation results for higher order differential equations, Axioms 9 (2020), 14, DOI: https://doi.org/10.3390/axioms9010014.
- [19] C. Zhang, T. Li, B. Sun, and E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett. 24 (2011), 1618–1621, DOI: https://doi.org/10.1016/j.aml.2011.04.015.
- [20] C. Zhang, R. P. Agarwal, M. Bohner, and T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett. 26 (2013), 179-183, DOI: https://doi.org/10.1016/j.aml.2012.08.004.

- [21] C. Zhang, T. Li, and S. H. Saker, Oscillation of fourth order delay differential equations, J. Math. Sci. 201 (2014), 296-309, DOI: https://doi.org/10.1007/s10958-014-1990-0.
- [22] T. Li and Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett. 61 (2016), 35-41, DOI: https://doi.org/10.1016/j.aml.2016.04.012.
- [23] O. Moaaz, R. A. El-Nabulsi, and O. Bazighifan, Oscillatory behavior of fourth-order differential equations with neutral delay, Symmetry 12 (2020), 371, DOI: https://doi.org/10.3390/sym12030371.
- [24] O. Moaaz, I. Dassios, and O. Bazighifan, Oscillation criteria of higher-order neutral differential equations with several deviating arguments, Mathematics 8 (2020), no. 3, 412, DOI: https://doi.org/10.3390/math8030412
- [25] O. Moaaz, S. Furuichi, and A. Muhib, New comparison theorems for the nth order neutral differential equations with delay inequalities, Mathematics 8 (2020), 454, DOI: https://doi.org/10.3390/math8030454.
- [26] G. Xing, T. Li, and C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations, Adv. Differ. Equ. 2011 (2011), 45, DOI: https://doi.org/10.1186/1687-1847-2011-45.
- [27] A. Zafer, Oscillation criteria for even order neutral differential equations, Appl. Math. Lett. 11 (1998), 21-25, DOI: https://doi.org/10.1016/S0893-9659(98)00028-7.
- [28] Q. Zhang, J. Yan, and L. Gao, Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl. 59 (2010), 426-430, DOI: https://doi.org/10.1016/j.camwa.2009.06.027.
- [29] G. Chatzarakis, S. Grace, and I. Jadlovska, Oscillation criteria for third-order delay differential equations, Adv. Differ. Equ. 2017 (2017), 330, DOI: https://doi.org/10.1186/s13662-017-1384-y.
- [30] O. Moaaz, E. M. Elabbasy, and E. Shaaban, Oscillation criteria for a class of third order damped differential equations, Arab J. Math. Sci. 24 (2018), 16-30, DOI: https://doi.org/10.1016/j.ajmsc.2017.07.001.
- [31] O. Moaaz, J. Awrejcewicz, and A. Muhib, Establishing new criteria for oscillation of odd-order nonlinear differential equations, Mathematics 8 (2020), no. 6, 937, DOI: https://doi.org/10.3390/math8060937.
- [32] O. Moaaz, D. Baleanu, and A. Muhib, New aspects for non-existence of kneser solutions of neutral differential equations with odd-order, Mathematics 8 (2020), no. 4, 494, DOI: https://doi.org/10.3390/math8040494.
- [33] A. Muhib, T. Abdeljawad, O. Moaaz, and E. M. Elabbasy, Oscillatory properties of odd-order delay differential equations with distribution deviating arguments, Appl. Sci. 10, (2020), no. 17, 5952, DOI: https://doi.org/10.3390/app10175952.
- [34] R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Marcel Dekker, Kluwer Academic, Dordrecht, 2000.
- [35] G. Chatzarakis, S. Grace, I. Jadlovska, T. Li, and T. Tunc, Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients, Complexity 2019 (2019), 5691758, DOI: https://doi.org/10.1155/2019/ 5691758.
- [36] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Difference Equ. 2019 (2019), 484, DOI: https://doi.org/10.1186/s13662-019-2418-4.
- [37] I. Kiguradze and T. Chanturia, Asymptotic properties of solutions of nonautonomous ordinary differential equations, in: Mathematics and its Applications (Soviet Series), vol. 89, Kluwer Academic Publishers Group, Dordrecht, 1993, Translated from the 1985 Russian original.
- [38] G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
- [39] G. E. Chatzarakis and T. Li, Oscillation criteria for delay and advanced differential equations with nonmonotone arguments, Complexity 2018 (2018), 8237634, DOI: https://doi.org/10.1155/2018/8237634.
- [40] Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays, Arch. Math. 36 (1981), 168-178.