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Abstract: In this article, we study the asymptotic behavior of even-order neutral delay differential equation
(@-(u+p-ue)V)(@) + h(Qu(g(®) =0, €= &,

where n > 4, and in noncanonical case, that is,

(o]

ja‘l(s)ds < 00.

To the best of our knowledge, most of the previous studies were concerned only with the study of n-order
neutral equations in canonical case. By using comparison principle and Riccati transformation technique,
we obtain new criteria which ensure that every solution of the studied equation is either oscillatory or
converges to zero. Examples are presented to illustrate our new results.
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1 Introduction

The neutral DDEs have many interesting applications in various branches of applied science, as these
equations appear in the modeling of many technological phenomena, see [1,2]. It is well known that the
modeling of natural and technological phenomena produces differential equations, often of higher-order;
see, for instance, the papers [3,4]. Oscillation theory is a branch of qualitative theory that investigates
the oscillatory and non-oscillatory behavior of solutions to differential equations.

In this work, we consider the even-order NDDE

(@a-u+p-uen)m™)(©) + h(Ou(g®) =0, ey
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where £ > £y, m > 4 is an even integer and a, p, T, h, and g are continuous real-valued functions on [£q, co).
We also assume that a € C!([€y, c0), (0, 00)), a@'(&) > 0, p(2) € [0, py], py < 1is a constant, h > 0, h =0 on
any half-line [L, co) for all L > €, T(2) < ¢, g(8) < ¢, lim,_,,T(2) = lim,_,,g(¢) = co and Looa‘l(s)ds < 0.

A solution of (1) is a function u € C([¢,, 00), R), £, > £o, which satisfies the properoties u+ pu(t) €
Cm-1([¢,, c0), R), a(u + pu(t))™-Y ¢ CY([Ly, 00), R) and u satisfies (1) on [£,, co). We consider only the
proper solutions u of (1), that is, u is not identically zero eventually. A solution u of (1) is called oscillatory
if it is neither positive nor negative, ultimately; otherwise, it is called nonoscillatory.

For several decades, an growing interest in presenting criteria for oscillation of different classes of DDE
has been observed. Recently, the works [5-9] have developed many techniques and approaches for
studying the oscillations of delay and advanced second-order equations. However, neutral second-order
equations have been studied in many techniques through works [10-15]. The development in the study of
second-order DDEs was reflected on the study of even-order equations, see for delay [16-21] and for neutral
[22-28]. On the other hand, the works ([29,30] for third-order, and [31-33] for odd-order) contributed to
the development of the oscillatory theory of odd-order delay differential equations.

Zhang et al. [19] investigated the oscillatory behavior of a higher-order differential equation

(a®@™ (@)% + h(Ou(g(0) = 0, @)

where «, f are ratios of odd natural numbers and
Ia‘”“(s)ds < 0o. 3)
€
Zhang et al. [19] obtained results which ensure that every solution u of (2) is either oscillatory or satisfies
lim,_,,u(L) = 0. Zhang et al. [20] studied the oscillation of (2) for a > f and improved the results reported
in [19].
For fourth-order, Zhang et al. [21] studied

(a@™®)'(®) + h()u(g(e)) = 0

and presented some oscillation criteria (including Hille-and Nehari-type criteria). Moreover, Moaaz and
Muhib [17] presented criteria for fourth-order DDE

(a™*)'(0) + f(e, ug(®)) = 0,

under the conditions f(¢, u) = h(¢)uf and a, B are the ratios of odd natural numbers.
For neutral delay equations, Zhang et al. [28] studied the even-order nonlinear NDDE

+p-ue )™ + h(Of u(g(®)) = 0,

under the conditions uf(u) > 0 for all u # 0, and f is nondecreasing. Moaaz et al. [25] investigated the
asymptotic behavior of solutions of the higher-order NDDE

(@ +p-u o D)) + f(e, u(g(®) = 0,

where [f(€, u)| = h(®)|ulf.

To the best of our knowledge, the previous studies in the literature which considered the asymptotic
behavior of solutions of NDDEs of m-order were concerned only with the canonical form jooafl(s)ds = 00.
In this paper, we obtain new conditions for testing oscillation of NDDE (1) in noncanonical case, using
Riccati substitution along with comparison principles with first-order DDE. Examples are presented to
illustrate our new results.

In the following, we present useful lemmas that will be used throughout the results.

Lemma 1.1. [34, Lemma 2.2.3] Assume that @ € C™([€o, 00), R*), @™ is not identically zero on a subray of
[9, 00) and @™ is of fixed sign. Suppose that @™ V@™ < 0 for ¢ ¢ [¢, o), where & > £, large enough.
If lim,_,.,m(£) + O, then there exists a ¢, € [&, co) such that
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> ——— i1,
(m-1)!

for every A € (0, 1) and ¢ € [£), 00).

Lemma 1.2. [35, Lemma 1] Let f € C™([¢o, 0), R), f® > 0,r =0, 1,..., m and f™*D < 0 eventually. Then,
for everyn € (0, 1)

f@© = L,
m

Lemma 1.3. [36, Lemma 1.2] Assume that B >0, A > 0, w > 0 and a > 0. Then,

a‘ th+1

Bw - Aw@D/a < = = |
(a + 1)l A

Lemma 1.4. [20, Lemma 2.1] Let f € C"([ty, 00), (0, 00)). If the derivative f™(t) is eventually of one sign for
all large t, then there exist a t, such that t, > t, and an integer 1, 0 < | < n, with n + 1 even for f™(t) > 0,
orn + l odd for f™(t) < 0 such that

>0 implies fO@)>0 fort>t, k=0,1,...,1-1
and

l<n-1 implies (-D)"**f®O@)>0 fort>t, k=1L1+1,..,n-1.

2 Main results
For the convenience, we use notationv:=u+p-u o 1.

Lemma 2.1. Assume that u € C([£y, c0), (0, 00)) is a solution of (1), eventually. Then, v > 0, (av™D) <0
and v satisfies one of the following:

1) v, v"D and (—-v™) are positive;

() Vv, vm=2 gnd (-vm-D) are positive;

3) (-Dv® gre positive, forallk =1,2,...,m - 1,

for ¢ large enough.

Proof. Assume that u is an eventually positive solution of (1). It follows from (1) that
(a(@vm-D(®)) = ~h(t)u(g(e)) < 0.

Now, from above inequality and Lemma 2 that there exist three possible cases (1)-(3) for ¢ > ¢ large
enough. O

Lemma 2.2. Assume that u € C([£g, 00), (0, 00)) is a solution of (1), where v satisfies case (3). If

00 00 <
N N O _
J{(c 0"l zjh(s)ds dgdp = co, @)

then, lim,_,,u(¢) = 0.
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Proof. Assume thatu is an eventually positive solution of (1), where v satisfies case (3). Then, lim,_,,,v(¢) = D.
We claim that D = 0. Suppose that D > 0, and so for all € > 0, there exists & > £, such that u(g(¢)) > D
for ¢ > ¢. Integrating (1) from ¢ to ¢, we get

13 13
a(@Vm-1(E) = (@ m-D(E,) - jh(s)u(g(s))ds <D j h(s)ds,
& 4
that is,
13
1
(m-1)g —D—Ih ds.
vim=i(e) < ) (s)ds (5)
[
Integrating (5) twice from £ to co, we obtain
_yom-2(p) < —DI —jh(s)ds d¢
a(s)
e 4
and
00 0O 1 ¢ 00 1 ¢
vm=3)(g) < —DII —Ih(s)ds d¢ds = —DI(; -9 —Ih(s)ds dg. (6)
a(s) a(s)
¢ s & [4 &
Similarly, integrating (6) m — 4 times from ¢ to co, we find
V'(®) < —DI((; - gm-3 —Ih(s)ds dg.
) a(s) !

Integrating this inequality from ¢, to co, we obtain

00 00 S
v(t) > D j j(c g %@jh@ds dedo,
&

& e

which is a contradiction with (4). Thus, D = 0. This completes the proof. O

Theorem 2.1. Let (4) hold. If there exists a Ag € (0, 1) such that the first-order delay differential equation
Ao(1 - p(g())(g(®)™!

y'(©) + h(t) (m - Dlaz(®) y(g®) =0 @
is oscillatory and
4
; Mh(s)(A = pEENE™HS) ooy 1 ~
limsup e ( (m - 2)! %) = 25 )ds - 8)

holds for some constant A, € (0, 1), then every nonoscillatory solution u of (1) satisfies lim;_,,,u(€) = co.

Proof. Suppose that (1) has a positive solution u which satisfies lim,_,.,u() # 0. It follows from (1) that
(a(ev™D(e))' = ~h()u(g(®)) < O. )

From Lemma 2.1, there are three possible cases for the behavior of v and its derivatives.
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Let (1) hold. From Lemma 1.1, we have

Agm-1 (m-1)
v(e) > 7(”1 Y 1% ®) (10)

for every A € (0, 1). It follows from the definition of v(¢) that

u(t) = v(e) - p(Ou(r() = (1 - p(O)v(e). (11)
Combining (9) and (11), we get

(av"D(®) < ~h(0)1 - p(g@NIV(g(L)). (12)
From (10), we obtain

(1 - pg@®N(ge)™!

A
(m-1(pYyy
(a(@v™D(@) + h(t) (m—1)!

vim-1(g(g)) < 0.

Now, we define the function y(£) = a(®)v-D(¢). Clearly, y is a positive solution of the first-order delay
differential inequality

(1 - p(g@)))(g®)m!
(m - 1'a(g(e)
Thus, using [40, Theorem 1], equation (7) has also a positive solution for all Aq € (0, 1), this contradicts

the assumption that (7) is oscillatory.
Let (2) hold. We define w by

y(© + h©2

y(g(®) < 0. (13)

a@v™ ()

w(®) = V()

, €>4. (14)

Then, w() < O for ¢ > ¢. Noting that (a(&)v™-D(e))’ < 0, we find
a(s)vm-1(s) < a(®vm-D(e), s>¢€> 4. (15)
Dividing (15) by a and integrating it from € to co, we obtain

0 < vm=2(¢) + a()vm-D(e)5(0),

which yields
a(vm-D(e)s(e) <1
0 '
Thus, by (14), we get
—w(®)6(0) < 1. (16)

Differentiating (14), we arrive at

o @EOVI®)  a@@m @)
A N =10 V@2

which follows from (1) and (14) that

_h@ug®)  w*(®)
v(m=-2)(g) a®)

W'(0) = 17

From the definition of v(¢£) and the fact that v'(£) > 0, we get that (11) holds. Hence, it follows from (17) that

h@©1 - p@)v(E®)  w*(®)

R0 0N

(18)
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Using Lemma 1.1, we get
Aem—Z
v(t) = ———vm-2(p
O 2 o)
for every A € (0, 1) and for all sufficiently large ¢. Then, (18) becomes
AR - p(g(@)))g™ AV A(g(0)  w*(®)
(m - 2)1vm=-2(g) a®

w'(®) <

Since € > g(¢) and v™-2(¢) are decreasing, we have

_AR@)1 - p(g(®)))g™(8)  w*(®)
(m - 2)! a®

w'(®) < (19)

Multiplying (19) by 6(¢) and integrating it from & to ¢, we have

[4

0 > 8w (@) - S(E)w(e) + f %ds e
&

¢ ¢
£S;wz(s)ds + I

1

Ah(s)(1 - p(g(s)))g™ *(s)

-2 6(s)ds.

&

Setting A = 6(s)/a(s), B = 1/a(s), and w = —w(s), and using Lemma 1.3, we have

[4
_ m-2
J( AR(s)(1 - p(g(s)))gm~(s) 5(s) 1

(m — 2)' - 4a(s)5(s) )ds < 6(8])0)(21) +1,

&

due to (16), which contradicts (8).

Assume that case (3) holds. From Lemma 2.2 and (4), we see that lim,_,,,u(¢) = 0, which is a contra-
diction.

This completes the proof. O

Corollary 2.1. Assume that (4) and (8) hold. If

imint [ 7o) L= PEENEE™ 1

t—co (m - 1!a(g(s)) e
g

) (20)

for some A; € (0, 1), then every nonoscillatory solution u of (1) satisfies lim;_,,,u() = co.

Proof. By [38, Theorem 2.1.1], assumption (20) ensures that the differential equation (7) has no positive
solutions. Application of Theorem 2.1 yields the result. O

Remark 2.1. Combining Theorem 2.1 and the results reported in [39] for the oscillation of equation (7),
one can derive various oscillation criteria for equation (1).

Example 2.1. We consider the NDDE
(e (u(®) + pou(6e)™) + hoetu(et) = 0, (21)

where hy > 0 and 6, € € (0, 1). Note that, a(¢) = e, p(€) = p,, T(£) = 6¢, h(€) = hoe' and g(£) = £L. It is easy
to see that 6(¢) = e™*.
Now, from Corollary 2.1, we have

OJ?]?(Q —g)m-3 %C) jh(s)ds d¢dp = T T(g -9 é jhoesds d¢dp = co,
&

& e

£
liming [ as) L PEENEEN™™ 10 i [ ges L TP o o5 L
L—00 o (m - 1)'a(g(s)) £—00 o 3le* e

€ e &
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and
¢ e
imsup [ (MO0 PO D5 L Yoo [ (Ao~ ey 1\,
t—00 (m - 2)! 4a(s)6(s) 00 2! v LieSe™S
= 0.

Thus, (4), (20), and (8) are satisfied. Therefore, every solution of (21) is oscillatory or tends to zero.

Example 2.2. Consider the equation
h
(C(®) + pou(60)")' + “Zu(ed) = 0, (22)

here hy > 0 and 6, € € (0, 1). We note that m = 4, a(¢) = €2, p(¢) = p,, () = 62, h(¢) = ho/t?, and g(¢) = €.
It is easy to see that §(¢) = 1/ and (4) holds. Next, (20) reduces to

1 3!
ho(1 - py)In—= > —. (23)
e ¢e

Moreover, (8) becomes

2
hoAy(1 - 2
lim,_, o Supj(% — %)lds = 00,
I '

which is verified if

1
ho(1 - py) > 27" (24)

Using Corollary 2.1, if

1
ho > M = max 3! T ! 5[
e(1 - pyleln 2(1 - pole

then every solution of (22) is oscillatory or tends to zero, where

1

M=——— if £€€(0,0.28464]
2(1 - py)e?

and
3! .
M=———— if € €(0.28464, 1).
e(l - pye lng

It is easy to notice that (20) does not apply in the ordinary case (g(£) = ¢). So, in the following theorem,
we set new conditions for testing the oscillation of (1) when m = 4, which apply in the ordinary case.

Theorem 2.2. Assume that m = 4 and (4) hold. If

lim sup

¢—00

[4
Ah(s)A — p(g($)E*(S) oy 1 _
| ( . 56) - s )ds - oo, (25)

for some constant A; € (0, 1). Assume further that there exist two positive functions {(€), 9(€) € C'[€g, 00),
such that

(o]

gV _1¢'6) ats) ). _
I(( ($)h(s)(1 - p(g(S)))(T) T2 ) F)dg =00 (26)

o
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and

o T 1T g)"" @) |,
J[“”I(Eaijh“xl'p@“”{‘?_) dg fdv — o |ds = oo @7)

for some constant A, € (0, 1). Then, every nonoscillatory solution u of (1) satisfies lim;_, ,,u(€) = co

Proof. Assume that (1) has a nonoscillatory solution u which is eventually positive and lim,_, ,,u(¢) # 0. It

follows from (1) and Lemma 2.1 that there exist four possible cases for the behavior of v and its derivatives:
i v'(e) > 0,v"(®) > 0, v"(£) > 0 and v (¢) < 0;

@) v'(®) > 0,v"'(®) <0, v"(€) > 0 and V() < 0;

(iii) v'(®) < 0, v"(¢) > 0 and v"'(¢) < 0;

@iv) v'(¢) > 0,v"(®) > 0 and v"'(¢) < 0.

Let (i) hold. Define the function ¢(£) by

TORNORLIC
v(e)
Then, clearly ¢(2) is positive for £ > ¢ and satisfies
) ¢ (a(ev™(®))  a(®v"(e)v'(e)
0) = 4 - . 28
m>(®w)«{ "0 o ) (28)
From (1) and (28), we have
) g'ce h(®)u(g(®)) a(Ov"(@)v'(e)
¢) = - (L 29
P = «0 (0= SO (29)
Using (11) and (29), we get
) g'ce B h(®)(1 - pg(@)v(g®) a(v"(e)v'(e)
P < 0 ¢(€) {(® ) {(® (0 (30)
Now, it follows from Lemmas 1.1 and 1.2 that
V') = v”’(E) (31)
and so
vE®) | (@)3/", (32)
v(e) 1}
respectively. Substituting (31) and (32) into (30), we get
i §@ gV A2 {®a@" ()
P < 0 d(0) - (OO - p(g(e)))( ) 5 V20 .
From the definition of ¢(¢), we obtain
/ ( ( (8)) /1222 2
£) < Oh(®)( - [4 2).
P < C(E) (O - p(g(8))) 2((€)a(£)¢ (©
Setting A = ,€%2{(®)a(e), B = {'(®)/{(2), and ¢ = ¢(s) and using Lemma 1.3, we have
: g 1¢'®) a®
d'(€) < -¢C(OhR)1 - p(g(f)))( ) 20 Al 33)
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Integrating (33) from & to ¢, we have

3

s 2 {(s) As?
&
which contradicts (26).

Assume that case (ii) holds. Define the function ¢(¢) by

_ oY ®
@) = 9(¢) 0
Then, clearly ¢(£) is positive for € > ¢ and satisfies
o 9O VIO V©)
P = 10 P8 + 9(0( 70 o )
From the definition of ¢(¢), we obtain
o 9O HONAO
PO 500 % e

Integrating (1) from ¢ to co, we have
—a(eyv"(e) = —Th(S)u(g(S))dS-
¢
Using (11) and (35), we get
—a(en"(e) = —Th(S)(l = p(g(s))v(g(s))ds.
¢

From Lemma 1.2, we get
v(e) = nev'(e),
that is,

vE®) | ( @)W
vie) \ ¢ ’
Combining (37) and (36), we get
00 y
~a(@v"(®) < v© [ hs)(1 - p(g(s)))(ﬁ) "ds,
14
that is,
_yMm _&m _ @ 1/n
v < o) { hs) p(g(s)))( - ) ds.

Integrating the above inequality from € to co, we have

V() < —v(@j[ﬁ Jmsa - p(g(s)))(?) ds]dv.
4 v

/ !
J(C(s)h(s)(l _ p(g(s»)(g (S)f T_1¢ (S)f@)ds < (8,

DE GRUYTER

(34)

(35

(36)

@7
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Combining the above inequality with (34), we obtain

o) 00 1n , ,
PO < —8(2)](%[11@)(1 —p(g(s)))(?) ds)dv + IO 5 2O
[4 v

9(0) ) °

Thus, we have

: NI g} ()
qo(f)s—3(2){[mjh<sx1—p(g(s)))( ¢ ) ds]dv+ o (38)

Integrating (38) from ¢; to €, we have

3

1T O RCIO)S
!Q(S) j [m j h(c)(l—p(g(c)))( . ) dg |dv — ot |ds < 0@,

which contradicts (27).

The proof of the case where (iii) or (iv) holds is the same as that of Theorem 2.1.
This completes the proof. O

Example 2.3. Consider the equation
(@(®) + pou(O0)") + 2u®) = 0, (39)

here hy > 0 and 8 € (0, 1]. It is easy to see that §(¢) = 1/¢ and (4) holds. Let {(¢) = 9(¢) = ¢.
Next, using Theorem 2.2, we find

£ £
. Ah(s)(A - p(g(s))8>(s) o o\ 1 L ho M1 -py)s*1 1 B
h?iifp ( 2! 5() 4a(s)6(s))ds_hr¢ris£p (52 2! s 452(1/5))ds_00’
which is verified if
1
ho(1 - py) > >
Moreover,
( ) 8O\ 166" a®) )y - [(shogy ()" 1
I(((S)h(s)(l p(g(s)))( . ) 2 06) A ds = ! s52 1 -py) . s e ds = oo,
[ 0

which is verified if
ho(1 = p) >
0 Po 2

and

oo 0l 1 T g CIO)
J S(S)J‘[mj‘h@)(l-P(g(c)))(T) dg |dv - 49(s) o

cof oo . 00 ho ¢ 1/n .
= I SJ‘(W F(l — po)(z) dc dv — E ds = co.
[ s v

Thus, every solution of (39) is oscillatory or tends to zero if ho(1 - p,) > %
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3 Conclusion

In this paper, we have presented new theorems for studying the asymptotic behavior and oscillation of (1).
By using comparison principle and Riccati transformation technique, we obtained new criteria which
ensure that every solution of the studied equation is either oscillatory or converges to zero. Suitable
illustrative examples have also been provided. It will be of interest to investigate the odd-order equations.

Conflict of interest: The authors state no conflict of interest.
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