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Abstract: In this paper, we introduce a new algorithm for solving pseudomonotone variational inequalities
with a Lipschitz-type condition in a real Hilbert space. The algorithm is constructed around two algorithms:
the subgradient extragradient algorithm and the inertial algorithm. The proposed algorithm uses a new step
size rule based on local operator information rather than its Lipschitz constant or any other line search
scheme and functions without any knowledge of the Lipschitz constant of an operator. The strong con-
vergence of the algorithm is provided. To determine the computational performance of our algorithm, some
numerical results are presented.
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1 Introduction

This paper studies the problem of classic variational inequalities [1,2]. The variational inequality problem
(VIP) for a mapping A : & — &, which is formulated in the following way:

Find g* € K suchthat (A(g*),v-g*) =0, VveK, (VIP)
where K is a nonempty, convex and closed subset of a real Hilbert space & and (. , .) and |.| represent an
inner product and the induced norm in &, respectively. Moreover, R, N are the sets of real numbers and

natural numbers, respectively. It is important to note that the problem (VIP) is equivalent to solve the
following problem:

Find g* € K such that g* = Px[q* — {A(g")].

The concept of variational inequalities has been used as an important tool for covering a large number
of topics, i.e., physics, engineering, economics and optimization theory. This was introduced by Stampacchia [1]
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in 1964. This is a significant mathematical design that unifies several key topics of applied mathematics, such
as the network equilibrium problem, the necessary optimality conditions, the complementarity problems and
the systems of nonlinear equations (for more details [3—-12]). On the other hand, the projection algorithms are
important to find the numerical solution of variational inequalities. Many experts have introduced and
considered many projection algorithms to study the variational inequality problems (see for more details
[13-25]) and others in [26-28]. Korpelevich [13] and Antipin [29] introduced the following extragradient
algorithm:

up € K,
Van = Prc[un — (A )], 4y
Upy1 = P’K[un - Cﬂ(vn)]

Recently, the subgradient extragradient algorithm was provided by Censor et al. [15] for solving the
problem (VIP) in a real Hilbert space. Their algorithm takes the form

up € K,
Vo = Pty = AU, )
Up+1 = Pé}n[un - (ﬂ(Vn)],

where
En={ze&E: (U - (AU, — vy, 2 — W) < O}

It is important to note that the above well-established algorithm carries two serious drawbacks, the first
is the fixed constant step size that requires the knowledge or approximation of the Lipschitz constant of the
relevant operator and it only converges weakly in Hilbert spaces. From the computational point of view, it
might be problematic to use fixed step size, and hence the convergence rate and usefulness of the algorithm
could be affected.

Yang et al. [30] proposed two explicit subgradient extragradient methods to solve monotone variational
inequalities. An iterative sequence {u,} was generated in the following way:

Algorithm A.
(i) Letuy € K, p € (0,1) and {, > 0.
(ii) Compute iterative sequence {u,} for n > 1 as follows:

Vn = P'K[un - (nﬁ(un)]y
Up+1 = Pa,,[un - (nﬂ(vn)];

where
En=1{ze&: (U — AWy — W, 2 — W) < O}

(iii) Update the step size rule in the following way:

min {Cn, Ml = Vall? + plnis = valP
<k7{(un) - ﬂ(Vn)y Un+1 — Vn)
¢, otherwise.

( _ } if (ﬂ(un) - ﬂ(vn)’ Uny1 — Vn) > O,
n+l =

If u, = v,, then stop. Otherwise, set n := n + 1 and return to Step (ii).

Algorithm B.
(i) Letug e K, u € (0,1), ¢, > 0 and a sequence ¢, c (0, 1) with ¢, —» 0 and }”, ¢, = +co.
(ii) Compute iterative sequence {u,} for n > 1 as follows:

Vn = P’K[un - Cnﬂ(un)],

Zn = P(Sn[un - (n-ﬂ(vn)]; (4)
un+1 = ¢nu0 + (1 - ¢n)zna
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where
En=1{z€&: (up — {AUy) — Vp, 2 — V) < O}

(iii) Update the step size rule in the following way:

(-ﬂ(un) - ﬂ(Vn), Zn — Vn)
¢ otherwise.

_ 2 _ 2
min{(n, Bllun = valP + pllzn = vall } i (AQ) — AW, 25— ¥) > 0,

(n+1 =

If u, = v, then stop. Otherwise, set n := n + 1 and return to Step (ii).

The main objective of this paper is to set up an inertial-type algorithm that is used to improve the con-
vergence rate of the iterative sequence. Such algorithms have been previously established due to the
oscillator equation with a damping and conservative force restoration. This second-order dynamical system
is called a heavy friction ball, which was originally studied by Polyak in [31]. The main feature of inertial-
type algorithms is that they can use the two previous iterations to obtain the next iteration. Numerical
results confirm that inertial terms normally improve the performance of the algorithm in terms of the
number of iterations and elapsed time in this context.

So there is an important question:

“Is it possible to establish a new inertial-like strongly convergent extragradient-type algorithm with a monotone variable step
size rule?”

In this research, we provide a positive answer to the above question, i.e., the gradient algorithm indeed
establishes a strong convergence sequence by maintaining variable step size rule for solving problem (VIP)
combined with pseudomonotone mappings. Motivated by the works of Censor et al. [15] and Polyak [31],
we introduce a new inertial extragradient-type algorithm to figure out the problem (VIP) in the situation of
an infinite-dimensional real Hilbert space.

Specifically, our key contributions to this paper are as follows:

© We introduce an inertial subgradient extragradient algorithm with the use of a variable monotone step
size rule independent of the Lipschitz constant to figure out pseudo-monotone VIPs.

© We also provide numerical experiments corresponding to the proposed algorithms for the verification
of theoretical findings and compare them with the results in Algorithm 1 in [30] and Algorithm 2 in [30].
Our numerical data have shown that the proposed algorithms are useful and performed better compared
to the existing ones in most situations.

The rest of the paper is arranged as follows: Section 2 consists of the necessary definitions and funda-
mental lemmas needed in the article. Section 3 consists of an inertial-type iterative scheme and conver-
gence analysis theorem. Section 4 provides numerical results to explain the performance of the new
algorithm and to compare them with other existing algorithms.

2 Preliminaries

In this section of the text, we have written a number of significant identities and related lemmas and
definitions.
The metric projection Py (vy) of v; € & is defined by

Py(v) = argmin{|lv; - v, : v, € K}

Next, we list some of the important properties of the projection mapping.



DE GRUYTER Strong convergence inertial projection method =— 113

Lemma 2.1. [32] Suppose that Py : & — K is a metric projection. Then, we have
(1) v3 = Pg(vy) if and only if

WM-v3b-13) <0, Vnrek,
(ii)
vi = Px()I? + IPx(v2) = val? < Ivi = w2, wiekK, veé&,
(iii)

lvi — Pl < lvi = vall, v €K, vi€é&.

Lemma 2.2. [33] Let {p,} c [0, +0c0) be a sequence satisfying the following inequality:
DPni1 £ (1 = @u)Pn + Guln, VN €N,

Furthermore, let {g,} c (0, 1) and {r,} ¢ R be two sequences such that

+00
lim g, =0, )g,=+0c0 and limsupr, <O.
n—+oo n=1 n—+oo

Then, lim,,_, ,.oopn = O.
Lemma 2.3. [34] Suppose that {p,} is a sequence of real numbers such that there exists a subsequence {n;} of
{n} such that

Dn; < Pniy»  Vi€N,

Then, there exists a nondecreasing sequence my. C N such that m; — +0o as k — +oo, and satisfies the follow-
ing conditions for numbers k € N:

DPmy € Pmysy  and Py < Py,

Indeed, my = max{j < k : p; < pj.1}.
Next, we list some of the important identities that were used to prove the convergence analysis.
Lemma 2.4. [32] For any v, v; € & and £ € R, the following inequalities hold:
(D
e + 1 = Oval? = ewl? + (1 = Olv2l? - € = &) vy = v, |,
(id)

i + Vol < vl + 2¢va, vi + ¥2).

Lemma 2.5. [35] Assume that A : K — & is a pseudomonotone and continuous mapping. Then, q* is
a solution of the problem (VIP) if and only if q* is a solution of the following problem:

Find u € K such that (A(v),v-u) >0, VYve XK.
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3 Inertial two-step proximal-like algorithm and convergence
analysis
In this section, we introduce an inertial-type subgradient extragradient algorithm which incorporates

the new step size rule and the inertial term as well as provides both strong convergence theorems.
The following main result is outlined as follows:

Algorithm 1

Step 0: Let u_y, up € K, a > 0, u € (0, 1), {, > 0. Moreover, choose {8,} c (0, 1) satisfies the following
conditions:

+00
lim B,=0 and ) B, =+oo.
n—+oo n=1

Step 1: Compute

M = (L= B [un + atn(un — un-1)],
where a, such that

. En .
~ b - f =1
B mm{a | } if u, # up_q 5)

[un — Un-all
a else,

while &, = - (B,) is a positive sequence, i.e., limnﬂoo% =0.
Step 2: Compute
Vo = Py, = §,AM,).

If n, = vy, then STOP and v, is a solution. Otherwise, go to Step 3.
Step 3: Compute

Upy1 = Pan(ﬂ,l - Cnﬂ(vn))a
where
En={ze&:(n, - ¢, AM,) — Va2 — V) < O}
(iii) Compute

min ( HH"In - Vn”2 + y”unﬂ - Vn||2
" 2(?[(1]") - ﬂ(Vn), Upi1 — Vn>

¢, otherwise.

( _ } lf (ﬂ(l]n) - ﬂ(Vn), Un+1 — Vn) > O’
n+l =

Setn =n + 1 and go back to Step 1.

Lemma 3.1. A step size sequence {{ } is monotonically decreasing with a lower bound min{%, (0} and con-
verges to { > 0.

Proof. Consider that (A(n,) — A(Va), Un+1 — V) > 0 such that

uin, = val? + lunst — val?) o 2y = vl = el 2ul, = Vel = vall
2(.7(()’1n) - ﬂ(vn)5 Un+1 — Vn) - 2”ﬂ(rln) - ﬂ(vn)"”umrl - Vn” - ZL”’ln —Vn "||un+1 - Vn" B

i
I (6)
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This implies that the sequence {¢,} has a lower bound min{%, (0}. Furthermore, there exists a real number
> 0, such that lim,_, ., = (. O
¢ n

In order to study the strong convergence, the following conditions are satisfied:
(A1) The solution set of problem (VIP) denoted by Q is nonempty;
(A2) An operator A : & — & is said to be pseudomonotone, i.e.,

(AW, va-v) 20 = (AV2),vi - v <0, Vn,ve%K;

(A3) An operator A : & — & is said to be Lipschitz continuous with constant L > 0, i.e., there exists L > 0
such that
[AW) = AW < Livi = vall, Vv, v2 € K

(A4) An operator A : & — & is said to be sequentially weakly continuous, i.e., {A(u,)} converges weakly to
A(u) for every sequence {u,} converges weakly to u.

Lemma 3.2. Suppose that an operator A : & — & satisfies the conditions (A1)—(A4). For a givenq* € Q + &,
we have

"un+1 - q*Hz < ”rln - q*"Z - {1 - V(nj"rln — Vn "2 - [ - H(nj"unﬂ — Vn ”2

(n+l n+1

Proof. It is given that

luns1 — q*I> = IPg,[n, — §, AW — q*I
= ||Pg,[n, - §, AW + [, — { AW - [, — §, AW — g1

=N, = § AW = @I + IPe,[m, = § AW = [, = G AW @
+ 2(Pg,[M, — ;AW - [, = G AW, [, = G AR — q7).
Thus, we have
1P, [, = $ AW = [N, = AW + (Pe,[n, — G AW = [, = G AW, [, — G AW - q7) ®)
= ([, = §u AW = Pg,[n, — { AW, @ = Pe,[n, — §,AW)]) <0,

which implies that
(Pg,[n, = G AW — [, = AW, [, = AW = @) < =I1Pg,[n, — G AW — [0, = AW 9
Combining expressions (7) and (9), we obtain

luns1 = @*I° < Iy, = §u AW = g7 = IPg, [, — G AW — (1, = G AW (10)

<y = @ = I, = tnal? + 28, (AW, §° = Unsa)-

Since g* is the solution of problem (VIP), we have

(A", v-q) =0, forallvexk.
Due to the pseudomonotonicity of A on K, we get

(AWV),v—-q* =20, forall veXK.
By substituting v = v,, € K, we obtain

(AWn), Va — @) 2 0.

Thus, we have

(AWn), @ — Uns1) = (AW, §* = Vo) + (AWn), Vn — Uns1) < (AWn), Vi — Uns1)- 11)
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Combining expressions (10) and (11), we get

luns1 = @I < iy, = @1 = I, = Unsa P + 28, (AW, Vo = Unsa)
< ||Yln - 61*||2 - ||T[n —Vnt+ Vn— un+1"2 + z(n <~7((Vn): Vn — un+l> (12)

<ln, = @I = I, = vl = Ve = tnial? + 20, = §,AWn) — Vi Uns1 — Vi)
By the use of un.1 = Pg,[n, — {,A(vy)] and by the definition of ¢, ,,, we have
2N, = G AWR) = Vi, Ung1 — V) = 2{0, = . AM,) — Vs Unat — Vi) + 2§, (A1) — AW), Unsr — Vi)

$n
=2 (AM,) — AWVn), Uns1 — Vo)
G AU (13)
< Ko v+ B, .
(n+1 (n+1
Combining expressions (12) and (13), we obtain
tnr = @12 < I, = 12 = I, = Val? = Ve = Ul + i[ﬂllnn = ValP? + plltni = valP]
n+1
¢ ¢ (14)
<ln, - P - [1 - ”jllnn —valP - (1 - "juum ~valP.
(n+1 n+1
O

Theorem 3.3. Let {u,} be a sequence generated by Algorithm 1 and satisfy the conditions (A1)—(A4). Then,
{u,} strongly converges to g* € Q. Moreover, Py(0) = q*.

Proof. It is given that {, — { such that € € (0,1 - ) and

lim(l—y—c”le—y>s>0.
n—oo (n+1

Thus, there exists a finite number n; € N such that

[I—H("]>e>0, vn > n. (15)
n+l1
This implies that
Uni1 = @17 < I, = @17, Vn = ny. (16)
It is given in expression (16) that
.o« . €
m =% fluy = upall < lim =% fluy = Ul = 0. a7)
n—+oo n n—+oo n

By the use of definition of {n,} and inequality (17), we obtain

In, — @l = lun + &n(Un = Un—1) = B tin — AP, (Un — Un-1) — q*I
= (1 - B (un — @) + A = B)an(un — un_1) — B,q"

<A =Bl — gl + A = Ban lun — upall + B, g7l
<1 -B)un - q*ll + B, M,

(18)

19)

where

a
2y = Upall + llg*ll < M.

1-
( ﬁ")ﬁn
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Combining expressions (16) and (19), we obtain
Uni1 = q*l < (1 = B lun — g*ll + B, My
< max {u, - g*ll, My}
< max {luo — g*ll, Mi}.
Thus, we conclude that {u,} is a bounded sequence. Indeed, by expression (19) we have

In, — a*I* < @ = B)lun — q*I* + B,,ZMf +2My B, (1 = B) lun — ¥l
<lun — ¢*I? + B, (B, ME + 2Mi(1 — B,) llun — g*|I]
< llun — q*I? + B, My,

where
B.ME + 2Mi(1 - B luy — q*ll < My,

for some M, > 0. By using the expressions (14) with (21), we have

Nt — @I <t — @ + B, My — (1 K ("Jlln,, —valP - [1 K ("]uum "
(n+1 {n+1

The rest of the proof will be divided into the following two parts:

Case 1: Consider that a fixed number n, € N (n, > n;) such that

lune — q*ll < lun — g*l, VYn =z n,.

— 117

(20)

21

(22)

(23)

This implies that lim,,_, ., lu, — q*|| exists and let lim,,_, .o, [lu, — g*| = I for some [ > 0. From the expression

(22), we have

[l - HC"]IIUH - Vall + [l - chj"unﬂ = Val? < lun = q°IF + B, Mz — lluns1 = g7

Cn+1 n+1
Due to the existence of a limit of sequence |lu, — ¢*| and §, — 0, we deduce that
In, = val = 0 and |upys —wll -0 as n— +oo.
By the use of expression (25), we have

lim |, = upall € lim [, = vl + lim |V = Upeqll = O.
n—+oo n—+oo n—+oo

Next, we have compute
I, = unll = lup + an(uty — Un—1) = B, [y + An(Un — Up_1)] — unll
< @pllup — up-all + By llunll + B, lun — un_all

-84

Q
_n”un — Ul + Bn”un" + ﬁz_n”un — Uy — O asn — oo.

Bn " B n
The following provides that

lim |lup — upall < lim Ju, - n,l + lim [, - upall = O.
n—+oo n—+oo n—+oo

(24)

(25)

(26)

@7)

(28)

The above expression guarantees that the sequences {n,} and {v,} are also bounded. By the use of reflexivity
of & and the boundedness of {u,} guarantees that there exists a subsequence {up,} such that {u, } — it € &

as k — +oco. Next, we have to prove that il € Q.
It is given that

Ve = P‘K[rlnk - (n‘?‘(nnk)]’
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that is equivalent to
My = G AWMy = Vo V= Vo) <0, Vv e K. (29)

The inequality described above implies that

My = Vo V = Vi) < G (AWM, V = Vi), YV e K. (30)
Furthermore, we obtain
1
Z(nnk — Vi V = Vi) + (AWM )s Vi = M) < (AWM V= 1,05 W e K. (31)
n

The sequence {#A(1,, )} is bounded due to the boundedness of sequence {n,, }. By the use of limy_, o117, — Vil
= 0 and k — oo in (31), we obtain

lilfninf(ﬂ My)s vV —My) 20, VYvekK. (32)
Furthermore, we have
(AW, V = V) = (AVn) = AW, v = Ny) + (AWM, V= Ny + (AW, Ny, — Vi (33)
Since limkﬁmllnnk — Vu ll = 0 and A is L-Lipschitz continuous. Thus, we have
lim A (g,,) - AW = 0. (34)
Combining expressions (33) and (34), we obtain

li;ninf({ﬂ Vs V=) 20, WveXK. (35)

Consider a sequence of positive numbers {¢;} that is decreasing and converges to zero. For each k, we denote
my by the smallest positive integer such that

(AMp), V= Np) + & 20, Vizm. (36)

It is obvious that {my} is an increasing sequence because {&} is a decreasing sequence.

Case A: Let there exists a subsequence

nnmkj} of sequence {nnmk} such that A

'Tnmkj = 0 (V j). Consider that

j — oo, we obtain
(AW, v - @) = lim (A, ),V - i) = 0. 37)
]J—00 ]
Hence i1 € K, therefore we obtain il € Q.

Case B: If there exists ny € N such that for all n,, > no, ?{(nnmk) # 0. Suppose that
An,,)

A e s N YNy, = No. (38)
O Am,, P
On the basis of the above definition, we obtain
<ﬂ(rln,,,k)’ Anmk> = 1, Vnmk > no. (39)

By using expressions (36) and (39) for all n,,, > no, we have

<ﬂ(UHMk), V + &l — Tlnmk> > 0. (40)
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Due to the pseudomonotonicity of A for ny,, > ny, we have
<3l(v + &lbn,), V + &b, — nnmk> > 0. (41)
For all n,,, > ng, we have
<ﬂ(v), V- nnmk> > <ﬂ(v) - AW + &bn,,), V+ &b, - nnmk> = & (AW), A, ) (42)

Since {n,, } weakly converges to & € K and A is sequentially weakly continuous, it implies that {A(n,, )}
weakly converges to A(il). Suppose that A (1) # 0, we have

|A@] < lim ian?[(nnk) . 43)
Since {nnmk} c {n,,} and limy ., & = 0, we have
. . Ex 0
0 < lim|lgA,, | = lim < — =0
oo T e A Ol IA@I (44)
Next, considering k — oo in (42), we obtain
(AWV),v-1u) >0, VYve¥K. (45)

By the use of Minty Lemma 2.5, we infer i € Q. It is given that g* = Po(0) and by using Lemma 2.1(ii), we
have

(0-g5v-g<0, Ve (46)
Next, we have to

limsup(g®, g* -~ un) = lim (q", 4"~ un,) = {q", 4" - %) < O. (47)

n—+o0o
Since limy,_, .oollUns1 — Unll = 0, it gives that

limsup(g*, ¢* — un.1) < limsup{q*, ¢* — u,) + limsup{(q*, u, — uUy,1) < O. (48)

n—-+oo n—-+oo n—-+oo

Taking into account expression (18), we have

117, = @*I? = llun + @u(Un = Un-1) = Brttn — @B, (Un — Un1) — @I
=11 - B = g*) + (A = B an(un — Unv) - B,q*I
<@ - B)wn — g + (1 = B an(un — up)I* + 28,(-q", 1, - q°)
= (1= B lun — q*I? + (1 = B)2ay luy — un1l?
+20,(1 = B )2 Uy = q*llln = Unall + 2B,(=q", My, = Uns1) + 2B, {~q", Uns1 — @%)
<A =Blun = @I + a7 lun — unal? + 201 = B) utn — gl 1t — tn_1ll (49)
+ 2B, llg*lin, = unull + 2B, (-q"*, Un.1 - q*)

[4¢
=(1- Bn) lun — "I + ﬁn|:an lun = -l == Nt — Un-all

Bn

a
+2 - B ) uy - q*llﬁ—"llun = Upall + 2 g*lIn, = Unaall + 2{q*, q* - un+1>}.

n
From expressions (16) and (49), we obtain

Q
luns1 — q*IP < @ = B lun — q*I* + ﬁ,{an Ity = tn-all =ty — Un_1ll
n

(50)
24
+2(1 - B lun — gl B—" lun — unall + 2 llg*llin, — wunall + 2{q* q* - un+1>}-

n

By using expressions (26), (48), (50) and Lemma 2.2 together implies that lim,_, ., llu, — g*]| = O.
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Case 2: Consider that there exists a subsequence {n;} of {n} such that
lun; — q°ll < lun;,, — g7, VieN.
By using Lemma 2.3, there exists a sequence {my} ¢ N as {my} — +o0o such that
ltm, = q"ll < lttm,., — ¢*ll and llux = g*ll < llum,, — g°ll, forall k e N. (51)

Similar to Case 1, the relation (24) implies that

¢ ¢
[1 - ( T j"rlmk - mG "2 + [l - T ]"um“l - mG ”2 < "umk - q*||2 + ﬂmkMZ - ”umk+1 - q*||2 (52)
my+1

Due to Bmk — 0, we can conclude the following:

kg?;o"nmk = Vi = kl—i>IPoo||umk+1 = Vmy | =o0. (53)
The above implies that
kiiggo [y = M, I < kli?loo"”"'k” = VeIl + kli?loo"‘/’"k = N Il = 0. (54)
Next, we have to compute
”rlmk = Umy Il = ”umk + amk(umk - umk—l) - ﬁmk [umk + amk(umk - umk—l)] - umk”
< amk "umk - umk—lll + ﬁmk”umk || + amkﬁmk "umk - umk—lll (55)
a
= B, B’"k Mt = Ut | + By [t | + ﬁ,ﬁk 5 Nty = U1l — 0.
my my
This leads that
kLln;o [ty — Umpall < klilflm"“'"k = M | + kliljlm"”mk = U1l = 0. (56)
By using the same argument as in Case 1, we have
limsup(g*, ¢* — Um;+1) < O. (57)
k—+00
Combining expressions (50) and (51), we obtain
*[12 *||12 amk
”umk+1 -q " < (1 - Bmk) ”umk -q " + :Bmk amk”umk - umk—lu - ”umk - umk—lu
B,
+2(1 = By ) lum, — q o ﬁ “Ntmy = Umgeall + 2 171N, = Umyeiall + 2(q75 g - umk+1>:|
" (58)
< (1 - ‘Bmk) ”umk+1 - q*”z + ﬁmk amk"umk umk l” "umk umkfl”
Bmk
+2(1 - B ) lum, — g o 5 Pty = Ul + 221G, = Umeatll + 2007, @ - umk+1>}.
my
This implies that
*[12 amk
tmr1 = q°1° < | Qb — umk—luﬁ—”umk = U1l
" (59)

a
+2(1 = B )ty — g1
B,

= Ul + 2 171Ny, — Umesall + 2(q7, q" - umk+1>]-
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Since Bmk — 0 and |lu,, — ¢g*| is a bounded, (57) and (59) imply that

lume1 — ¢ > 0, as k — +oo. (60)

This means that
nglfgo”uk -qP < ,,lilfloonu’"k“ -qF <o. (61)
As a consequence u, — g*. This completes the proof of the theorem. O

4 Numerical illustrations

This section examines four numerical experiments to show the efficacy of the proposed algorithms. Any of
these numerical experiments provide a detailed understanding of how better control parameters can be
chosen. Some of them show the advantages of the proposed algorithms compared to the existing ones in
the literature.

Example 4.1. First consider the HpHard problem that is considered from [36]. Let A : R¥ — RY be an
operator which is defined by

A(u) = Mu + q,
where g € RN and
M=AAT + B+ D,

where A is an N x N matrix, B is an N x N skew-symmetric matrix and D is an N x N positive definite
diagonal matrix. The set K is taken in the following way:

K ={ueRN:-10 < u; < 10}.

It is clear that A is monotone and Lipschitz continuous through L = |M]|. The control condition is taken as
follows:
(i) Algorithm 1 in [30] (shortly, Alg.1): {; = 0.20, u = 0.55.

(ii) Algorithm 2 in [30] (shortly, Alg.2): {, = 0.20, u = 0.55, ¢, = m

(iii) Algorithm 1 (shortly, M.Alg.1): {, = 0.20, u = 0.55, & = 0.66, &, = !

1
(n+1)2° ‘8" T 100(n+2)°

During this experiment, the initial point is up = u; = (1, 1,...,1) and D, = [, — vl < 10~%. The numerical
results of these algorithms are shown in Figures 1-4 (Table 1).

Table 1: Numerical data for Figures 1-4

Algo.name Algorithm 1in [30] Algorithm 2 in [30] Algorithm 1

N iter. time iter. time iter. time

5 41 0.223457 55 0.279106 14 0.079261
10 56 0.251080 60 0.236725 23 0.094484
20 390 2.016970 260 1.426439 64 0.516909

50 539 3.373166 607 5.546712 149 0.660777
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Figure 1: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking N = 5.

10*

—e—Alg.1
—k—Alg.2
——M.Algol

Number of iterations

Figure 2: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking N = 10.

104

—6—Alg.1
——Alg.2
—»—M.Algol | ]

106 : :
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Number of iterations

Figure 3: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking N = 20.
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Figure 4: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking N = 50.

Example 4.2. For second example, consider the quadratic fractional programming problem in the following
form [37]:

uTQu + a'u + ag
bTu + by
subjectto u € K = {u € R*: bTu + by > 0},

minf(u) =

>

where
5-120 1 2
_ _ _ 1
Q= 21_51 31(3), a= _;, b= 1b ap=-2, and by =4.
0305 1 0

It is easy to verify that Q is symmetric and positive definite on R* and consequently f is pseudo-convex on K.
Hence, Vf is pseudo-monotone. Using the quotient rule, we obtain

(bTu + bo)2Qu + a) - bWTQ + a’u + ap)

Vi = (bTu + by)?

(62)

In this point of view, we can set A = Vf in Theorem 3.3. We minimize f over K = {u € R*: 1 < y; < 10,
i =1,2,3,4}. This problem has a unique solution ¢g* = (1, 1, 1, )T € %. The control condition is taken as
follows:

(i) Algorithm 1 in [30] (shortly, Alg.1): {; = 0.25, u = 0.35.

(ii) Algorithm 2 in [30] (shortly, Alg.2): {, = 0.25, 4 = 0.35, ¢, = ——

100(n+2)"

™ . _ — — —_ 1 - 1

(iii) Algorithm 1 (shortly, M.Alg.1): {; = 0.25, u = 0.35, a = 0.66, &, = el B, = )

During this experiment, the initial points are different and D, = |11, — v,/ < 107*. The numerical results of
these algorithms are shown in Tables 2-10.
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Table 2: Example 4.2: Numerical study of Algorithm 1in [30] and uo = u; = [10, 10, 10, 10]"

DE GRUYTER

Iter (n)

u

u;

us

uy

TV R~ WN R

201
202
203
204
205

9.98361147989035
9.96559296019223
9.94598894074751
9.92484233950876
9.90219457402178

1.00047864580961
1.00047026644202
1.00046172864065
1.00012975635753

1.00001546608645

9.92819343243907
9.85721648952338
9.78705715319703
9.71770355613636
9.64914397858768

0.999581568887345
0.999595088981525
0.999608271436251
0.999877171237029
0.999987811938773

9.97188534311147
9.94292447196205
9.91314087916256
9.88255724745141
9.85119549140577

1.05015863755837
1.02743350011189
1.00540907952986
1.00019733298933
1.00001254139761

9.81908863135204
9.64014655402360
9.46314531337088
9.28805739204770
9.11485616807417

0.999952167633982
0.999953578214968
0.999954965358929
0.999962898727956
0.999995569409186

CPU time in seconds

0.855695

Table 3: Example 4.2: Numerical study of Algorithm 2 in [30] and uy = u; = [10, 10, 10, 10]

Iter (n)

u;

u;

us

Uy

TV~ WN R

251
252
253
254
255

9.98722793812391
9.97338838960988
9.95851156075490
9.94262261197368
9.92574466957898

1.00030003847792
1.00029584155592

1.00029157082422
1.00028691694860
1.00002587972667

9.94270273066136
9.88584013385139
9.82945581779816
9.77356365065526
9.71816759658748

0.999736275445436
0.999743150158623

0.999749876898552
0.999756697601778
0.999978288670545

9.97776276401056
9.95494507925562
9.93157589425467
9.90767370103466
9.88325332674730

1.05436872725549
1.03596626487418
1.01801890409748
1.00053744537069
1.00002339132901

9.85566851062606
9.71235360979276
9.57016568769825
9.42914060818516
9.28928956648529

0.999970209316682
0.999970912238813
0.999971605820891
0.999972241456658
0.999992867605767

CPU time in seconds

1.249835

Table 4: Example 4.2: Numerical study of Algorithm 1 and v, = u; = [10, 10, 10, 10]"

Iter (n)

uy

uz

usz

Uy

U~ WN P

61
62
63
64
65

9.37670552615082

8.52638444520784
7.58413493042808
6.57691856280682
5.57239744678987

1.00001337267023
1.00001315800345
1.00001295008998
1.00001274863514
1.00001255335012

9.10443831204158
8.23128879399038
7.48686319918374
6.81862432209299
6.15234000819178

0.999994469763627
0.999994559118552

0.999994645650194
0.999994729478648
0.999994810724267

9.36964477485132
8.59942980024287
7.80372663027284
6.98748408521933
6.18334105148049

1.00000204591750
1.00000201212000
1.00000197941728
1.00000194775792
1.00000191709497

7.69617180087272
5.49342285882117
3.69657294857490
2.20234830742012
1.00000000023325

0.999995725911049

0.999995794483464
0.999995860897291
0.999995925248847
0.999995987630650

CPU time in seconds

0.314926
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Table 5: Example 4.2: Numerical study of Algorithm 1 in [30] and up = u; = [10, 20, 30, 40T

Iter (n)

u

uz

us

Uy

TR WN R

197
198
199
200
201

9.78664139597796
9.77332934751711

9.75825697187861
9.74150081629604
9.72310030216692

1.00048025798169
1.00047191338477
1.00046340300415
1.00020595114443
1.00002447915305

9.98228168073093
9.90702272489978
9.83416650992724
9.76222498224926
9.69112689206027

0.999578895451456
0.999592479755323
0.999605728706010
0.999806645776126
0.999980397285792

9.87885904329583
9.85225062712764
9.82474676153713
9.79640746406505
9.76721402065162

1.05467043404065
1.03180677371631
1.00964711683154
1.00033555706235
1.00002042478806

10.0892362484029
9.90395699577937
9.72192297304630
9.54191824999558
9.36390890485064

0.999951889957855

0.999953305260853
0.999954696790168
0.999949570767266
0.999993060869452

CPU time in seconds

0.881941

Table 6: Example 4.2: Numerical study of Algorithm 2 in [30] and u, = u; = [10, 20, 30, 40]

Iter (n)

uy

uz

us

uy

TN WN R

242
243
244
245
246

9.83025060597279
9.81992710006697
9.80848143600201
9.78233470337380
9.76768277826138

1.00029928444065
1.00029507461118

1.00029079252463
1.00023582350263
1.00002121894907

10.0358052147562

9.97710497209799
9.91890607188431
9.80406450245295
9.74742537160893

0.999737529401567
0.999744379644890
0.999751081711158
0.999792488973834
0.999982547402636

10.0034760237284
9.98219090107187
9.96030964532451
9.91483504597404
9.89127177156160

1.05100492547889
1.03268544459699
1.01481953661443

1.00039177564360
1.00001822632328

10.2207136435240
10.0007357121574
9.85485114455071
9.56675568183706
9.42455480338020

0.999970337183295
0.999971038422410
0.999971730317870
0.999966689624691
0.999994139100956

CPU time in seconds

1.189327

Table 7: Example 4.2: Numerical study of Algorithm 1 and up = u; = [10, 20, 30, 40T

Iter (n)

uy

uz

usz

uy

TV RN WN R

55
56
57
58
59

6.67509751978401
6.43630940705222
5.94458706274812
5.24960461466410
4.41658766198459

1.00001098233484
1.00001080643637
1.00001063608454
1.00001047102102
1.00001031100328

9.87241104722208
8.66032301948886
7.60686837201340
6.68896087204211
5.87872668632781

0.999995701995743
0.999995771227658
0.999995838264122
0.999995903207959
0.999995966155667

8.35640921356371
7.77319817387846
7.17867219777068
6.48897590605557
5.73342763899655

1.00000127186919
1.00000125097444
1.00000123076045
1.00000121119448

1.00000119224589

11.8247271582227

8.88400040091734
6.42404535927948
4.37736060600273
2.70108842826606

0.999996467970852
0.999996524518845
0.999996579284439
0.999996632350608
0.999996683795258

CPU time in seconds

0.263761
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Table 8: Example 4.2: Numerical study of Algorithm 1 in [30] and up = u;, = [20, -20, 20, —20]"

DE GRUYTER

Iter (n)

uy

u;

us3

uy

TV~ WN R

142
143
144
145
146

9.43637888611869
9.33347176555781
9.23071813735838
9.12812589346156
9.02570718544946

1.00048363745252
1.00047536747374
1.00046692302671
1.00037962363168
1.00004244986050

0.618641745108960
1.00048608755193
1.08107393627969
1.15965756600495
1.23625759975003

0.999573210882307
0.999586931862881
0.999600317222453
0.999667326588165
0.999965200722495

9.69030238747761
9.60042497443019
9.51088663606224
9.42168479550455

9.33282259887709

1.06428375964232
1.04112574964123
1.01867841478562
1.00061920024033
1.00003621655791

0.941343723156194
0.998236042635461
1.00000006665870
1.00000007856569
1.00000006494615

0.999951300959709
0.999952725950025
0.999954127429914
0.999946401991037
0.999988355488326

CPU time in seconds

0.539990

Table 9: Example 4.2: Numerical study of Algorithm 2 in [30] and up = u; = [20, -20, 20, —20]"

Iter (n)

uy

uz

us

uy

TV~ WN R

181
182
183
184
185

9.60181164686455
9.51962929953982
9.43746967852944
9.35536521846522
9.27333589349051

1.00029611652815

1.00029185000921
1.00028752889062
1.00004073447076
1.00000375548836

0.594020576572148
0.998933043283026
1.06410902526139
1.12804558949596
1.19074084404862

0.999742707382947
0.999749442874438
0.999756054384634
0.999962515806045
0.999997097825945

9.80334231814436
9.73167079074873
9.66014764334785
9.58879942367075
9.51763991225471

1.03714858016492
1.01917216369700
1.00164302685500
1.00005288902746
1.00000290174109

0.849825795779310
0.998926526320852
0.999997316486094
0.999999994833832
1.00000000015374

0.999970866828849
0.999971561005902
0.999972245807354
0.999987696986777
0.999998920572749

CPU time in seconds

0.846270

Table 10: Example 4.2: Numerical study of Algorithm 1 and uy = u; = [20, -20, 20, -20]

Iter (n)

uy

u

us

Uy

TV~ WN P

49
50
51
52
53

5.91302584242504
5.11515304855251
4.44175286252904
3.78267512857499
3.17322385256513

1.00001367166987
1.00001345209473
1.00001323958262
1.00001303361761
1.00001283392546

- 2.53013202319150
1.05167987250724
1.44560459254135
1.65777433889948
1.76144714332220

0.999994310572133

0.999994402418620
0.999994491393242
0.999994577637339
0.999994661245350

7.88340509066295
7.12678420126625
6.47786278982089
5.83990979629541
5.24349607931747

1.00000215132574
1.00000211630632
1.00000208195699
1.00000204866350
1.00000201641107

0.0494017361391670
0.828266207803134
1.00000000063044
1.00000000152068
1.00000000031145

0.999995633661616
0.999995703696399
0.999995771535743
0.999995837280664
0.999995901021640

CPU time in seconds

0.315846
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