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Abstract: In this paper, we introduce a new algorithm for solving pseudomonotone variational inequalities
with a Lipschitz-type condition in a real Hilbert space. The algorithm is constructed around two algorithms:
the subgradient extragradient algorithm and the inertial algorithm. The proposed algorithm uses a new step
size rule based on local operator information rather than its Lipschitz constant or any other line search
scheme and functions without any knowledge of the Lipschitz constant of an operator. The strong con-
vergence of the algorithm is provided. To determine the computational performance of our algorithm, some
numerical results are presented.
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1 Introduction

This paper studies the problem of classic variational inequalities [1,2]. The variational inequality problem
(VIP) for a mapping � � �→: , which is formulated in the following way:

� � �∈ ⟨ ( ) − ⟩ ≥ ∀ ∈
∗ ∗ ∗q q v q vFind such that , 0, , (VIP)

where � is a nonempty, convex and closed subset of a real Hilbert space � and ⟨ ⟩. , . and ∥ ∥. represent an
inner product and the induced norm in �, respectively. Moreover, �, � are the sets of real numbers and
natural numbers, respectively. It is important to note that the problem (VIP) is equivalent to solve the
following problem:

� ��∈ = [ − ( )]
∗ ∗ ∗ ∗q q P q ζ qFind such that .

The concept of variational inequalities has been used as an important tool for covering a large number
of topics, i.e., physics, engineering, economics andoptimization theory. Thiswas introducedbyStampacchia [1]
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in 1964. This is a significantmathematical design that unifies several key topics of appliedmathematics, such
as thenetwork equilibriumproblem, thenecessary optimality conditions, the complementarity problems and
the systems of nonlinear equations (formore details [3–12]). On the other hand, the projection algorithms are
important to find the numerical solution of variational inequalities. Many experts have introduced and
considered many projection algorithms to study the variational inequality problems (see for more details
[13–25]) and others in [26–28]. Korpelevich [13] and Antipin [29] introduced the following extragradient
algorithm:
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Recently, the subgradient extragradient algorithm was provided by Censor et al. [15] for solving the
problem (VIP) in a real Hilbert space. Their algorithm takes the form
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where

� � �= { ∈ ⟨ − ( ) − − ⟩ ≤ }z u ζ u v z v: , 0 .n n n n n

It is important to note that the above well-established algorithm carries two serious drawbacks, the first
is the fixed constant step size that requires the knowledge or approximation of the Lipschitz constant of the
relevant operator and it only converges weakly in Hilbert spaces. From the computational point of view, it
might be problematic to use fixed step size, and hence the convergence rate and usefulness of the algorithm
could be affected.

Yang et al. [30] proposed two explicit subgradient extragradient methods to solve monotone variational
inequalities. An iterative sequence { }un was generated in the following way:

Algorithm A.
(i) Let �∈u0 , ∈ ( )μ 0, 1 and >ζ 00 .
(ii) Compute iterative sequence { }un for ≥n 1 as follows:

�

�

�

�

= [ − ( )]

= [ − ( )]
+

v P u ζ u
u P u ζ v

,
,

n n n n

n n n n1 n









(3)

where

� � �= { ∈ ⟨ − ( ) − − ⟩ ≤ }z u ζ u v z v: , 0 .n n n n n n

(iii) Update the step size rule in the following way:
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If =u vn n, then stop. Otherwise, set ≔ +n n 1 and return to Step (ii).

Algorithm B.
(i) Let �∈u0 , ∈ ( )μ 0, 1 , >ζ 00 and a sequence ⊂ ( )ϕ 0, 1n with →ϕ 0n and ∑ = +∞

=

∞ ϕn n1 .

(ii) Compute iterative sequence { }un for ≥n 1 as follows:
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where

� � �= { ∈ ⟨ − ( ) − − ⟩ ≤ }z u ζ u v z v: , 0 .n n n n n n

(iii) Update the step size rule in the following way:
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If =u vn n, then stop. Otherwise, set ≔ +n n 1 and return to Step (ii).

The main objective of this paper is to set up an inertial-type algorithm that is used to improve the con-
vergence rate of the iterative sequence. Such algorithms have been previously established due to the
oscillator equation with a damping and conservative force restoration. This second-order dynamical system
is called a heavy friction ball, which was originally studied by Polyak in [31]. The main feature of inertial-
type algorithms is that they can use the two previous iterations to obtain the next iteration. Numerical
results confirm that inertial terms normally improve the performance of the algorithm in terms of the
number of iterations and elapsed time in this context.

So there is an important question:

“Is it possible to establish a new inertial-like strongly convergent extragradient-type algorithm with a monotone variable step
size rule?”

In this research, we provide a positive answer to the above question, i.e., the gradient algorithm indeed
establishes a strong convergence sequence by maintaining variable step size rule for solving problem (VIP)
combined with pseudomonotone mappings. Motivated by the works of Censor et al. [15] and Polyak [31],
we introduce a new inertial extragradient-type algorithm to figure out the problem (VIP) in the situation of
an infinite-dimensional real Hilbert space.

Specifically, our key contributions to this paper are as follows:
⊙ We introduce an inertial subgradient extragradient algorithm with the use of a variable monotone step

size rule independent of the Lipschitz constant to figure out pseudo-monotone VIPs.
⊙ We also provide numerical experiments corresponding to the proposed algorithms for the verification

of theoretical findings and compare them with the results in Algorithm 1 in [30] and Algorithm 2 in [30].
Our numerical data have shown that the proposed algorithms are useful and performed better compared
to the existing ones in most situations.

The rest of the paper is arranged as follows: Section 2 consists of the necessary definitions and funda-
mental lemmas needed in the article. Section 3 consists of an inertial-type iterative scheme and conver-
gence analysis theorem. Section 4 provides numerical results to explain the performance of the new
algorithm and to compare them with other existing algorithms.

2 Preliminaries

In this section of the text, we have written a number of significant identities and related lemmas and
definitions.

The metric projection � ( )P v1 of �∈v1 is defined by

�� ( ) = {∥ − ∥ ∈ }P v v v varg min : .1 1 2 2

Next, we list some of the important properties of the projection mapping.
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Lemma 2.1. [32] Suppose that � �� →P : is a metric projection. Then, we have
(i) �= ( )v P v3 1 if and only if

�⟨ − − ⟩ ≤ ∀ ∈v v v v v, 0, ,1 3 2 3 2

(ii)

� �� �∥ − ( )∥ + ∥ ( ) − ∥ ≤ ∥ − ∥ ∈ ∈v P v P v v v v v v, , ,1 2
2

2 2
2

1 2
2

1 2

(iii)
� ��∥ − ( )∥ ≤ ∥ − ∥ ∈ ∈v P v v v v v, , .1 1 1 2 2 1

Lemma 2.2. [33] Let { } ⊂ [ +∞)p 0,n be a sequence satisfying the following inequality:

�≤ ( − ) + ∀ ∈
+

p q p q r n1 , .n n n n n1

Furthermore, let { } ⊂ ( )q 0, 1n and �{ } ⊂rn be two sequences such that

∑= = +∞ ≤

→+∞

=
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q q and rlim 0, lim sup 0.
n

n
n

n
n

n
1

Then, =
→+∞

plim 0n n .

Lemma 2.3. [34] Suppose that { }pn is a sequence of real numbers such that there exists a subsequence { }ni of
{ }n such that

�< ∀ ∈
+

p p i, .n ni i 1

Then, there exists a nondecreasing sequence �⊂mk such that → +∞mk as → +∞k , and satisfies the follow-
ing conditions for numbers �∈k :

≤ ≤
+ +

p p and p p .m m k mk k k1 1

Indeed, = { ≤ ≤ }
+

m j k p pmax :k j j 1 .

Next, we list some of the important identities that were used to prove the convergence analysis.

Lemma 2.4. [32] For any �∈v v,1 2 and �ℓ ∈ , the following inequalities hold:
(i)

∥ℓ + ( − ℓ) ∥ = ℓ∥ ∥ + ( − ℓ)∥ ∥ − ℓ( − ℓ)∥ − ∥v v v v v v1 1 1 ,1 2
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2

1
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Lemma 2.5. [35] Assume that � � �→: is a pseudomonotone and continuous mapping. Then, ∗q is
a solution of the problem (VIP) if and only if ∗q is a solution of the following problem:

� � �∈ ⟨ ( ) − ⟩ ≥ ∀ ∈Find u such that v v u v, 0, .
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3 Inertial two-step proximal-like algorithm and convergence
analysis

In this section, we introduce an inertial-type subgradient extragradient algorithm which incorporates
the new step size rule and the inertial term as well as provides both strong convergence theorems.
The following main result is outlined as follows:

Algorithm 1

Step 0: Let �∈
−

u u,1 0 , >α 0, ∈ ( )μ 0, 1 , >ζ 00 . Moreover, choose { } ⊂ ( )β 0, 1n satisfies the following

conditions:
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while = ∘ ( )ε βn n is a positive sequence, i.e., =
→+∞

lim 0n
ε
β

n

n
.

Step 2: Compute

��= ( − ( ))v P η ζ η .n n n n

If =η vn n, then STOP and vn is a solution. Otherwise, go to Step 3.
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Set = +n n 1 and go back to Step 1.

Lemma 3.1. A step size sequence { }ζn is monotonically decreasing with a lower bound { }ζmin ,μ
L 0 and con-

verges to >ζ 0.
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This implies that the sequence { }ζn has a lower bound { }ζmin ,μ
L 0 . Furthermore, there exists a real number

>ζ 0, such that =
→∞

ζ ζlimn n . □

In order to study the strong convergence, the following conditions are satisfied:
(A1) The solution set of problem (VIP) denoted by Ω is nonempty;
(A2) An operator � � �→: is said to be pseudomonotone, i.e.,

� � �⟨ ( ) − ⟩ ≥ ⇒ ⟨ ( ) − ⟩ ≤ ∀ ∈v v v v v v v v, 0 , 0, , ;1 2 1 2 1 2 1 2

(A3) An operator � � �→: is said to be Lipschitz continuous with constant >L 0, i.e., there exists >L 0
such that

� � �∥ ( ) − ( )∥ ≤ ∥ − ∥ ∀ ∈v v L v v v v, , ;1 2 1 2 1 2

(A4) An operator � � �→: is said to be sequentially weakly continuous, i.e., �{ ( )}un converges weakly to
�( )u for every sequence { }un converges weakly to u.

Lemma 3.2. Suppose that an operator � � �→: satisfies the conditions (�1)–(�4). For a given ∈ ≠ ∅
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Thus, we have
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Combining expressions (7) and (9), we obtain
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Since ∗q is the solution of problem (VIP), we have

� �⟨ ( ) − ⟩ ≥ ∈
∗ ∗q v q v, 0, for all .

Due to the pseudomonotonicity of � on � , we get
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Combining expressions (10) and (11), we get

�

�

�

∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ + ⟨ ( ) − ⟩

≤ ∥ − ∥ − ∥ − + − ∥ + ⟨ ( ) − ⟩

≤ ∥ − ∥ − ∥ − ∥ − ∥ − ∥ + ⟨ − ( ) − − ⟩

+

∗ ∗

+ +

∗

+ +

∗

+ +

u q η q η u ζ v v u
η q η v v u ζ v v u
η q η v v u η ζ v v u v

2 ,
2 ,

2 , .

n n n n n n n n

n n n n n n n n n

n n n n n n n n n n n

1
2 2

1
2

1
2

1
2

1
2 2

1
2

1

(12)

By the use of ��= [ − ( )]
+

u P η ζ vn n n n1 n and by the definition of
+

ζn 1, we have

� � � �

� �

⟨ − ( ) − − ⟩ = ⟨ − ( ) − − ⟩ + ⟨ ( ) − ( ) − ⟩

= ⟨ ( ) − ( ) − ⟩

≤ ∥ − ∥ + ∥ − ∥

+ + +

+

+
+

+ +

+

η ζ v v u v η ζ η v u v ζ η v u v
ζ

ζ
ζ η v u v

μζ
ζ

η v
μζ
ζ

u v

2 , 2 , 2 ,

2 ,

.

n n n n n n n n n n n n n n n n n

n

n
n n n n n

n

n
n n

n

n
n n

1 1 1

1
1 1

1

2

1
1

2

(13)

Combining expressions (12) and (13), we obtain
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Theorem 3.3. Let { }un be a sequence generated by Algorithm 1 and satisfy the conditions (�1)–(�4). Then,
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Combining expressions (16) and (19), we obtain
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∗ ∗ ∗

∗ ∗

∗

η q β u q β M M β β u q
u q β β M M β u q
u q β M

1 2 1
2 1

,

n n n n n n n

n n n n n

n n

2 2 2 2
1
2

1

2
1
2

1
2

2

(21)

where

+ ( − )∥ − ∥ ≤
∗β M M β u q M2 1 ,n n n1

2
1 2

for some >M 0.2 By using the expressions (14) with (21), we have

∥ − ∥ ≤ ∥ − ∥ + − − ∥ − ∥ − − ∥ − ∥
+

∗ ∗

+ +

+
u q u q β M

μζ
ζ

η v
μζ
ζ

u v1 1 .n n n
n

n
n n

n

n
n n1

2 2
2

1

2

1
1

2

















 (22)

The rest of the proof will be divided into the following two parts:

Case 1: Consider that a fixed number �∈n2 ( ≥n n2 1) such that

∥ − ∥ ≤ ∥ − ∥ ∀ ≥
+

∗ ∗u q u q n n, .n n1 2 (23)

This implies that ∥ − ∥
→+∞

∗u qlimn n exists and let ∥ − ∥ =
→+∞

∗u q llimn n for some ≥l 0. From the expression
(22), we have

− ∥ − ∥ + − ∥ − ∥ ≤ ∥ − ∥ + − ∥ − ∥

+ +

+

∗

+

∗

μζ
ζ

η v
μζ
ζ

u v u q β M u q1 1 .n

n
n n

n

n
n n n n n

1

2

1
1

2 2
2 1

2

















 (24)

Due to the existence of a limit of sequence ∥ − ∥
∗u qn and →β 0n , we deduce that

∥ − ∥ → ∥ − ∥ → → +∞
+

η v u v n0 and 0 as .n n n n1 (25)

By the use of expression (25), we have

∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ =

→+∞

+

→+∞ →+∞

+
η u η v v ulim lim lim 0.

n n n
n n n

n
n n1 1 (26)

Next, we have compute

∥ − ∥ = ∥ + ( − ) − [ + ( − )] − ∥

≤ ∥ − ∥ + ∥ ∥ + ∥ − ∥

= ∥ − ∥ + ∥ ∥ + ∥ − ∥ ⟶ → ∞

− −

− −

− −

η u u α u u β u α u u u
α u u β u α β u u

β α
β

u u β u β α
β

u u n0 as .

n n n n n n n n n n n n

n n n n n n n n n

n
n

n
n n n n n

n

n
n n

1 1

1 1

1
2

1

(27)

The following provides that

∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ =

→+∞

+

→+∞ →+∞

+
u u u η η ulim lim lim 0.

n
n n

n
n n n n n1 1 (28)

The above expression guarantees that the sequences { }ηn and { }vn are also bounded. By the use of reflexivity
of � and the boundedness of { }un guarantees that there exists a subsequence { }unk such that �{ } ⇀ ∈u ûnk

as → +∞k . Next, we have to prove that ∈û Ω.
It is given that

��[ ( )]= −v P η ζ η ,n n n nk k k
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that is equivalent to

� �− ( ) − − ≤ ∀ ∈η ζ η v v v v, 0, .n n n n nk k k k (29)

The inequality described above implies that

� �− − ≤ ( ) − ∀ ∈η v v v ζ η v v v, , , .n n n n n nk k k k k (30)

Furthermore, we obtain

� � �⟨ − − ⟩ + ( ) − ≤ ( ) − ∀ ∈

ζ
η v v v η v η η v η v1 , , , , .

n
n n n n n n n nk k k k k k k k (31)

The sequence �{ ( )}ηnk
is bounded due to the boundedness of sequence { }ηnk

. By the use of ∥ − ∥
→∞

η vlimk n nk k

= 0 and → ∞k in (31), we obtain

� �( ) − ≥ ∀ ∈

→∞

η v η vlim inf , 0, .
k n nk k (32)

Furthermore, we have

� � � � �( ) − = ( ) − ( ) − + ( ) − + ( ) −v v v v η v η η v η v η v, , , , .n n n n n n n n n nk k k k k k k k k k (33)

Since ∥ − ∥ =
→∞

η vlim 0k n nk k and � is L-Lipschitz continuous. Thus, we have

� �∥ ( ) − ( )∥ =

→∞

η vlim 0.
k n nk k (34)

Combining expressions (33) and (34), we obtain

� �( ) − ≥ ∀ ∈

→∞

v v v vlim inf , 0, .
k

n nk k (35)

Consider a sequence of positive numbers { }εk that is decreasing and converges to zero. For each k, we denote
mk by the smallest positive integer such that

� ( ) − + ≥ ∀ ≥η v η ε i m, 0, .n n k ki i (36)

It is obvious that { }mk is an increasing sequence because { }εk is a decreasing sequence.

Case A: Let there exists a subsequence ηnmkj












of sequence ηnmk
















such that � =η 0nmkj













 (∀ j). Consider that

→ ∞j , we obtain

� �⟨ ( ) − ⟩ = ( ) − =

→∞

u v u η v uˆ , ˆ lim , ˆ 0.
j nmkj

(37)

Hence �∈û , therefore we obtain ∈û Ω.

Case B: If there exists �∈n0 such that for all ≥n nm 0k , �( ) ≠η 0nmk
. Suppose that

�

�
=

( )

∥ ( )∥

∀ ≥

η

η
n nΔ , .n

n

n
m2 0mk

mk

mk

k (38)

On the basis of the above definition, we obtain

� ( ) = ∀ ≥η n n, Δ 1, .n n m 0mk mk k (39)

By using expressions (36) and (39) for all ≥n nm 0k , we have

� ( ) + − ≥η v ε η, Δ 0.n k n nmk mk mk
(40)
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Due to the pseudomonotonicity of � for ≥n nm 0k , we have

� ( + ) + − ≥v ε v ε ηΔ , Δ 0.k n k n nmk mk mk
(41)

For all ≥n nm 0k , we have

� � � �( ) − ≥ ( ) − ( + ) + − − ( )v v η v v ε v ε η ε v, Δ , Δ , Δ .n k n k n n k nmk mk mk mk mk
(42)

Since { }ηnk
weakly converges to �∈û and � is sequentially weakly continuous, it implies that �{ ( )}ηnk

weakly converges to �( )û . Suppose that �( ) ≠û 0, we have

� �∥ ( )∥ ≤ ( )

→∞

u ηˆ lim inf .
k nk (43)

Since { } { }⊂η ηn nmk k
and =

→∞
εlim 0k k , we have

� �( )

≤ ∥ ∥ =

∥ ∥

≤

∥ ( )∥

=

→∞ →∞

ε ε
η u

0 lim Δ lim 0
ˆ

0.
k

k n
k

k

n
mk

mk

(44)

Next, considering → ∞k in (42), we obtain

� �⟨ ( ) − ⟩ ≥ ∀ ∈v v u v, ˆ 0, . (45)

By the use of Minty Lemma 2.5, we infer ∈û Ω. It is given that = ( )
∗q P 0Ω and by using Lemma 2.1(ii), we

have

⟨ − − ⟩ ≤ ∀ ∈
∗ ∗q v q v0 , 0, Ω. (46)

Next, we have to

⟨ − ⟩ = ⟨ − ⟩ = ⟨ − ⟩ ≤

→+∞

∗ ∗

→+∞

∗ ∗ ∗ ∗q q u q q u q q ulim sup , lim , , ˆ 0.
n

n
k

nk (47)

Since ‖ − ‖ =
→+∞ +

u ulim 0n n n1 , it gives that

⟨ − ⟩ ≤ ⟨ − ⟩ + ⟨ − ⟩ ≤

→+∞

∗ ∗

+

→+∞

∗ ∗

→+∞

∗

+
q q u q q u q u ulim sup , lim sup , lim sup , 0.

n
n

n
n

n
n n1 1 (48)

Taking into account expression (18), we have

‖ − ‖ = ‖ + ( − ) − − ( − ) − ‖

= ‖( − )( − ) + ( − ) ( − ) − ‖

≤ ‖( − )( − ) + ( − ) ( − )‖ + ⟨− − ⟩

= ( − ) ‖ − ‖ + ( − ) ‖ − ‖

+ ( − ) ‖ − ‖‖ − ‖ + ⟨− − ⟩ + ⟨− − ⟩

≤ ( − )‖ − ‖ + ‖ − ‖ + ( − )‖ − ‖‖ − ‖

+ ‖ ‖‖ − ‖ + ⟨− − ⟩

= ( − )‖ − ‖ + ‖ − ‖ ‖ − ‖

+ ( − )‖ − ‖ ‖ − ‖ + ‖ ‖‖ − ‖ + ⟨ − ⟩

∗

− −

∗

∗

−

∗

∗

−

∗ ∗

∗

−

∗

−

∗

+

∗

+

∗

∗

−

∗

−

∗

+

∗

+

∗

∗

− −

∗

−

∗

+

∗ ∗

+

η q u α u u β u α β u u q
β u q β α u u β q
β u q β α u u β q η q

β u q β α u u
α β u q u u β q η u β q u q

β u q α u u α β u q u u
β q η u β q u q

β u q β α u u α
β

u u

β u q α
β

u u q η u q q u

1 1
1 1 2 ,

1 1
2 1 2 , 2 ,

1 2 1
2 2 ,

1

2 1 2 2 , .

n n n n n n n n n n n

n n n n n n n

n n n n n n n n

n n n n n n

n n n n n n n n n n

n n n n n n n n n n

n n n n n

n n n n n n
n

n
n n

n n
n

n
n n n n n

2
1 1

2

1
2

1
2

2 2 2 2
1

2

2
1 1 1

2 2
1

2
1

1 1

2
1 1

1 1 1











(49)

From expressions (16) and (49), we obtain

‖ − ‖ ≤ ( − )‖ − ‖ + ‖ − ‖ ‖ − ‖

+ ( − )‖ − ‖ ‖ − ‖ + ‖ ‖‖ − ‖ + ⟨ − ⟩

+

∗ ∗

− −

∗

−

∗

+

∗ ∗

+

u q β u q β α u u α
β

u u

β u q α
β

u u q η u q q u

1

2 1 2 2 , .

n n n n n n n
n

n
n n

n n
n

n
n n n n n

1
2 2

1 1

1 1 1











(50)

By using expressions (26), (48), (50) and Lemma 2.2 together implies that ‖ − ‖ =
→+∞

∗u qlim 0n n .
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Case 2: Consider that there exists a subsequence { }ni of { }n such that

�∥ − ∥ ≤ ∥ − ∥ ∀ ∈
∗ ∗

+

u q u q i, .n ni i 1

By using Lemma 2.3, there exists a sequence �{ } ⊂mk as { } → +∞mk such that

�∥ − ∥ ≤ ∥ − ∥ ∥ − ∥ ≤ ∥ − ∥ ∈
∗ ∗ ∗ ∗

+ +

u q u q u q u q kand , for all .m m k mk k k1 1 (51)

Similar to Case 1, the relation (24) implies that

− ∥ − ∥ + − ∥ − ∥ ≤ ∥ − ∥ + − ∥ − ∥

+ +

+

∗

+

∗

μζ
ζ

η v
μζ
ζ

u v u q β M u q1 1 .m

m
m m

m

m
m m m m m

1

2

1
1

2 2
2 1

2k

k
k k

k

k
k k k k k



















 (52)

Due to →β 0mk
, we can conclude the following:

∥ − ∥ = ∥ − ∥ =

→+∞ →+∞

+
η v u vlim lim 0.

k m m
k

m m1k k k k (53)

The above implies that

∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ =

→+∞ →+∞ →+∞

+ +

u η u v v ηlim lim lim 0.
k

m m k
m m

k
m mk k k k k k1 1 (54)

Next, we have to compute

∥ − ∥ = + ( − ) − [ + ( − )] −

≤ ∥ − ∥ + ∥ ∥ + ∥ − ∥

= ∥ − ∥ + ∥ ∥ + ∥ − ∥ ⟶

− −

− −

− −

η u u α u u β u α u u u
α u u β u α β u u

β
α
β

u u β u β
α
β

u u 0.

m m m m m m m m m m m m

m m m m m m m m m

m
m

m
m m m m m

m

m
m m

1 1

1 1

1
2

1

k k k k k k k k k k k k

k k k k k k k k k

k
k

k

k k k k k
k

k

k k

(55)

This leads that

∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ =

→+∞

+

→+∞ →+∞

+
u u u η η ulim lim lim 0.

k
m m

k
m m k m m1 1k k k k k k (56)

By using the same argument as in Case 1, we have

⟨ − ⟩ ≤

→+∞

∗ ∗

+
q q ulim sup , 0.

k
m 1k (57)

Combining expressions (50) and (51), we obtain

‖ − ‖ ≤ ( − )‖ − ‖ + ‖ − ‖ ‖ − ‖

+ ( − )‖ − ‖ ‖ − ‖ + ‖ ‖‖ − ‖ + ⟨ − ⟩

≤ ( − )‖ − ‖ + ‖ − ‖ ‖ − ‖

+ ( − )‖ − ‖ ‖ − ‖ + ‖ ‖‖ − ‖ + ⟨ − ⟩

+

∗ ∗
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∗

−

∗

+

∗ ∗

+
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∗

−

∗

+
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+

+

u q β u q β α u u
α
β

u u

β u q
α
β

u u q η u q q u

β u q β α u u
α
β
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β u q
α
β

u u q η u q q u

1

2 1 2 2 ,

1

2 1 2 2 , .
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m

m
m m
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m

m
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m

m
m m
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m

m
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1
2 2

1 1

1 1 1

2
1 1

1 1 1

k k k k k k k
k

k

k k

k k
k

k

k k k k k

k k k k k k
k

k

k k

k k
k

k

k k k k k

1

























(58)

This implies that

‖ − ‖ ≤ ‖ − ‖ ‖ − ‖

+ ( − )‖ − ‖ ‖ − ‖ + ‖ ‖‖ − ‖ + ⟨ − ⟩

+

∗

− −

∗

−

∗

+

∗ ∗

+

u q α u u
α
β

u u

β u q
α
β

u u q η u q q u2 1 2 2 , .

m m m m
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m
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m
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1
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1 1

1 1 1

k k k k
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k

k k

k k
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k

k k k k k













(59)
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Since →β 0mk
and ‖ − ‖

∗u qmk is a bounded, (57) and (59) imply that

∥ − ∥ → → +∞
+

∗u q k0, as .m 1
2

k (60)

This means that

∥ − ∥ ≤ ∥ − ∥ ≤

→+∞

∗

→+∞

+

∗u q u qlim lim 0.
n

k
n

m
2

1
2

k (61)

As a consequence →
∗u qn . This completes the proof of the theorem. □

4 Numerical illustrations

This section examines four numerical experiments to show the efficacy of the proposed algorithms. Any of
these numerical experiments provide a detailed understanding of how better control parameters can be
chosen. Some of them show the advantages of the proposed algorithms compared to the existing ones in
the literature.

Example 4.1. First consider the HpHard problem that is considered from [36]. Let � �� →: N N be an
operator which is defined by

�( ) = +u Mu q,

where �∈q N and

= + +M AA B D,T

where A is an ×N N matrix, B is an ×N N skew-symmetric matrix and D is an ×N N positive definite
diagonal matrix. The set � is taken in the following way:

�� = { ∈ − ≤ ≤ }u u: 10 10 .N
i

It is clear that � is monotone and Lipschitz continuous through = ∥ ∥L M . The control condition is taken as
follows:
(i) Algorithm 1 in [30] (shortly, Alg.1): =ζ 0.200 , =μ 0.55.
(ii) Algorithm 2 in [30] (shortly, Alg.2): =ζ 0.200 , =μ 0.55, =

( + )

ϕn n
1

100 2 .

(iii) Algorithm 1 (shortly, M.Alg.1): =ζ 0.200 , =μ 0.55, =α 0.66, =
( + )

εn n
1

1 2 , =
( + )

βn n
1

100 2 .

During this experiment, the initial point is = = ( … )u u 1, 1, ,10 1 and = ∥ − ∥ ≤
−D η v 10n n n

4. The numerical
results of these algorithms are shown in Figures 1–4 (Table 1).

Table 1: Numerical data for Figures 1–4

Algo.name Algorithm 1 in [30] Algorithm 2 in [30] Algorithm 1

N iter. time iter. time iter. time

5 41 0.223457 55 0.279106 14 0.079261
10 56 0.251080 60 0.236725 23 0.094484
20 390 2.016970 260 1.426439 64 0.516909
50 539 3.373166 607 5.546712 149 0.660777
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Figure 2: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking =N 10.
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Figure 3: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking =N 20.
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Figure 1: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking =N 5.
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Example 4.2. For second example, consider the quadratic fractional programming problem in the following
form [37]:

��

( ) =

+ +

+

∈ = { ∈ + > }

f u u Qu a u a
b u b

u u b u b

min ,

subject to : 0 ,

T T

T

T

0

0
4

0









where

=

−

− −

−

=

−

−

= = − =Q a b a b
5 1 2 0
1 5 1 3

2 1 3 0
0 3 0 5

,
1
2
2

1

,

2
1
1
0

, 2, and 4.0 0

















































It is easy to verify thatQ is symmetric and positive definite on �4 and consequently f is pseudo-convex on �.
Hence, ∇f is pseudo-monotone. Using the quotient rule, we obtain

∇ ( ) =

( + )( + ) − ( + + )

( + )

f u b u b Qu a b u Q a u a
b u b

2 .
T T T

T
0 0

0
2 (62)

In this point of view, we can set � = ∇f in Theorem 3.3. We minimize f over �� = { ∈ ≤ ≤u u: 1 10,i
4

= }i 1, 2, 3, 4 . This problem has a unique solution �= ( ) ∈
∗q 1, 1, 1, 1 T . The control condition is taken as

follows:
(i) Algorithm 1 in [30] (shortly, Alg.1): =ζ 0.250 , =μ 0.35.
(ii) Algorithm 2 in [30] (shortly, Alg.2): =ζ 0.250 , =μ 0.35, =

( + )

ϕn n
1

100 2 .

(iii) Algorithm 1 (shortly, M.Alg.1): =ζ 0.250 , =μ 0.35, =α 0.66, =

( + )

εn n
1

1 2 , =
( + )

βn n
1

2 .

During this experiment, the initial points are different and = ∥ − ∥ ≤
−D η v 10n n n

4. The numerical results of
these algorithms are shown in Tables 2–10.
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Figure 4: Numerical comparison of Algorithm 1 with Algorithm 1 in [30] and Algorithm 2 in [30] taking =N 50.
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Table 4: Example 4.2: Numerical study of Algorithm 1 and = = [ ]u u 10, 10, 10, 10 T
0 1

Iter (n) u1 u2 u3 u4

1 9.37670552615082 9.10443831204158 9.36964477485132 7.69617180087272
2 8.52638444520784 8.23128879399038 8.59942980024287 5.49342285882117
3 7.58413493042808 7.48686319918374 7.80372663027284 3.69657294857490
4 6.57691856280682 6.81862432209299 6.98748408521933 2.20234830742012
5 5.57239744678987 6.15234000819178 6.18334105148049 1.00000000023325

⋮ ⋮ ⋮ ⋮ ⋮

61 1.00001337267023 0.999994469763627 1.00000204591750 0.999995725911049
62 1.00001315800345 0.999994559118552 1.00000201212000 0.999995794483464
63 1.00001295008998 0.999994645650194 1.00000197941728 0.999995860897291
64 1.00001274863514 0.999994729478648 1.00000194775792 0.999995925248847
65 1.00001255335012 0.999994810724267 1.00000191709497 0.999995987630650

CPU time in seconds 0.314926

Table 3: Example 4.2: Numerical study of Algorithm 2 in [30] and = = [ ]u u 10, 10, 10, 10 T
0 1

Iter (n) u1 u2 u3 u4

1 9.98722793812391 9.94270273066136 9.97776276401056 9.85566851062606
2 9.97338838960988 9.88584013385139 9.95494507925562 9.71235360979276
3 9.95851156075490 9.82945581779816 9.93157589425467 9.57016568769825
4 9.94262261197368 9.77356365065526 9.90767370103466 9.42914060818516
5 9.92574466957898 9.71816759658748 9.88325332674730 9.28928956648529

⋮ ⋮ ⋮ ⋮ ⋮

251 1.00030003847792 0.999736275445436 1.05436872725549 0.999970209316682
252 1.00029584155592 0.999743150158623 1.03596626487418 0.999970912238813
253 1.00029157082422 0.999749876898552 1.01801890409748 0.999971605820891
254 1.00028691694860 0.999756697601778 1.00053744537069 0.999972241456658
255 1.00002587972667 0.999978288670545 1.00002339132901 0.999992867605767

CPU time in seconds 1.249835

Table 2: Example 4.2: Numerical study of Algorithm 1 in [30] and = = [ ]u u 10, 10, 10, 10 T
0 1

Iter (n) u1 u2 u3 u4

1 9.98361147989035 9.92819343243907 9.97188534311147 9.81908863135204
2 9.96559296019223 9.85721648952338 9.94292447196205 9.64014655402360
3 9.94598894074751 9.78705715319703 9.91314087916256 9.46314531337088
4 9.92484233950876 9.71770355613636 9.88255724745141 9.28805739204770
5 9.90219457402178 9.64914397858768 9.85119549140577 9.11485616807417

⋮ ⋮ ⋮ ⋮ ⋮

201 1.00047864580961 0.999581568887345 1.05015863755837 0.999952167633982
202 1.00047026644202 0.999595088981525 1.02743350011189 0.999953578214968
203 1.00046172864065 0.999608271436251 1.00540907952986 0.999954965358929
204 1.00012975635753 0.999877171237029 1.00019733298933 0.999962898727956
205 1.00001546608645 0.999987811938773 1.00001254139761 0.999995569409186

CPU time in seconds 0.855695
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Table 7: Example 4.2: Numerical study of Algorithm 1 and = = [ ]u u 10, 20, 30, 40 T
0 1

Iter (n) u1 u2 u3 u4

1 6.67509751978401 9.87241104722208 8.35640921356371 11.8247271582227
2 6.43630940705222 8.66032301948886 7.77319817387846 8.88400040091734
3 5.94458706274812 7.60686837201340 7.17867219777068 6.42404535927948
4 5.24960461466410 6.68896087204211 6.48897590605557 4.37736060600273
5 4.41658766198459 5.87872668632781 5.73342763899655 2.70108842826606

⋮ ⋮ ⋮ ⋮ ⋮

55 1.00001098233484 0.999995701995743 1.00000127186919 0.999996467970852
56 1.00001080643637 0.999995771227658 1.00000125097444 0.999996524518845
57 1.00001063608454 0.999995838264122 1.00000123076045 0.999996579284439
58 1.00001047102102 0.999995903207959 1.00000121119448 0.999996632350608
59 1.00001031100328 0.999995966155667 1.00000119224589 0.999996683795258

CPU time in seconds 0.263761

Table 5: Example 4.2: Numerical study of Algorithm 1 in [30] and = = [ ]u u 10, 20, 30, 40 T
0 1

Iter (n) u1 u2 u3 u4

1 9.78664139597796 9.98228168073093 9.87885904329583 10.0892362484029
2 9.77332934751711 9.90702272489978 9.85225062712764 9.90395699577937
3 9.75825697187861 9.83416650992724 9.82474676153713 9.72192297304630
4 9.74150081629604 9.76222498224926 9.79640746406505 9.54191824999558
5 9.72310030216692 9.69112689206027 9.76721402065162 9.36390890485064

⋮ ⋮ ⋮ ⋮ ⋮

197 1.00048025798169 0.999578895451456 1.05467043404065 0.999951889957855
198 1.00047191338477 0.999592479755323 1.03180677371631 0.999953305260853
199 1.00046340300415 0.999605728706010 1.00964711683154 0.999954696790168
200 1.00020595114443 0.999806645776126 1.00033555706235 0.999949570767266
201 1.00002447915305 0.999980397285792 1.00002042478806 0.999993060869452

CPU time in seconds 0.881941

Table 6: Example 4.2: Numerical study of Algorithm 2 in [30] and = = [ ]u u 10, 20, 30, 40 T
0 1

Iter (n) u1 u2 u3 u4

1 9.83025060597279 10.0358052147562 10.0034760237284 10.2207136435240
2 9.81992710006697 9.97710497209799 9.98219090107187 10.0007357121574
3 9.80848143600201 9.91890607188431 9.96030964532451 9.85485114455071
4 9.78233470337380 9.80406450245295 9.91483504597404 9.56675568183706
5 9.76768277826138 9.74742537160893 9.89127177156160 9.42455480338020

⋮ ⋮ ⋮ ⋮ ⋮

242 1.00029928444065 0.999737529401567 1.05100492547889 0.999970337183295
243 1.00029507461118 0.999744379644890 1.03268544459699 0.999971038422410
244 1.00029079252463 0.999751081711158 1.01481953661443 0.999971730317870
245 1.00023582350263 0.999792488973834 1.00039177564360 0.999966689624691
246 1.00002121894907 0.999982547402636 1.00001822632328 0.999994139100956

CPU time in seconds 1.189327
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Table 10: Example 4.2: Numerical study of Algorithm 1 and = = [ ]u u 20, −20, 20, −20 T
0 1

Iter (n) u1 u2 u3 u4

1 5.91302584242504 − 2.53013202319150 7.88340509066295 0.0494017361391670
2 5.11515304855251 1.05167987250724 7.12678420126625 0.828266207803134
3 4.44175286252904 1.44560459254135 6.47786278982089 1.00000000063044
4 3.78267512857499 1.65777433889948 5.83990979629541 1.00000000152068
5 3.17322385256513 1.76144714332220 5.24349607931747 1.00000000031145

⋮ ⋮ ⋮ ⋮ ⋮

49 1.00001367166987 0.999994310572133 1.00000215132574 0.999995633661616
50 1.00001345209473 0.999994402418620 1.00000211630632 0.999995703696399
51 1.00001323958262 0.999994491393242 1.00000208195699 0.999995771535743
52 1.00001303361761 0.999994577637339 1.00000204866350 0.999995837280664
53 1.00001283392546 0.999994661245350 1.00000201641107 0.999995901021640

CPU time in seconds 0.315846

Table 8: Example 4.2: Numerical study of Algorithm 1 in [30] and = = [ ]u u 20, −20, 20, −20 T
0 1

Iter (n) u1 u2 u3 u4

1 9.43637888611869 0.618641745108960 9.69030238747761 0.941343723156194
2 9.33347176555781 1.00048608755193 9.60042497443019 0.998236042635461
3 9.23071813735838 1.08107393627969 9.51088663606224 1.00000006665870
4 9.12812589346156 1.15965756600495 9.42168479550455 1.00000007856569
5 9.02570718544946 1.23625759975003 9.33282259887709 1.00000006494615

⋮ ⋮ ⋮ ⋮ ⋮

142 1.00048363745252 0.999573210882307 1.06428375964232 0.999951300959709
143 1.00047536747374 0.999586931862881 1.04112574964123 0.999952725950025
144 1.00046692302671 0.999600317222453 1.01867841478562 0.999954127429914
145 1.00037962363168 0.999667326588165 1.00061920024033 0.999946401991037
146 1.00004244986050 0.999965200722495 1.00003621655791 0.999988355488326

CPU time in seconds 0.539990

Table 9: Example 4.2: Numerical study of Algorithm 2 in [30] and = = [ ]u u 20, −20, 20, −20 T
0 1

Iter (n) u1 u2 u3 u4

1 9.60181164686455 0.594020576572148 9.80334231814436 0.849825795779310
2 9.51962929953982 0.998933043283026 9.73167079074873 0.998926526320852
3 9.43746967852944 1.06410902526139 9.66014764334785 0.999997316486094
4 9.35536521846522 1.12804558949596 9.58879942367075 0.999999994833832
5 9.27333589349051 1.19074084404862 9.51763991225471 1.00000000015374

⋮ ⋮ ⋮ ⋮ ⋮

181 1.00029611652815 0.999742707382947 1.03714858016492 0.999970866828849
182 1.00029185000921 0.999749442874438 1.01917216369700 0.999971561005902
183 1.00028752889062 0.999756054384634 1.00164302685500 0.999972245807354
184 1.00004073447076 0.999962515806045 1.00005288902746 0.999987696986777
185 1.00000375548836 0.999997097825945 1.00000290174109 0.999998920572749

CPU time in seconds 0.846270
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