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Abstract: The existence of a.e. monotonic solutions for functional quadratic Hammerstein integral
equations with the perturbation term is discussed in Orlicz spaces. We utilize the strategy of measure of
noncompactness related to the Darbo fixed point principle. As an application, we discuss the presence of
solution of the initial value problem with nonlocal conditions.
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1 Introduction

This article is dedicated to examine the presence of solutions for the functional quadratic integral
equation:
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It is helpful to find solutions in Orlicz spaces, when we deal with some problems involving strong
nonlinearities in which either the growth of the functions fi or the kernel K is not polynomial (of
exponential growth, for instance), then discontinuous solutions are expected. This is motivated by some
mathematical models in physics and statistical physics [1–3]. The considered thermodynamic problem
leads to the integral equation with exponential nonlinearities of the form

∫( ) + ( ) ( ) =x t k t s x s s, exp d 0.
I

Additionally, the continuous solutions for the quadratic integral equation of Chandrasekhar type [4,5]
seem to be inadequate for integral problems and lead to several restrictions on the considered functions,
then discontinuous solutions are imperative (see also some comments in [6]). Let us also note that the
solutions in Orlicz spaces are also studied in the case of partial differential equations (see [7,8] for
instance).

Recall that, we started in [6] to solve quadratic integral equations in Banach-Orlicz algebras. It means
that we have some additional properties of solutions, but with conditions stronger than that in this article.
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In [9,10], the authors extend the results in [6] to arbitrary Orlicz spaces which are not necessary Banach
algebras using different sets of assumptions controlling the intermediate spaces. The authors in [11]
discussed the quadratic functional-integral equations in Orlicz spaces Lφ for φ satisfying Δ2-condition. The
solutions for the Volterra integral equation in generalized Orlicz spaces (Musielak-Orlicz spaces) were
studied in [12], see also [13].

The presented class of Orlicz spaces permits us to include the case of Lebesgue spaces Lp for ≥p 1 as a
special case. The key point is to dominate optimally the acting, continuity, and monotonicity conditions
for the considered operators between the target spaces, which was not sufficiently utilized in previous
studies such as [14].

As an application of our results, we will discuss the solvability of the initial value problem (IVP)
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with nonlocal condition

( ) =   ( ) ∈ [ ) ∈ ( ] ≠y τ β y ζ τ ζ β, 0, 1 , 0, 1 , 1. (3)

The IVP for ordinary differential equations has applications in various regions, for example, in physics and
different areas of applied mathematics such as theory of elasticity (see [15–17]) and has the preferable
effect with nonlocal conditions than the initial or Darboux conditions.

The results displayed in this article are motivated by unifying some known results for particular cases of
equation (1) in one proof and will extend them to general functional quadratic Hammerstein integral equations
with linear perturbation of second kind in Orlicz spaces on the bounded interval. We use the strategy of
measure of noncompactness with the Darbo fixed point principle to prove the existence of a.e. monotonic
solution of the considered problems. The solution of IVP (2) with nonlocal condition (3) is also examined.

2 Preliminaries

Let � be the field of real numbers and I be an interval �[ ] ⊂a b, . Assume that ( ∥⋅∥)E, is an arbitrary
Banach space with zero element θ. The symbol Br stands for the closed ball centered at θ and with radius r
and we will recall the space by the notation ( )B Er . If X is a subset of E, then X̄ and Xconv denote the
closure and convex closure of X, respectively.

Next, we give some lemmas and theorems in the Orlicz spaces theory (cf. also [2,18]). Let M and N be
complementary N-functions, i.e., ( ) = ( | | − ( ))≥N x x y M xsupy 0 , where [ +∞) → [ +∞)M: 0, 0, is contin-
uous, convex and even with =→

( )lim 0x
M x

x0 , = ∞→∞
( )limx

M x
x and ( ) >M x 0 if >x 0 ( ( ) = ⇔ = )M u u0 0

([2, p. 9]). The Orlicz class, denoted by �M, consists of measurable functions �→x I: for which

∫( ) = ( ( )) < ∞ρ x M M x t t; d .
I

We shall denote by ( )L IM the Orlicz spaces of all measurable functions

�→x I: for which
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Let ( )E IM be the closure in ( )L IM of the set of all bounded functions. Note that �⊆ ⊆E LM M M .
If M satisfies the Δ2-condition, i.e., there exist   ≥ω t, 00 such that for ≥t t0, we have ( ) ≤ ( )M t ωM t2 ,

then we have �= =E LM M M.
Now, we present the definition of a regular measure of noncompactness: we indicate by � E the family

of all nonempty and bounded subsets of E and �E its subfamily consisting of all relatively compact
subsets.
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Definition 2.1. [19] A mapping �   →  [  ∞)μ: 0,E is called a measure of noncompactness in E if it satisfies
the following conditions:
(i) �( )  =     ⇔     ∈  μ X X0 E.
(ii)   ⊂   ⇒   ( )  ≤   ( )X Y μ X μ Y .
(iii) ( )  =   ( )  =   ( )μ X μ X μ X¯ conv .
(iv) �( )  =  | |  ( )   ∈  μ λX λ μ X λ, for .
(v) (   +   )  ≤   ( )  +   ( )μ X Y μ X μ Y .
(vi) ( ∪   )  =   { ( )   ( )}μ X Y μ X μ Ymax , .
(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E such that ⊂+X X ,n n1 = ⋯n 1, 2, 3, , and

( ) =→∞μ Xlim 0n n , then the set = ∩∞ =
∞X Xn n1 is nonempty.

It is well-known that the Hausdorff measure of noncompactness [19] is defined by:

( ) = { > ⊂ +  }β X r Y E X Y Binf 0: there exists a finite subset of such thatH r

for nonempty and bounded subsets of ⊂X E .
For any   >  ε 0, let c be a measure of equiintegrability of the set X in ( )L IM (cf. Definition 3.9 in [20]

or [21]):

{ }( )  =   ∥ ⋅ ∥
→ ≤ ∈

( )c X x χlim sup sup ,
ε D ε x X
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where χD denotes the characteristic function of a measurable subset ⊂D I .
It forms a regular measure of noncompactness if restricted to the family of subsets being compact in

measure in a class of regular ideal (or Orlicz) spaces (cf. [21]).

Lemma 2.1. [21, Theorem 1] Let X be a nonempty, bounded and compact in measure subset of an ideal
regular space Y. Then,

( ) = ( )β X c X .H

Theorem 2.1. [19] Let Q be a nonempty, bounded, closed and convex subset of E and let   →  V Q Q: be a
continuous transformation which is a contraction with respect to the measure of noncompactness μ, i.e., there
exists   ∈  [ )k 0, 1 such that

( ( ))  ≤   ( )μ V X kμ X ,

for any nonempty subset X of E. Then, V has at least one fixed point in the set Q and the set of all fixed points
for V is compact in E.

Definition 2.2. [22] Assume that a function � �  ×   →  f I: satisfies Carathéodory conditions, i.e., it is
measurable in t for any �  ∈  x and continuous in x for almost all   ∈  t I . Then, to every function ( )x t being
measurable on I we may assign the function

( )( )  =   ( ( ))   ∈  F x t f t x t t I, , .f

The operator Ff is said to be the superposition (Nemytskii) operator generated by the function f.

Lemma 2.2. [2, Theorem 17.5] Assume that a function � �  ×   →  f I: satisfies Carathéodory conditions.
Then,

( ( )) ≤ ( ) + ( )M f s x a s bM x, ,2 1

where ≥b 0 and ∈ ( )a L I1 , if and only if the superposition operator Ff acts from ( ) → ( )L I L IM M1 2 .
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Lemma 2.3. Assume that a function � �  ×   →  f I: satisfies Carathéodory conditions. The superposition
operator Ff maps ( ) → ( )E I E Iϕ ϕ is continuous and bounded if and only if

( ) ≤ ( ) + | |f s x m s b x, ,

where ≥b 0 and ∈ ( )m L Iϕ in which the N-function ( )ϕ x satisfies the Δ2-condition.

Proof. Putting the N-functions = =M M ϕ1 2 and ( ) = ( ( ))−m s ϕ a s1 , where ∈ ( )a L I1 in [2, Theorem 17.6]. □

Let = ( )S S I stand for the set of measurable (in Lebesgue sense) functions on I and let meas denote the
Lebesgue measure in � . Identifying the functions equal almost everywhere the set S furnished with the
metric

( ) = [ + { ( ) − ( ) ≥ }]
>

d x y a s x s y s a, inf meas :
a 0

be a complete metric space. Moreover, the convergence in measure on I is equivalent to the convergence
with respect to the metric d (cf. Proposition 2.14 in [20]). The compactness in such a space is called a
“compactness in measure”.

Lemma 2.4. [6] Let X be a bounded subset of ( )L IM . Assume that there is a family of measurable subsets
( ) ≤ ≤ −Ωl l b a0 of the interval I such that meas =Ω ll for every ∈ [ − ]l b a0, , and for every ∈x X , ( ) ≥ ( )x t x t ,1 2
( ∈ ∉ )t Ω t Ω,l l1 2 . Then, X is compact in measure in ( )L IM .

3 Main results

Rewrite equation (1) as
( ) = ( )( )x t B x t ,

where

( ) = + ( ) + ( ) ( )( ) = ( )( )B x h F x A x A x t F F KF x t,f f f g3 1 2

such that

∫( )( ) = ( ( )) = ( ( )) = ( ) = ( ) ( )F x t g t x t F f s x s i K x t K t s x s s, , , , 1, 2, 3 and , d .g f i

a

b

0i

Note that Lp-spaces can be treated as Orlicz spaces =L Ep Mp, where the N-function = | |Mp
x
p

p
satisfies

the Δ2-condition, which will be useful in the next theorem.
First, equation (1) shall be examined under the following assumptions.

Let + = 1p q
1 1 and assume that φ is an N-function which satisfies Δ2-condition and that:

(i)   ∈   ( )h E Iφ is nondecreasing a.e. on I;

(ii) � �  ×   →  g f I, :i satisfy Carathéodory conditions and ( ) ( )g t x f t x, , ,i are assumed to be nondecreasing
with respect to both variables t and x separately, for =i 1, 2, 3;

(iii) There exist constants ≥ = ⋯b j0, 1, 4j and positive functions ∈ ( ) ∈ ( )a L I a L I, i φ4 1 such that

| ( )| ≤ ( ) + | | =f t x a t b x i, , 1, 2, 3i i i

and

| ( )| ≤ ( ) + (| |)g t x a t b φ x, ;p
4 4

On perturbed quadratic integral equations and IVP in Orlicz spaces  89



(iv) Assume that function K is measurable in ( )t s, and assume that the linear integral operator K0 with
kernel ( )K t s, maps ( )L IMp into ( )∞L I , ↦ | (⋅ )| ∈ ( )s K s L I, Mq , ( ) = ( ⋅) ∈ ( )∞k t K t L I, and K0 is

continuous with a norm

∫∥ ∥ ≔ | ( )|∈

/

∞K K t s sess sup , d ;L t I

I

q

q

0

1













(v) ∫ ∫( ) ≥ ( )K t s s K t s s, d , d
I I1 2 for ∈t t I,1 2 with <t t1 2;

(vi) Let ≤r 1 be a positive solution of the equation

(∥ )∥ ∥ + ∥ ∥ + ∥ ∥ + ⋅ + (∥ ∥ + ⋅ )⋅∥ ∥ ∥ + ⋅ =/
∞h a a b r b a b r K a b r r.φ φ φ φ L L

p
2 3 3 2 1 1 0 4 4

1
1

Proposition 3.1.
(a) Suppose the N-function φ satisfies the Δ2-condition, then   =F F i, , 1, 2, 3g fi are bounded in ( )E Iφ , and for

∈x Eφ we have

( )( )‖ ‖ ≤ ‖ + | | ‖ ≤ ‖ ‖ + ∥ ∥ =F x a b x a b x i, 1, 2, 3f φ i i φ i φ i φi

and

∫ ∫ ∫ ( )| ( ( ))| ≤ ( ) + (| ( )|) ⇒ ∥( )( )∥ ≤ ∥ ∥ + ∥ ∥ /g t x t t a t t b φ x t t F x a b x, d d d .
a

b

p

a

b

a

b

g M L φ
p

4 4 4 4
1

p 1

(b) By assumption (iv), the operator K0 is continuous and the norm of ( )K x0 is estimated by (cf. [10])
‖ ( )‖ ≤ ‖ ‖ ‖ ‖∞ ∞K x K x .L M0 p

Now, we are ready to proclaim our main results.

Theorem 3.1. Let assumptions (i)–(vi) be satisfied. If (∥ )(   +   ∥ ∥ ∥ + ⋅ ) </
∞b b b K a b r 1L L

p
3 1 2 0 4 4

1
1 , then equation

(1) has at least one solution ∈ ( )x E Iφ which is a.e. nondecreasing on I.

Proof.
I. Assumption (ii), assumption (iii) and Lemma 2.3 imply that each Ffi maps ( )E Iφ into itself and is

continuous and by Lemma 2.2 the operator Fg maps ( )E Iφ into ( )E IMp . By assumption (iv), the operator

KFg maps ( )E Iφ into ( )∞L I and is continuous. Thus, the operator A is a continuous mapping from ( )E Iφ

into itself. Finally, by assumption (i), we can deduce that the operator   = +     +  B h F Af3 maps ( )E Iφ into
itself and is continuous.

II. Now, we will prove the operator B is bounded in ( )E Iφ . For ∈ ( )x E Iφ with ∥ ∥ ≤ ≤x r 1φ , and using
Proposition 3.1, we have

( )

∥ ( )∥ ≤ ∥ ∥ + ∥ ( )∥   +  ∥ ( )∥
≤ ∥ ∥ + ∥ ∥ + ∥ ∥   +  ∥ ∥ + ∥ ( )⋅ ( )∥
≤ ∥ ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥   +   ∥ ( )∥ ⋅∥ ( )∥
≤ ∥ ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥   +   (∥ ∥ + ∥ ∥ )⋅∥ ∥ ∥ ( )∥

≤ ∥ ∥ + ∥ ∥ + ∥ ∥ + ∥ ∥ + (∥ ∥ + ∥ ∥ )⋅∥ ∥ ∥ ∥ + ∥ ∥ /

∞

∞

∞

B x h F x A x
h a b x a b F x KF x
h a a b x b F x KF x
h a a b x b a b x K F x

h a a b x b a b x K a b x .

φ φ f φ φ

φ φ φ φ f g φ

φ φ φ φ f φ g L

φ φ φ φ φ φ L g M

φ φ φ φ φ φ L L φ
p

3 3 2 2

2 3 3 2

2 3 3 2 1 1 0

2 3 3 2 1 1 0 4 4
1

p

3

1

1

1

Thus, ( ) → ( )B E I E I: φ φ .
By our assumption (vi), it follows that there exists a positive solution ≤r 1 of the equation

( )∥ ∥ + ∥ ∥ + ∥ ∥ + ⋅ + (∥ ∥ + ⋅ )⋅∥ ∥ ∥ ∥ + ⋅ =/
∞h a a b r b a b r K a b r r,φ φ φ φ L L

p
2 3 3 2 1 1 0 4 4

1
1

which implies that ( ( )) → ( ( ))B B E I B E I: r φ r φ is continuous.
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III. Let Qr stand for the subset of ( ( ))B E Ir φ consisting of all functions which are a.e. nondecreasing on I.

Similarly, as claimed in [10] this set is nonempty, bounded, closed and convex in ( )L Iφ . The set Qr is
compact in measure in view of Lemma 2.4.

IV. Now, we will show that B preserves the monotonicity of functions. Take   ∈  x Qr, then x is a.e.
nondecreasing on I and consequently Fg and =F i, 1, 2, 3fi , are also of the same type in virtue of
assumption (ii). Furthermore, ( )K x0 is a.e. nondecreasing on I (thanks for assumption (v)). Since the
pointwise product of a.e. monotone functions is still of the same type, the operator A is a.e.
nondecreasing on I. Then by assumption (i), we deduce that ( )( )  =   +   ( )( )  +   ( )( )B x t h F x t A x tf3 is
also a.e. nondecreasing on I. This gives us that →B Q Q: r r and is continuous.

V. We will prove that B is a contraction with respect to a measure of strong noncompactness.

Assume that ⊂X Qr is a nonempty and let the fixed constant >ε 0 be arbitrary. Then, for an arbitrary
  ∈  x X and for an arbitrary measurable set   ⊂  D I , meas   ≤  D ε and ∈t D we have

( )

∥ ( )⋅ ∥ ≤ ‖ ⋅ ‖ + ∥ ( )⋅ ∥   +  ∥ ( )⋅ ∥
≤ ‖ ⋅ ‖ + ∥( + | |)⋅ ∥   +  ∥( +   ( )⋅ ( ))⋅  ∥
≤ ‖ ⋅ ‖ + ∥ ⋅ ∥ + ∥ ⋅ ∥   +  ∥ ⋅ ∥ +  ∥ ( )⋅ ∥ ∥ ( ))∥
≤ ‖ ⋅ ‖ + ∥ ⋅ ∥ + ∥ ⋅ ∥   +  ∥ ⋅ ∥

+  (∥ ⋅ ∥ + ∥ ⋅ ∥  )∥ ∥ ∥ ∥ + ∥ ∥

≤ ‖ ⋅ ‖ + ∥ ⋅ ∥ + ∥ ⋅ ∥   +  ∥ ⋅ ∥

+  (∥ ⋅ ∥ + ∥ ⋅ ∥  )∥ ∥ (∥ ∥ + ⋅ )

∞

/

/

∞

∞

B x χ h χ F x χ A x χ
h χ a b x χ a b F x KF x χ
h χ a χ b x χ a χ b F x χ KF x
h χ a χ b x χ a χ

b a χ b x χ K a b x
h χ a χ b x χ a χ

b a χ b x χ K a b r .

D φ D φ f D φ D φ

D φ D φ f g D φ

D φ D φ D φ D φ f D φ g

D φ D φ D φ D φ

D φ D φ L L φ
p

D φ D φ D φ D φ

D φ D φ L L
p

3 3 2 2

3 3 2 2

3 3 2

2 1 1 0 4 4
1

3 3 2

2 1 1 0 4 4
1

3

1

1

1

1

Hence, taking into account that ∈ ( )h a a a E I, , , φ1 2 3 , we have

{∥ ⋅ ∥ } = {∥ ⋅ ∥ } = =
→ ≤ ∈ → ≤ ∈

h χ a χ ilim sup sup 0, lim sup sup 0, 1, 2, 3.
ε D ε x X

D φ
ε D ε x X

i D φ
0 mes 0 mes



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Thus, by definition of ( )c x , we get

( )( ( )) ≤ (   +   ∥ ∥ ∥ ∥ + ⋅ )⋅ ( )/
∞c B X b b b K a b r c X .L L

p
3 1 2 0 4 4

1
1

Since ⊂X Qr is a nonempty, bounded and compact in measure subset of an ideal regular space ( )E Iφ , we
can use Lemma 2.1 and get

( )( ( )) ≤ (   +   ∥ ∥ ∥ ∥ + ⋅ )⋅ ( )/
∞β B X b b b K a b r β X .H L L

p
H3 1 2 0 4 4

1
1

Thus, we can use Darbo fixed point theorem 2.1, which completes the proof. Moreover, the set of solutions
is compact in ( )E Iφ . □

Next, we present Lp-solutions for equation (1), which is still a more general result than the earlier ones.

Corollary 3.1. Assume that ≥p 1 and + = 1p q
1 1 .

(i)   ∈   ( )h L Ip is nondecreasing a.e. on I.

(ii) � �  ×   →  g f I, :i satisfy Carathéodory conditions and ( ) ( )g t x f t x, , ,i are assumed to be nondecreasing
with respect to both variables t and x separately, for =i 1, 2, 3.

(iii) There exist constants ≥ = ⋯b j0, 1, 4j and positive functions ∈ ( )   ∈ ( )a L I a L I,q i p4 such that

| ( )| ≤ ( ) + | | =f t x a t b x i, , 1, 2, 3i i i

and

| ( )| ≤ ( ) + | | /g t x a t b x, .p q
4 4
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(iv) Assume that the function K is measurable in ( )t s, and the linear integral operator K0 with kernel (⋅ ⋅)K ,
maps ( )L Iq into ( )∞L I and is continuous, such that

∫∥ ′ ∥ = | ( )| < ∞∈[ ]
′

/ ′

∞K K t s sess sup , d .L t a b

a

b
q

q

0 ,

1














(v) ∫ ∫( ) ≥ ( )K t s s K t s s, d , d
I I1 2 for ∈t t I,1 2 with <t t1 2.

(vi) Assume that there exists a positive number ≤r 1 such that

∥ ∥ + ∥ ∥ + ∥ ∥   + ⋅ +   ⋅∥ ∥ ⋅(∥ ∥   +   ⋅  )( ∥ ∥   +   ⋅ )  =  /
∞h a a b r b K a b r a b r r.p p p L p q

p q
2 3 3 2 0 1 1 4 4

If ( + ∥ ∥ (∥ ∥   +   ⋅ )) </
∞b b b K a b r 1,L q

p q
3 1 2 0 4 4 then equation (1) has at least one solution ∈ ( )x L Ip which is

a.e. nondecreasing on I.

4 IVP

Next, we will discuss the existence of some special class of solutions for IVP (2) with nonlocal condition
(3). As a consequence of our main result solutions are not absolutely continuous, but they are in a
narrower space.

Definition 4.1. A function ∫= ( )y x s sd
t

0
is called a solution of problem (2) with nonlocal condition (3), if

∈ ( )x E Iφ is a solution of equation (1), i.e., belongs to an Orlicz-Sobolev space ( )W L Iφ
1 .

Theorem 4.1. Let assumptions of Theorem 3.1 be satisfied, then there exists a function

∫ ∫ ∫( ) =
−

( ) −
−

( ) + ( ) ∈ ( )y t β
β

x s s
β

x s s x s s x E I
1

d 1
1

d d , for ,
ζ τ t

φ

0 0 0

which satisfies IVP (2) with nonlocal condition (3).

Proof. Let x be a solution of integral equation (1). Put

( ) = ( ) =Dy t x t D
t

, d
d

,

then by integrating both sides, we have

∫ ∫( ) = ( )Dy s s x s sd d ,
t t

0 0

which yields

∫( ) = ( ) + ( )y t y x s s0 d .
t

0

(4)

Using condition (3)

∫ ∫( ) = ( ) + ( ) ( ) = ( ) + ( )y τ y x s s y ζ y x s s0 d and 0 d .
τ ζ

0 0
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By omitting ( )y 0 from the aforementioned equations and substitute in (4), we have

∫ ∫ ∫( ) =
−

( ) −
−

( ) + ( )y t β
β

x s s
β

x s s x s s
1

d 1
1

d d .
ζ τ t

0 0 0

Since ∈x Eφ (thanks to Theorem 3.1), then we deduce that y is a solution for IVP (2) with nonlocal
condition (3), which completes the proof. □

5 Remarks

Remark 5.1. The quadratic equations have many applications in astrophysics, neutron transport, radiative
transfer theory and in the kinetic theory of gases [4,5,23].

Remark 5.2. We obtain the same results, if we assume that ( ) → ( )∞F L I L I:f φ1 and the Hammerstein
operator maps ( )L Iφ into itself (see [10]), where ( ) =f t x x,2 . This is the standard non-quadratic case which
is reduced to the classical integral equation (cf. [12,24,25]).

Remark 5.3. Shragin [26] proved that the Nemytskii operators are bounded on “small” balls and in [27] the
authors apply these results for Hammerstein integral equations in Orlicz spaces.

Remark 5.4. The continuity of the linear integral operator of the form K0 is depending on the kernel K (cf.
assumption (iv)). For example, the fractional integral operator

∫( ) =
( )

( − ) ( ) ∈ [ ]−J x s
Γ α

s t x t t s a b1 d , ,α

a

s

α 1

maps → ( )∞L L IMp and is continuous for <p α
1 , but is not continuous at =p α

1 (cf. [28, Remark 4.1.2]).

Acknowledgments: The authors are grateful to the referee for his/her helpful suggestions and comments
on this article which greatly improved this article.
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