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Abstract: Generalizing the case of a normal operator in a complex Hilbert space, we give a straightforward
proof of the non-hypercyclicity of a scalar type spectral operator A in a complex Banach space as well as of
the collection etA

t 0{ } ≥ of its exponentials, which, under a certain condition on the spectrum of the operator
A, coincides with the C0-semigroup generated by A. The spectrum of A lying on the imaginary axis, we also
show that non-hypercyclic is the strongly continuous group �etA

t{ } ∈ of bounded linear operators generated
by A. From the general results, we infer that, in the complex Hilbert space �L2( ), the anti-self-adjoint
differentiation operator A x

d
d≔ with the domain �D A W2

1( ) ≔ ( ) is non-hypercyclic and so is the left-transla-
tion strongly continuous unitary operator group generated by A.

Keywords: hypercyclicity, scalar type spectral operator, normal operator, C0-semigroup, strongly contin-
uous operator group
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1 Introduction

The concept of hypercyclicity, underlying the theory of linear chaos, traditionally considered for continuous
linear operators on Fréchet spaces, in particular for bounded linear operators on Banach spaces, and known
to be a purely infinite-dimensional phenomenon (see, e.g., [1–3]), is extended in [4,5] to unbounded linear
operators in Banach spaces, where also found are sufficient conditions for unbounded hypercyclicity and
certain examples of hypercyclic unbounded linear differential operators.

Definition 1.1. (Hypercyclicity)
Let

A X D A X: ⊇ ( ) →

be a (bounded or unbounded) linear operator in a (real or complex) Banach space X with a domain D A( ).

A nonzero vector

f C A D A
n

n

0
∈ ( ) ≔ ⋂ ( )∞

=

∞


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(A I0 ≔ , I is the identity operator on X) is called hypercyclic if its orbit under A

�f A A forb , n
n( ) ≔ { } ∈ +

(� 0, 1, 2,≔ { …}+ is the set of nonnegative integers) is dense in X.

Linear operators possessing hypercyclic vectors are said to be hypercyclic.

More generally, a collection T t t J{ ( )} ∈ ( J is a nonempty indexing set) of linear operators in X is called hyper-
cyclic if it possesses hypercyclic vectors, i.e., such nonzero vectors f D T tt J∈ ⋂ ( ( ))∈ , whose orbit

T t f t J{ ( ) } ∈

is dense in X.
Cf. [6,7].

As is easily seen, in the definition of hypercyclicity for a linear operator, the underlying space must
necessarily be separable.

It is noteworthy that, for a hypercyclic linear operator A, the set AHC( ) of all its hypercyclic vectors,
containing the dense orbit of any vector hypercyclic under A, is dense in X,( ∥⋅∥), and hence, the more so, is
the subspace C A AHC( ) ⊇ ( )∞ .

Bounded normal operators on a complex Hilbert space are known to be non-hypercyclic [1, Corollary
5.31]. In [8], non-hypercyclicity is shown to hold for arbitrary normal operators (bounded or unbounded),
certain collections of their exponentials, and symmetric operators.

Here, abandoning the comforts of a Hilbert space setting with its inherent orthogonality and self-
duality, while generalizing non-hypercyclicity from normal to scalar type spectral operators, we furnish
a straightforward proof of the non-hypercyclicity of an arbitrary scalar type spectral operator A (bounded or
unbounded) in a complex Banach space as well as of the collection etA

t 0{ } ≥ of its exponentials (see, e.g.,
[9–11]), which, provided the spectrum σ A( ) of the operator A is located in a left half plane

�λ λ ωRe{ ∈ | ≤ }

with some �ω ∈ , coincides with the C0-semigroup generated by A [12] (see also [13,14]). The spectrum of A
lying on the imaginary axis �i (i is the imaginary unit), we also show that non-hypercyclic is the strongly
continuous group �etA

t{ } ∈ of bounded linear operators generated by A. From the general results, we imme-
diately infer that, in the complex Hilbert space �L2( ), the anti-self-adjoint differentiation operator A x

d
d≔

with the domain

� � � �W f L f f Lis absolutely continuous on with2
1

2 2( ) ≔ { ∈ ( )| (⋅) ′ ∈ ( )}

is non-hypercyclic and so is the left-translation strongly continuous unitary operator group generated by
it [15–17].

2 Preliminaries

More extensive preliminaries concerning the scalar type spectral operators in complex Banach spaces,
which, in particular, encompass normal operators in complex Hilbert spaces [18] (see also [19,20]), can be
found in the corresponding section of [21] (see also [9–11]). Here, we outline only a few facts indispensable
for our subsequent discourse.

With a scalar type spectral operator A in a complex Banach space X,( ∥⋅∥) associated are its spectral measure
(the resolution of the identity) EA(⋅), whose support is the spectrum σ A( ) of A, and the so-called Borel opera-
tional calculus assigning to any Borel measurable function �F σ A: ( ) → a scalar type spectral operator

F A F λ E λd
σ A

A∫( ) ≔ ( ) ( )

( )

(see [10,11]).
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In particular,

�A λ E λ nd , ,n

σ A

n
A∫= ( ) ∈

( )

+

and

�e e E λ td , .tA

σ A

tλ
A∫≔ ( ) ∈

( )

Provided

�σ A λ λ ωRe ,( ) ⊆ { ∈ | ≤ }

with some �ω ∈ , the collection of exponentials etA
t 0{ } ≥ coincides with theC0-semigroup generated by A [12,

Proposition 3.1] (see also [13,14]), and hence, if

�σ A λ ω λ ωRe ,( ) ⊆ { ∈ | − ≤ ≤ }

with some ω 0≥ , the collection of exponentials �etA
t{ } ∈ coincides with the strongly continuous group of

bounded linear operators generated by A.

The orbit maps

y t e f t f D e, 0, ,tA

t

tA

0
( ) = ≥ ∈ ⋂ ( )

≥
(2.1)

describe all weak/mild solutions of the abstract evolution equation

y t Ay t t, 0,′( ) = ( ) ≥ (2.2)
[22, Theorem 4.2], whereas the orbit maps

�
�

y t e f t f D e, , ,tA

t

tA( ) = ∈ ∈ ⋂ ( )
∈

describe all weak/mild solutions of the abstract evolution equation

�y t Ay t t, ,′( ) = ( ) ∈ (2.3)
[21, Theorem 7] (see also [23]). Such generalized solutions need not be differentiable in the strong sense and
encompass the classical ones, strongly differentiable and satisfying the corresponding equations in the
traditional plug-in sense (cf. [17, Ch. II, Definition 6.3], see also [24, Preliminaries]).

The subspaces

�

C A D e D e, , and
t

tA

t

tA

0
( ) ⋂ ( ) ⋂ ( )∞

≥ ∈

of all possible initial values for the orbits under A, etA
t 0{ } ≥ , and �etA

t{ } ∈ are dense in X,( ∥⋅∥) since they
contain the subspace

�E X λ λ α αΔ , where Δ , 0,
α

A α α
0

⋃ ( ) ≔ { ∈ || | ≤ } >
>

which is dense in X,( ∥⋅∥) and coincides with the class E A0 ( ){ } of the exponential type entire vectors of the
operator A [25] (see also [26]).

Due to its strong countable additivity, the spectral measure EA(⋅) is bounded, i.e., there exists such an
M 1≥ that, for any Borel set �δ ⊆ ,

E δ MA∥ ( )∥ ≤ (2.4)

[11,27], the notation ∥⋅∥ being used here to designate the norm in the space L X( ) of all bounded linear
operators on X. Adhering to this rather conventional economy of symbols hereafter, we also adopt the same
notation for the norm in the dual space X⁎.

For arbitrary f X∈ and g X⁎ ⁎∈ , the total variation measure v f g, ,⁎( ⋅) of the complex-valued Borel
measure E f g,A

⁎〈 (⋅) 〉 ( ,〈⋅ ⋅〉 is the pairing between the space X and its dual X⁎) is a finite positive Borel
measure with
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�v f g v f g σ A M f g, , , , 4⁎ ⁎ ⁎( ) = ( ( )) ≤ ∥ ∥∥ ∥ (2.5)

(see, e.g., [28,29]).
Also [28,29], for any Borel measurable function � �F : → , arbitrary f D F A∈ ( ( )) and g X⁎ ⁎∈ , and each

Borel set �δ ⊆ ,

F λ v f g λ M E δ F A f gd , , 4 .
δ

A
⁎ ⁎∫ | ( )| ( ) ≤ ∥ ( ) ( ) ∥∥ ∥ (2.6)

In particular, for δ σ A= ( ),

F λ v f g λ M F A f gd , , 4 .
σ A

⁎ ⁎∫ | ( )| ( ) ≤ ∥ ( ) ∥∥ ∥

( )

(2.7)

Observe that the constant M 1≥ in (2.5)–(2.7) is from (2.4).

3 Main results

Theorem 3.1. An arbitrary scalar type spectral operator A in a complex Banach space X,( ∥⋅∥) with spectral
measure EA(⋅) is non-hypercyclic and so is the collection etA

t 0{ } ≥ of its exponentials, which, provided the
spectrum of A is located in a left half plane

�λ λ ωRe{ ∈ | ≤ }

with some �ω ∈ , coincides with the C0-semigroup generated by A.

Proof. Let f C A \ 0∈ ( ) { }∞ be arbitrary.
There are two possibilities: either

E λ σ A λ f1 0A({ ∈ ( )|| | > }) ≠

or

E λ σ A λ f1 0.A({ ∈ ( )|| | > }) =

In the first case, as follows from the Hahn-Banach theorem (see, e.g., [27]), there exists a functional
g X \ 0⁎ ⁎∈ { } such that

E λ σ A λ f g1 , 0A
⁎〈 ({ ∈ ( )|| | > }) 〉 ≠

and hence, for any �n ∈ +,

A f

M g λ v f g λ M g λ v f g λ

M g v f g λ σ A λ
M g E λ σ A λ f g

by 2.7 ;

4 d , , 4 d , ,

4 , , 1
4 1 , 0,

n

σ A

n

λ σ A λ

n

A

⁎ 1 ⁎ ⁎ 1

1

⁎

⁎ 1 ⁎

⁎ 1 ⁎

∫ ∫

∥ ∥

( )

≥ [ ∥ ∥] | | ( ) ≥ [ ∥ ∥] | | ( )

≥ [ ∥ ∥] ( { ∈ ( )|| | > })

≥ [ ∥ ∥] |〈 ({ ∈ ( )|| | > }) 〉| >

−

( )

−

{ ∈ ( ) || |> }

−

−

which implies that the orbit �A fn
n{ } ∈ +

of f under A cannot approximate the zero vector, and hence, is not
dense in X,( ∥⋅∥).

In the second case, since

f E λ σ A λ f E λ σ A λ f1 1 ,A A= ({ ∈ ( )|| | > }) + ({ ∈ ( )|| | ≤ })

we infer that

f E λ σ A λ f1 0A= ({ ∈ ( )|| | ≤ }) ≠
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and hence, for any �n ∈ +,

A f
operational calculus

λ E λ f

Hahn Banach theorem

λ E λ f g

operational calculus

λ E λ f g

λ v f g λ

v f g λ

F λ
M E λ σ A λ f g

M E λ σ A λ f

by the properties of the ;

d

as follows from the ;

sup d ,

by the properties of the ;

sup d ,

sup d , ,

sup 1 d , ,

by 2.6 with 1;
sup 4 1

4 1 ,

n

λ σ A λ

n
A

g X g
λ σ A λ

n
A

g X g
λ σ A λ

n
A

g X g
λ σ A λ

n

g X g
λ σ A λ

g X g
A

A

1

1
1

⁎

1
1

⁎

1
1

⁎

1
1

⁎

1

⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

∫

∫

∫

∫

∫

∥ ∥

= ( )

−

= ( )

= 〈 ( ) 〉

≤ | | ( )

≤ ( )

( ) ( )≡

≤ ∥ ({ ∈ ( )|| | ≤ }) ∥∥ ∥

= ∥ ({ ∈ ( )|| | ≤ }) ∥

{ ∈ ( ) || |≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) || |≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) || |≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) || |≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) || |≤ }

{ ∈ |∥ ∥= }

which also implies that the orbit �A fn
n{ } ∈ +

of f under A, being bounded, is not dense in X,( ∥⋅∥) and com-
pletes the proof for the case of the operator.

Now, let us consider the case of the exponential collection etA
t 0{ } ≥ assuming that f D e \ 0t

tA
0∈ ⋂ ( ) { }≥ is

arbitrary.
There are two possibilities: either

E λ σ A λ fRe 0 0A({ ∈ ( )| > }) ≠

or

E λ σ A λ fRe 0 0.A({ ∈ ( )| > }) =

In the first case, as follows from the Hahn-Banach theorem, there exists a functional g X \ 0⁎ ⁎∈ { } such that

E λ σ A λ f gRe 0 , 0A
⁎〈 ({ ∈ ( )| > }) 〉 ≠

and hence, for any t 0≥ ,

e f

M g e v f g λ

M g e v f g λ

t λ σ A λ e
M g v f g λ σ A λ
M g E λ σ A λ f g

by 2.7 ;

4 d , ,

4 d , ,

since for 0 and with Re 0, 1;
4 , , Re 0
4 Re 0 , 0,

tA

σ A

tλ

λ σ A λ

t λ

t λ

A

⁎ 1 ⁎

⁎ 1

Re 0

Re ⁎

Re

⁎ 1 ⁎

⁎ 1 ⁎

∫

∫

∥ ∥

( )

≥ [ ∥ ∥] | | ( )

≥ [ ∥ ∥] ( )

≥ ∈ ( ) > ≥

≥ [ ∥ ∥] ( { ∈ ( )| > })

≥ [ ∥ ∥] |〈 ({ ∈ ( )| > }) 〉| >

−

( )

−

{ ∈ ( ) | > }

−

−

which implies that the orbit e ftA
t 0{ } ≥ of f cannot approximate the zero vector, and hence, is not dense

in X,( ∥⋅∥).
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In the second case, since

f E λ σ A λ f E λ σ A λ fRe 0 Re 0 ,A A= ({ ∈ ( )| > }) + ({ ∈ ( )| ≤ })

we infer that

f E λ σ A λ fRe 0 0,A= ({ ∈ ( )| ≤ }) ≠

and hence, for any t 0≥ ,

e f
operational calculus

e E λ f

Hahn Banach theorem

e E λ f g

operational calculus

e E λ f g

e v f g λ

e v f g λ

t λ σ A λ e

v f g λ

F λ
M E λ σ A λ f g

M E λ σ A λ f

by the properties of the ;

d

as follows from the ;

sup d ,

by the properties of the ;

sup d ,

sup d , ,

sup d , ,

since for 0 and with Re 0, 1;

sup 1 d , ,

by 2.6 with 1;
sup 4 Re 0

4 Re 0 ,

tA

λ σ A λ

tλ
A

g X g
λ σ A λ

tλ
A

g X g
λ σ A λ

tλ
A

g X g
λ σ A λ

tλ

g X g
λ σ A λ

t λ

t λ

g X g
λ σ A λ

g X g
A

A

Re 0

1
Re 0

⁎

1
Re 0

⁎

1
Re 0

⁎

1
Re 0

Re ⁎

Re

1
Re 0

⁎

1

⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

⁎ ⁎ ⁎

∫

∫

∫

∫

∫

∫

∥ ∥

= ( )

-

= ( )

= 〈 ( ) 〉

≤ ∣ ∣ ( )

= ( )

≥ ∈ ( ) ≤ ≤

≤ ( )

( ) ( ) ≡

≤ ∥ ({ ∈ ( )| ≤ }) ∥∥ ∥

= ∥ ({ ∈ ( )| ≤ }) ∥

{ ∈ ( ) | ≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) | ≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) | ≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) | ≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) | ≤ }

{ ∈ |∥ ∥= }
{ ∈ ( ) | ≤ }

{ ∈ |∥ ∥= }

which also implies that the orbit e ftA
t 0{ } ≥ of f, being bounded, is not dense in X,( ∥⋅∥) and completes the

entire proof. □

Remark 3.1. Now, [8, Theorem 1] is the important particular case of Theorem 3.1 for a (bounded or
unbounded) normal operator in a complex Hilbert space.

If further for a scalar type spectral operator A in a complex Banach space X,( ∥⋅∥), we have the inclusion:

�σ A i ,( ) ⊆

by [11, Theorem XVIII.2.11 (c)], for any �t ∈ ,

e e E λ M e M e Md 4 sup 4 sup 4 ,tA

σ A

tλ
A

λ σ A

tλ

λ σ A

t λRe∫∥ ∥ = ( ) ≤ | | = =

( )
∈ ( ) ∈ ( )

where the constant M 1≥ is from (2.4). Therefore, the strongly continuous group �etA
t{ } ∈ of bounded linear

operators generated by A is bounded (cf. [13]), which implies that every orbit �e ftA
t{ } ∈ , f X∈ , is bounded,

and hence, is not dense in X,( ∥⋅∥). Thus, we arrive at the following.
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Proposition 3.1. For a scalar type spectral operator A in a complex Banach space X,( ∥⋅∥) with �σ A i( ) ⊆ ,
the strongly continuous group �etA

t{ } ∈ of bounded linear operators generated by A is bounded, and hence,
non-hypercyclic.

As is known [15], for an anti-self-adjoint operator A in a complex Hilbert space, �σ A i( ) ⊆ and the
generated by A strongly continuous operator group �etA

t{ } ∈ is unitary, which, in particular, implies that

�e t1, .tA∥ ∥ = ∈

Thus, from Theorem 3.1 (see also [8, Theorem 1]) and Proposition 3.1, we derive the following corollary.

Corollary 3.1. (The Case of an Anti-Self-Adjoint Operator)
An anti-self-adjoint operator A in a complex Hilbert space is non-hypercyclic and so is the generated by A

strongly continuous unitary operator group �etA
t{ } ∈ .

4 An application

Since, in the complex Hilbert space �L2( ), the differentiation operator A x
d

d≔ with the domain

� � � �W f L f f Lis absolutely continuous on with2
1

2 2( ) ≔ { ∈ ( )| (⋅) ′ ∈ ( )}

is anti-self-adjoint (see, e.g., [30]), by Corollary 3.1, we obtain:

Corollary 4.1. (The Case of Differentiation Operator)
In the complex Hilbert space �L2( ), the differentiation operator A x

d
d≔ with the domain �D A W2

1( ) ≔ ( ) is non-
hypercyclic and so is the left-translation strongly continuous unitary operator group generated by A.

Remark 4.1. In a different setting, the situation with the differentiation operator can be vastly different
(cf. [1, Example 2.21], [4, Corollary 2.3], [31, Corollary 4.1], and [32, Theorem 3.1]).

5 Concluding remark

The exponentials given by (2.1) describing all weak/mild solutions of evolution equation (2.2) (see section
Preliminaries), Theorem 3.1, in particular, implies that such an equation is void of chaos (see [1]). By Proposi-
tion 3.1 (see also Preliminaries), the same is true for evolution equation (2.3) provided �σ A i( ) ⊆ .
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