DE GRUYTER Demonstratio Mathematica 2020; 53: 373-384 a

Research Article

Haribhai R. Kataria, Prakashkumar H. Patel*, and Vishant Shah
Existence results of noninstantaneous
impulsive fractional integro-differential
equation

https://doi.org/10.1515/dema-2020-0029
received July 10, 2020; accepted November 18, 2020

Abstract: Existence of mild solution for noninstantaneous impulsive fractional order integro-differential
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are added to validate derived results.
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1 Introduction

Fractional order differential equations have gained lot of attention of many researchers due to hereditary
attributes and long-term memory descriptions. In fact, many models in science and engineering such as
seepage flow in porous media, anomalous diffusion, nonlinear oscillations of earthquake, fluid dynamics
traffic model, electromagnetism and population dynamics are now revisited in terms of fractional differ-
ential equations. More details and applications are found in monographs in [1,2] and in articles of [3-9].
Due to a wide range of applications in various fields fractional order differential equations became fertile
branch of Applied Mathematics. The studies of existence of mild solutions of fractional differential, integro-
differential and evolution equations using different fixed point theorems were found in [10-12]. The exten-
sion of classical conditions for Cauchy problem is nonlocal conditions, which give better effect than
classical conditions in many physical phenomena in the field of science and engineering [13]. Existence
results for nonlocal Cauchy problem using various techniques are found in [14-20]. On the other hand,
evolutionary processes that undergo abrupt change in the state either at a fixed moment of time or in a
small interval of time are modeled into instantaneous impulsive evolution or noninstantaneous impulsive
evolution equation, respectively. Applications of the instantaneous impulsive evolution equation and
existence results for integer order instantaneous impulsive evolution equations are found in [21-24].
Existence results for fractional instantaneous impulsive equation are found in [25-32]. In some evolutionary
processes, noninstantaneous impulses are more accurate instead of instantaneous impulses. Existence of
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mild solution of noninstantaneous impulsive fractional differential equation with local initial condition has
been studied by Li and Xu [33]. Meraj and Pandey [34] studied the existence of mild solutions of nonlocal
semilinear evolution equation using Krasnoselskii’s fixed point theorem. In this article, we study the
existence of mild solutions of
t
Du(t) = Au(t) + f| £, u(t), J' alt, s, u(s)ds |, € lse b, k=1,2,...,p
0
u(t) = gi(k, u(t), t € [t, sk

with local condition u(0) = uy and nonlocal condition u(0) = ug + h(u) over the interval [0, T] in a Banach
t
space U . Here A : U — U is the linear operator, Ku = -[o a(t, s, u(s))ds is the nonlinear Volterra integral

operatoron U, f: [0, T] x U x U — U is the nonlinear function and g : [0, T] x U are set of nonlinear
functions applied in the interval [t, si) for alli = 1, 2,..., p.

2 Preliminaries

Basic definitions and theorems of fractional calculus and functional analysis are discussed in this section,
which will help us to prove our main results.

Definition 2.1. [35] The Riemann-Liouville fractional integral operator of 8 > 0, of function h € Ly(R,) is
defined as

1

B n(t) = ——
]t0+ () r(ﬁ)

t
j (t - 9)F'h(g)dg,
to

provided the integral on the right-hand side exists, where I'(-) is the gamma function.

Definition 2.2. [36] The Caputo fractional derivative of order 8 > 0,n — 1 < 8 < n, n € N, is defined as
t
1 _g-19"h(q)
cpf n(t =—'[ t - g A1——"2ldg,
to+ ( ) r(n — ﬁ) ( Q) dqn q
to

where the function h(t) has absolutely continuous derivatives up to order (n — 1).

Theorem 2.1. (Banach fixed point theorem) [37] Let E be a closed subset of a Banach space (X, ||-||) and let
T : E — E contraction, then T has unique fixed point in E.

Theorem 2.2. (Krasnoselskii’s fixed point theorem) [37] Let E be a closed convex nonempty subset of a Banach
space (X, ||-||) and P and Q are two operators on E satisfying:

(1) Pu + Qv € E, wheneveru,v € E,

(2) P is contraction,

(3) Qis completely continuous,

then the equation Pu + Qu = u has unique solution.

Definition 2.3. (Completely continuous operator) [38] Let X and Y be Banach spaces. Then the operator
T:DcX — Y is called completely continuous if it is continuous and maps any bounded subset of D to
relatively compact subset of Y.
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3 Equation with local conditions

Sufficient conditions for the existence and uniqueness of the equation:
t
Du(t) = Au(t) + f| £, u(t), Ia(t, s,us)ds|, telsote), i=1,2..p,
0 (3.1)
u(t) = g t, u(t), te [t sw,
u(0) =uo

over the interval [0, T] in the Banach space U is derived in this section.

Definition 3.1. The function u(t) is called mild solution of the impulsive fractional equation (3.1) over the
interval if u(t) satisfies the integral equation

t
U)o + j(t SVt - )f(t, u(s), Ku(s)ds, teo,t),

0
u(t) = < 8 (t, u(t)), t € [te, S0, (3.2)

t
U(t - si) g (sk, u(sy)) + j(t - 8)* W (t — s)f(t, u(s), Ku(s))ds, t € [sg, tis1),

Sk

where
t

Ku(t) = Ia(t, s, u(s)ds, U(t) = j(a(e)S(t“G)de, V() =«a J-G{Q(G)S(t“G)dH
0 0

0

are the linear operators defined on U . Here, { (0) is the probability density function over the interval [0, co)
defined by

(,(0) = sin(nma)

i (_Dn—le—an—lr(na + 1)
! n!

SR

and the operator S(t) is the semi-group generated by evolution operator A.

Assumptions 3.1

Assumptions for the existence and uniqueness of the mild solution of fractional evolution equation with

noninstantaneous impulses.

(A1) The evolution operator A generates C, semigroup S(t) for all t € [0, T].

(A2) The function f: [0, T] x U x U — U is continuous with respect to t and there exist positive con-
stants f;" and f; such that ||f(t, w, vi) — f(t, uz, W|I < fi llwy — woll + f5 |Ivi = v2|l for wy, vy, Uy, v, € By, =
{u e U; ||lul] < r} for some 1.

(A3) The operator K : [0, T] x U — U is continuous and there exist a constant k* such that [|[Ku — Kv||
kK'llu - v|| for u, v € B,

(A4) The functions g : [t, sx] x U are continuous and there exist positive constants 0 < g,: <1 such

that [|g, (¢, u(t) - g (&, v(O)Il < g llu — VIl

IN

Lemma 3.1. [10] If the evolution operator A generates Co semigroup S(t), then the operators U(t) and V(t) are
strongly continuous and bounded. This means there exist positive constant M such that ||U(t)u|| < M||u|| and

IVt ull < %llullfor allt € [0, TJ.

Theorem 3.2. If Assumptions (A1)—(A4) are satisfied, then the semilinear fractional integro-differential equa-
tion with noninstantaneous impulses (3.1) has unique mild solution.
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Proof. Define the operator # on U by
ﬁu(t)’ te [01 tl)’

Tu(t) = ?-:Zku(t), te [tk, Sk),
7:3}(11(0, te [Sk) tk+1))

where 71, ¥ and F3; are

t

Fu(t) = Ult)uo + .[(t - 8)* 1V (t - s)f(t, u(s), Ku(s))ds, t € [0, t),
0

%ku(t) = gk(t’ u(t))’ te [tk’ Sk):

t
Farcku(t) = U(t — si) g (sk, u(sy) + J(t - 8§V (t - s)f(t, u(s), Ku(s))ds, t € [sk, tis1)

Sk

forallk=1,2,...p.

In view of this operator ¥, equation (3.2) has unique solution if and only if the operator equation
u(t) = Fu(t) has unique solution. This is possible if and only if each of u(t) = Fu(t), u(t) = Fu(t) and
u(t) = F3u(t) has unique solution over the interval [0, t), [t, Sx) and [sg, 1) for all k = 1, 2,..., p, respec-
tively, as let uy(t), ux(t) and usi(t) be the solutions of u(t) = Fiu(t), u(t) = Fyu(t) and u(t) = F3u(t), respec-
tively. Defining,

ul(t)’ [0’ t1)9
u(t) = lek(t), [tk9 Sk),
usi(t),  [Sks tie1),

then one can easily show that u(t) is a unique solution of u(t) = Fu(t).
Forallt € [0, ;) and u, v € By,

t g Tn-1
0

IFOut) - 7O < j j j (£ - BN - B (G — SV - B
0 0

V(@ = )l V(-1 = SIS, u(s), Ku(s)) — f(s, v(s), Kv(s))||dsdp,_ --- d.

By applying Assumptions (A1)-(A3) and Lemma 3.1, we get
4t 4 t
Mn * *

IFPu(t) - FOvie)| < j j j 4 g VI = VI K = vl dsdg - d

0 0 0
G MS ik
(n - HIT ()"
_ MO+ f3K)

n!i(T(a)"

4
) j (& — s dsflu - V|
(0]

[lu =il < c*llu - vll.

Considering supremum over interval [0, t;) we get ||F g”)u -5 Y‘)VI < c*llu - v|| — O for fixed . Therefore,
there exist m such that #{™ is contraction on B,,. Thus, by general Banach contraction theorem the operator
equation u(t) = Fu(t) has unique solution over the interval [0, ).

Forall k=1,2,...,p, t € [t, Sx) and u, v € U and assuming (A4)

1F2u(t) = Fav()]l = lIg(t, u(®) - g (&, vNIl < g llu - vil.

Then F> is contraction and by the Banach fixed point theorem the operator equation u(t) = Fu(t) has
unique solution for the interval [&, sx) for all k = 1, 2,..., p. This means for allk = 1, 2,..., p, u(t) = g(t, u(t))
has unique solution for all ¢ € [t, sx). Lipschitz continuity of g, leads to uniqueness of the solution at point
s also.
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Forallk=1,2,...,p, t € [Sk, tys1) and u, v € B,_o,

t T Tn-1
e - FQvoll< [ [ [ - 0w - et - Ve - ol
Sk Sk Sk

NV(m = )l IV(T-1 = IS, uls), Ku(s)) — f(s, v(s), Kv(s))||dsdt,_, --- d.

Applying Assumptions (A1)-(A3) and Lemma 3.1, we get
ter1 G b

e - Fvolls [ [ o [ - s
Sk Sk Sk

< (e — S"CVMfY + fr kK
B (n - DT ()"

_ (1 = ™M + f5K)
B n!(T(a)"

MYl

(T ()" i llu = vl + fKu - v||]dsdT,y - dg

) P98}
j (teer — 5y 1dsllu — v
Sk

[lu = vl < c*llu = vIl.

Considering supremum over interval [S, ti.1) we get||F (3’,‘()11 -F (3’}2v| < c’|lu - v|| — O for fixed sub-interval
[Sks tisr) for all k = 1, 2,..., p. Therefore, there exist m such that ¥ (3’}3) is contraction on B,,. Thus, by general
Banach contraction theorem the operator equation u(t) = #3u(t) has unique solution over the interval
[Sks tesr) forall k = 1, 2,..., p.

Hence, the operator equation u(t) = Fu(t) has unique solution over the interval [0, T], which is nothing
but mild solution of Eq. (3.1). O

Example 3.2.1. The fractional order integro-differential equation:

t

Difu(t, x) = uu(t, X) + ult, X)u(t, x) + I eusxds, tel0,1/3) U [2/3,1],
0 (3.3)
u(t, x)

ult, x) = 2+ u(t, x)’

te[1/3, 2/3)
over the interval [0, 1] with initial condition u(0, x) = up(x) and boundary condition u(t, 0) = u(t, 1) = O.
Equation (3.3) can be reformulated as the fractional order abstract equation in U = L*([0, 1], R) as:

‘Dz(t) = Az(t) + f(t, z(t), Kz(t)), te[0,1/3) U [2/3,1],

z(t) = g(t, z(t)) te1/3,2/3) (34

over the interval [0, 1] by defining z(t) = u(t, -), operator Au = u” (second-order derivative with respect to x).

The functions f and g over respected domains are defined as f(t, z(t), Kz(t)) = (z%(t))'/2 +I(; e26)ds and

g(t, z(t)) = z(lzftz)(t», respectively.

(1) The linear operator A over the domain D(A) = {u € U; u" exists and continuous with u(0) = u(1) = 0} is
self-adjoint, with compact resolvent and is the infinitesimal generator of Cy semigroup S(t) over the
interval [0, 1] given by

S(tyu = ) exp(-n’m’t) < u, ¢, > ¢, (3.5)
n=1
where ¢, (s) = V2 sin(nns) for all n = 1, 2,... is the orthogonal basis for the space X.
(2) The function K : [0, 1] x [0, 1] x X — X is continuous with respect to ¢t and differentiable with respect

to z for all z and hence K is Lipschitz continuous with respect to z. This means that there exist positive
constant k* such that ||K(t, z;) — K(t, 2)|| < k*||z1 — 2]|.
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(3) The function f: [0,1] x X x X — X is continuous with respect to t and is differential with respect to
argument z and Kz. Therefore, there exist positive constants f; and f; such that ||f(¢, zi, Kz;) -
f(t, 2, Kn)|| < f{ llzs = 2| + f5|IKz - Kzl, z1, 2 € By, for some 1.

(4) The impulse g is continuous with respect to t and Lipchitz continuous with respect to z with Lipschitz
constant g* =1/2 < 1.

Therefore, by Theorem 3.2, equation (3.4) has unique solution over [0, 1]. Hence, equation (3.3) has
unique solution over the interval [0, 1].

4 Equation with nonlocal conditions

Sufficient conditions for the existence of the equation:
t
‘D%u(t) = Au(t) + f|t, u(t), I a(t,s,u(s))ds|, tels,ti), i=1,2,..,p,
0 (4.1)
u(t) = gi(t, u(t)), t e [t s),
x(0) = up + h(x)

in the Banach space U, is derived in this section.

Definition 4.1. The function u(t) is called mild solution of the impulsive fractional equation (3.1) over the
interval if u(t) satisfies the integral equation
t
U(t)(ug + h(x)) + j(t - )W (t - s)f(t, u(s), Ku(s))ds, tel0,t),
0
8i(t, u(t)), t € [t ),

t
U(t - si) g (sk» u(sy) + .[ (t = )V (t - s)f(t, u(s), Ku(s))ds, t € [sk, tis1),

u(t) = (4.2)

where
t 0 (o)
Ku(t) = J a(t, s, u(s))ds, U(t) = I ¢ (0)S(t9)do, V(i) =a I 0¢,(0)S(t*6)do
0 0

0

are the linear operators defined on U . Here,  (0) is the probability density function over the interval [0, co)
defined by

(0 = % D (—D"’W"""’lw sin(nma)
n=1 :

and the operator S(t) is the semi-group generated by evolution operator A.

Assumptions 4.1

Assumptions for the existence of the mild solution of fractional evolution equation with noninstantaneous

impulses.

(B1) The evolution operator A generates Co semigroup S(t) for all ¢ € [0, T].

(B2) The function f(t, -, -) is continuous and f(-, u, v) is measurable on [0, T]. Also, there exist 8 € (0, a)
with my € LE([O, T], R)su such that |f(¢, u, v)| < me(t) forallu,v e U.

(B3) The operator K : [0, T] x U — U is continuous and there exists a constant k* such that ||[Ku — Kv|| <
Klu - v||.
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(B4) The operator h : U — U is Lipschitz continuous with respect to u with Lipschitz constant 0 < h* < 1.
(B5) The functions g : [tk, Sx] x U are continuous and there exist positive constants 0 < g,: < 1 such that

llgi (&, u®) — gi (¢, v(O)Il < g¢llu — vil.

Theorem 4.1. (Existence theorem) If Assumptions (B1)-(B5) are satisfied, then the nonlocal semi-linear
fractional order integro-differential equation (4.2) has mild solution provided Mh* < 1 and Mg* < 1.

Proof. From Lemma 3.1, [|U(t)|| < M for all u € By = {u € U : ||u|| < k} for any positive constant k. There-
fore,

[U(6)(uo + h(u)| < M(luol + '|lull + [R(O)]). (4.3)

According to (B2), f(-, u, v) is measurable on [0, T] and one can easily show that (t — s)*~! € Lﬁ[o, t] for all
t € [0, T] and B € (0, a). Let

a-1

=1 5
By Holder’s inequality and Assumption (B2), for ¢ € [0, T],

b

€ (_1, 0)’ Ml = ”mf”L%.

1-B

t t

j|(t STVt — )f(s, u(s), Ku(s)|ds < —1— I(t _o)Sds| M, MM,
T(a)

0 0

< MM rama-p, (44
T(@)(1 + b)1-#

For t € [0, t;) and for positive r we define F; and F, on B, as,

Fu(t) = U(t)(uo + h(u),
t
Bu(t) = I(t — 8)* 1V (t - s)f(t, u(s), Ku(s))ds,
0
then u(t) is the mild solution of the semilinear fractional integro-differential equation if and only if the
operator equation u = Fju + F,u has solution for u € B, for some r. Therefore, the existence of a mild
solution of (3.1) over the interval [0, t;) is equivalent to determining a positive constant ry, such that
F, + F, has a fixed point on Bj,.

Step 1: ||Flu + F,v|| < 1, for some positive r,.

Let u, v € B,,, choose

[uo| + |h(z)| N MM, £+ 1)

-M
o 1-Mh (- MIOT(@)@ + by P .

and consider
t
[Fru(t) + Fv(t)| < |U(6) (uo + h(w)| + I(t - 8)* 1V (t - s)f(t, v(s), Kv(s))ds
0

. MM, A+b)(1-p)
< M(uo| + H|lull + |RO)]) + —————¢
(luol [lul| + |h(0)) T@+ by P "

(using inequalities (4.3) and (4.4))
<ry (since, Mh* <1).

Therefore, ||[Fiu + Fov|| < 1y for every pair u, v € By,.

Step 2: F; is contraction on B,

For any u,v € By, and t € [0, t;), we have |Fu(t) — Fiv(t)| < Mh*||lu — v||. Taking supremum over [0, t),
||Fiu — Fiv|| £ Mh*||u - v||. Since Mh* < 1, F, is contraction.
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Step 3: F; is a completely continuous operator on B;,.

Let {u,} be the sequence in B,, converging to u € B;, and consider,
t
[Faun(t) — Fu(t)| < _[(t = )XV (t - s)IIf(s, un(s), Kun(s)) - f(s, u(s), Ku(s))|ds
0

M
<

(t — $)* sup |f(s, un(s), Kun(s)) - f(s, u(s), Ku(s))|ds
I(@)

s€[0,t)

R O C—

< M b (s, u(s), Kun(s) - £(5, u(s), Ku(s)|,
r(a + 1) s€[0,t)

which implies
a

i sup |f(s, ux(s), Kuy(s)) - f(s, u(s), Ku(s))|.
[a + 1)se[0,t1)

Continuity of f and K leads to ||Fu, — F>u|| — 0 as n — oo. Thus, F, is continuous.

[[F2upn — Foull <

To show {Fu(t), u € B,;} is relatively compact it is sufficient to show that the family of functions

{F,u, u € B} is uniformly bounded and equicontinuous, and for any ¢ € [0, t;), {F,u(t), u € B, } is relatively
compact in U.

Clearly for any u € By, |[|[F>ul| < 15, which means that the family {F,u(t), u € B,)} is uniformly bounded.
Foranyu e B,and0 <[ <m < 4,

[Ku(n) - F(w)|= I (B - ) W(n - s)f(s, u(s), Ku(s))ds — I (7 — 8)* V(g - s)f (s, u(s), Ku(s))ds
0 0

= _[ (B - )WV (1, — S)f(s, u(s), Ku(s))ds + '[ (B - S)* V(1 — 8)f(s, u(s), Ku(s))ds
T 0

- j (6 — )1V (5 - )F(s, u(s), Ku(s))ds
0

IN

j (5~ S)Y V(T - )F(s, u(s), Ku(s))ds

+ _[ (B - 5)¥1 = (7 - ) V(5 - 5)f(s, u(s), Ku(s))ds
0

+ I (7 - s)* V(- s) - V(n - s)If(s, u(s), Ku(s))ds
0

< 11 + Iz + 13,

where

L

I (B - ) W(n - s)f(s, u(s), Ku(s))ds

it

IN

I (1, — 8)* V(% — 8)f (s, u(s), Ku(s))|ds
MM,

<— "1 (- 5)"DA-A (applying inequality (4.4) over interval [, ©)),
F(a)(1+b)1’ﬁ(2 1) (applying ineq y (4.4) (7, B))
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L= I (B - $)¥ = (1 — )X V(n - 5)f(s, u(s), Ku(s))ds
0

< % ! (@ - 9" = (@ - $)*If(s, u(s), Ku(s))lds
T o
<M j (- )% — (1 - ) Jeads | My (applying Holder's inequality)
I'(a) A
T r
< 1;4(1;”)1 _0[ (5, - 5)P - (1 - 5)]ds
MM] +b +b -
e A G Vi
MM,

<———— - (b-T (1+b)(1’ﬂ)
T(a)(1 + b)l*ﬁ( 2= T

and

q

L= f (1 - 8)*HV(n - s) - V(n - S)If(s, u(s), Ku(s))ds
0

IN

I (1 — $)¥ V(1 — 5) — V(1 — 5)f (s, u(s), Ku(s))|ds
0

IN

se(n,1)

_[ [(m — $)*Yf (s, u(s), Ku(s))|ds sup V(% - s) — V(5 - s)|
0

< th“”’)“*ﬁ) sup |V(1, - s) - V(r; — s)| (applying Holder’s inequality).
1+ b)i-# seln, ]

The integrals I; and L, vanish if ; — % as they contain term (©; — 7). By Assumption (B1), the integral & also
vanishes as  — 7. Therefore, |F,u(n) — F(1)| tends to zero as  — 7 for independent choice of u € B,,.
Hence, the family {F;u, u € B, } is equicontinuous.

Now we show that the family X(¢) = {F>u(t), u € By} for all ¢ € [0, 4) is relatively compact. It is obvious
that X(0) is relatively compact.

Let to € [0, ) be fixed and for each € € [0, ;), define an operator F; on B, by the formula:

t-¢

Eu(t) = J- (t = s)*1V(t - s)f(t, u(s), Ku(s))ds.
0

Compactness of the operator V(t) leads to relative compactness of the set X.(t) = Fu(t), u € B, in U.
Moreover,

t-¢

t
|[Fu(t) — Fu(t)| = -[ (t = $)* WV (t - s)f(t, u(s), Ku(s))ds — I (t = )WV (t - s)f(t, u(s), Ku(s))ds
0 0

t
< '[ |(t = $)*1V(t - $)f (¢, u(s), Ku(s))Ids

MM,

<— " _(t-¢g)*D-B (applying inequality (4.4)).
r(a)(1+b)1-ﬁ( ) (applying inequality (4.4))
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Therefore, X(t) is relatively compact as it is very close to relatively compact set X.(t). Thus, by the Ascoli-

Arzela theorem the operator F, is completely continuous on B,. Hence, using Krasnoselskii’s fixed point

theorem F, + F; has fixed point on B,,, which is the mild solution of equation (4.1) over the interval [0, £).
On the interval (¢, sk) for all k = 1, 2,..., p and for positive r we define F; and F, on B, as,

Fu(t) = g (t, u(t)),
F2 u(t) =0

then u(t) is the mild solution of the semilinear fractional integro-differential equation if and only if the
operator equation u = Fiu + F,u has solution for u € B, for some r. Therefore, the existence of a mild
solution of (3.1) over the interval [f, si) is equivalent to determining a positive constant ry, such that
F + F has a fixed point on B,,. In fact, it is obvious due to Assumption (B5). On the interval [sy, fi.1) for
all k =1, 2,..., p and for positive r we define F; and F, on B, as,

Fru(t) = U(t - s1) 8 (S, u(si)),

Fu(t) = '[ (t — ) 1V(t - s)f(t, u(s), Ku(s))ds

Sk

then u(t) is the mild solution of the semilinear fractional integro-differential equation if and only if the
operator equation u = Fju + F,u has solution for u € B, for some r. Therefore, the existence of a mild
solution of (3.1) over the interval [si, tc,1) is equivalent to determining a positive constant ry, such that
F + F, has a fixed point on By,

Selecting

_ yltol +18C, )1 MM,

t = 5)1+DA-H),
1- Mg* (1- Mg"T(@{ + b)l-ﬁ( )

and using similar arguments for interval [0, ¢;) and by Krasnoselskii’s fixed point theorem F; + F, has fixed
point on B, which is the mild solution of equation (4.1) over the interval [si, ti.1). O

Example 4.1.1. Fractional partial integro-differential system with nonlocal conditions:

1

DY2u(t, x) = uy(t, x) + =%

t

I eusxds, te[0,1/3) U [2/3,1],
) (4.5)
u(t, x)

MO0 ot utt )’

te[1/3,2/3)
over the 1nterval[0 1] with initial condition u(0, x) = ug(x) + Zl 13 lu(l/l x) and boundary condition u(t, 0) =
(t9 l) -
Equation (4.5) can be reformulated as a fractional order abstract equation in U = L%([0, 1], R) as

‘De(t) = Az(t) + f(t, z(t), Kz(t)), te[0,1/3) U [2/3,1],

z(t) = g(t, z(t)), t € [1/3,2/3) (4.6)

over the interval [0, 1] by defining z(t) = u(t, -), operator Au = u'’ (second-order derlvatlve with respect to x).
The functions f and g over respected domains are defined as f(t, z(t), Kz(t)) = f e*9ds and g(t, z(t)) =

z(t) .
00+ 20)° respectively.

Equation (4.6) satisfies conditions (B1)—(B5) of the hypothesis with Mh* < 1 and Mg"* < 1. Hence, equa-
tion (4.6) has a mild solution over the interval [0, 1].
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5 Conclusion

Existence of mild solution of noninstantaneous impulsive semilinear fractional evolution equation with
local and nonlocal conditions over the general Banach space is established in this paper. The result of local
evolution equation is obtained through the general Banach contraction theorem, while the nonlocal evolu-
tion equation is obtained through Krasnoselskii’s fixed point theorem.
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