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Abstract: In this article, a new problem that is called system of split mixed equilibrium problems is
introduced. This problem is more general than many other equilibrium problems such as problems of
system of equilibrium, system of split equilibrium, split mixed equilibrium, and system of split variational
inequality. A new iterative algorithm is proposed, and it is shown that it satisfies the weak convergence
conditions for nonexpansive mappings in real Hilbert spaces. Also, an application to system of split varia-
tional inequality problems and a numeric example are given to show the efficiency of the results. Finally, we
compare its rate of convergence other algorithms and show that the proposed method converges faster.
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1 Introduction

Let H be a real Hilbert space and C be a nonempty, closed, and convex subset of H. For = …i N1, 2, , , let
�× →F C C:i be a family of bifunctions such that ( ) =F x x, 0i for = …i N1, 2, , . We define the following

problems:

1. The equilibrium problem is to find ∈

∗x C such that ( ) ≥

∗F x x, 01 for all ∈x C.
2. The system of equilibrium problems is to find ∈

∗x C such that ( ) ≥

∗F x x, 0i for all ∈x C.

Although the theory of equilibrium problems was first introduced by Fan [1] in 1972, the most signifi-
cant contributions to this problem were made by Blum and Oettli [2] and Noor and Oettli [3] in 1994. The
equilibrium problem has a great impact on the development of several branches of pure and applied
sciences, and it provides a natural and unified framework for solving several problems arising in physics,
engineering, economics, game theory, image reconstruction, transportation, network, and elasticity. It can
also be reformulated in the form of different mathematical problems such as an optimization problem, a
convex feasibility problem (see [4]), a variational inequality problem (see [5]), a minimization problem (see
[6]), a minimax inequality problem, a fixed point problem, a complementarity problem, a saddle point
problem, or a Nash equilibrium problem in noncooperative games (see [2]). Therefore, it is natural to extend
such a problem to more general problems in several ways. The system of equilibrium problems and mixed
equilibrium problems was introduced and studied by some authors in, for instance, [15–19].

Ibrahim Karahan: Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, 25700, Turkey,
e-mail: ibrahimkarahan@erzurum.edu.tr



* Corresponding author: Lateef Olakunle Jolaoso, Department of Mathematics and Applied Mathematics, Sefako Makgatho
Health Sciences University, Pretoria, P.O Box 60, Medunsa 0204, South Africa, e-mail: jollatanu@yahoo.co.uk

Demonstratio Mathematica 2020; 53: 309–324

Open Access. © 2020 Ibrahim Karahan and Lateef Olakunle Jolaoso, published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/dema-2020-0027
mailto:ibrahimkarahan@erzurum.edu.tr
mailto:jollatanu@yahoo.co.uk


Recently, Moudafi [7] introduced a split equilibrium problem which is a generalization of several
optimization problems such as split feasibility problem, split inclusion problem, split variational inequality
problem, and split common fixed point problem, see, e.g., [8–14]. By combining the ideas of split equilib-
rium problem with the system of equilibrium problems, in 2016, the system of split equilibrium problems
and mixed equilibrium problems was introduced by Ugwunnadi and Ali [20] and Onjai-uea and Phuen-
grattana [21], respectively, see also [22–24]. These problems are defined as follows:

1. The split equilibrium problem is to find ∈

∗x C such that ( ) ≥

∗F x x, 01 , for all ∈x C, and such that
= ∈

∗ ∗y Ax Q solves ( ) ≥

∗G y y, 01 for all ∈y Q;
2. The system of split equilibrium problems is to find ∈

∗x C such that ( ) ≥

∗F x x, 0i , for all ∈x C, and such
that = ∈

∗ ∗y Ax Q solves ( ) ≥

∗G y y, 0i for all ∈y Q, where { }Fi and { }Gi are families of bifunctions;
3. The mixed equilibrium problem is to find ∈

∗x C such that ( ) + ( ) − ( ) ≥

∗ ∗F x x φ x φ x, 01 for all ∈x C;
4. The split mixed equilibrium problem is to find ∈

∗x C such that ( ) + ( ) − ( ) ≥

∗ ∗F x x φ x φ x, 01 for all ∈x C
and such that = ∈

∗ ∗y Ax Q solves ( ) + ( ) − ( ) ≥

∗ ∗F y y ϕ y ϕ y, 02 for all ∈y Q,

where C and Q are nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2, respectively,
�× →F C C:i and �× →G Q Q:i are families of bifunctions satisfying ( ) =F x x, 0i for all ∈x C and

( ) =G y y, 0i for all ∈Y Q, for = …I N1, 2, , , �→ ∪ {+∞}φ C: and �→ ∪ {+∞}ϕ Q: are proper lower
semicontinuous and convex functions such that ∩ ≠ ∅C φdom and ∩ ≠ ∅Q ϕdom .

In recent years, many authors have made several efforts to develop implementable iterative methods for
solving all these problems. In 2016, Suantai et al. [10] considered the split equilibrium problem and
proposed the following iterative algorithm to find a common solution of fixed point problem for a non-
spreading multivalued mapping and the split equilibrium problem:
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They proved a weak convergence theorem for the iterative sequence. In the same year, Ugwunnadi and Ali
[20] established the following algorithm to solve the system of split equilibrium problems and showed that
the sequence generated by their algorithm converges strongly to the common solution of considered
problem and fixed point problem for a finite family of continuous pseudocontractive mappings.
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One year later, Onjai-uea and Phuengrattana [21] proposed another iterative algorithm to find a solu-
tion for the split mixed equilibrium problem for λ-hybrid multivalued mappings. They proved that the
sequence generated by the following iterative algorithm converges weakly to a common solution of fixed
point problem and split mixed equilibrium problem.
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(1.2)

Motivated and inspired by these problems and iterative methods, we introduce a new problem called
system of split mixed equilibrium problems, which generalizes all these problems stated above and propose
a new iterative algorithm to find a common solution of fixed point problem and system of split mixed
equilibrium problems. We prove that sequence generated by our algorithm converges weakly to the solu-
tion. Also, we give some corollaries and numeric results to show that our results generalize and extend
many results in the literature.
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2 Preliminaries

Throughout this article, we use � and � to represent the set of natural and real numbers, respectively, “→”
for strong convergence of a sequence and “⇀” for the weak convergence. Let C and Q be nonempty closed
convex subsets of real Hilbert spaces H1 and H2, respectively, →A H H: 1 2 a bounded linear operator,

�× →F C C:1 and �× →F Q Q:2 nonlinear bifunctions, and S be a mapping from C onto H . A point
∈x C is called a fixed point of S if =Sx x and the set of fixed points of S is denoted by ( )F S . A mapping

→S C H: is said to be nonexpansive if

∥ − ∥ ≤ ∥ − ∥Sx Sy x y ,

firmly nonexpansive if

∥ − ∥ ≤ 〈 − − 〉Sx Sy Sx Sy x y,2

and ν-inverse strongly monotone (ν-ism) if

〈 − − 〉 ≥ ∥ − ∥Sx Sy x y ν Sx Sy, 2

for all ∈x y C, . It is easy to see from the Schwarz inequality that every firmly nonexpansive mapping is also
a nonexpansive mapping.

Lemma 1. [25] Let C be a nonempty closed convex subset of a uniformly convex Banach space X, and
→S C C: be a nonexpansive mapping with ( ) ≠ ∅F S . Then ( )F S is closed and convex.

Lemma 2. [26] Let C be a nonempty closed convex subset of a real Hilbert space H , and S be a nonexpansive
self-mapping on C. If ( ) ≠ ∅F S , then −I S is demiclosed at 0; i.e., if ⇀x xn and ( − ) →I S x 0n , then
( − ) =I S x 0, i.e., ∈ ( )x F S . Here, I is the identity mapping of H .

Lemma 3. Let H be a Hilbert space and { }xn a sequence in H. Let ∈u v H, be such that ∥ − ∥
→∞

x ulimn n and
∥ − ∥

→∞
x vlimn n exist. If { }xnk and { }xmk are subsequences of { }xn which converge weakly to u and v, respectively,

then =u v.

Lemma 4. [27] Let H be a real Hilbert space. Then, we have

∥ − ∥ = ∥ ∥ − ∥ ∥ − 〈 − 〉x y x y x y y2 , ,2 2 2

∥ + ∥ ≤ ∥ ∥ + 〈 + 〉x y x y x y2 , ,2 2

and

∥ + ( − ) ∥ = ∥ ∥ + ( − )∥ ∥ − ( − )∥ − ∥λx λ y λ x λ y λ λ x y1 1 12 2 2 2

for all ∈x y H, and ∈ [ ]λ 0, 1 . Also, if { }xn is a sequence in H weakly converging to ∈z H , then

∥ − ∥ = ∥ − ∥ + ∥ − ∥ ∀ ∈

→∞ →∞

x y x z z y y Hlim sup lim sup , .
n

n
n

n
2 2 2

We need the following assumptions to solve a mixed equilibrium problem for a bifunction �× →F C C:
and a mapping φ:
(A1) ( ) =F x x, 0, ∀ ∈x C,
(A2) F is monotone, i.e., ( ) + ( ) ≤ ∀ ∈F x y F y x x y C, , 0, , ,
(A3) ( + ( − ) ) ≤ ( )

→
F λz λ x y F x ylim 1 , ,λ 0 for all ∈x y z C, , ,

(A4) ∀ ∈x C, ↦ ( )y F x y, is convex and lower semicontinuous,
(A5) for each ∈x C, ∈ ( ]λ 0, 1 , and >r 0, there exist a bounded subset ⊆D C and ∈a C such that for any

∈z C D\ ,

( ) + ( ) − ( ) + 〈 − − 〉 <F z a φ a φ z
r

a z z x, 1 , 0.

(A6) C is a bounded set.
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Lemma 5. [28] Let C be a nonempty closed convex subset of a Hilbert space H1 and �→ ∪ {+∞}φ C:
a proper lower semicontinuous and convex mapping such that ∩ = ∅C φdom . Suppose that bifunction

�× →F C C: and a mapping φ satisfy Conditions (A1)–(A6). For >r 0 and ∈x H1, let →T H C:r
F

1 be a
mapping defined by

{ }
( ) = ∈ ( ) + ( ) − ( ) + 〈 − − 〉 ≥ ∀ ∈T x z C F z y φ y φ z

r
y z z x y C: , 1 , 0, .r

F (2.1)

Assume that either (A5) or (A6) holds. Then:
(i) for each ∈x H1, ≠ ∅T xr

F ,

(ii) Tr
F is single valued,

(iii) Tr
F is firmly nonexpansive,

(iv) ( ) = ( )F T MEP F φ,r
F and it is closed and convex.

Let �→ ∪ {+∞}ϕ Q: be a proper lower semicontinuous and convex mapping such that ∩ = ∅Q ϕdom .
Suppose that bifunction �× →G Q Q: and a mapping ϕ satisfy Conditions (A1)–(A6). For >s 0 and

∈u H2. Let →T H Q:s
G

2 be a mapping defined by

{ }
( ) = ∈ ( ) + ( ) − ( ) + 〈 − − 〉 ≥ ∀ ∈T u v Q G v w ϕ w ϕ v

s
w v v u w Q: , 1 , 0, .s

G (2.2)

Then clearly Ts
G satisfies (i)–(iv) of Lemma 5, and ( ) = ( )F T G ϕMEP ,s

G .

3 Main results

First, we introduce the system of split mixed equilibrium problems in the following form:

Definition 1. LetCi andQi be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively.
Let →A H H: 1 2 be a bounded linear operator, �× →F C C:i i i and �× → ≤ ≤G Q Q i N: , 1i i i , nonlinear
bifunctions and let �→ ∪ {+∞}φ C:i i and �→ ∪ {+∞}ϕ Q:i i be proper lower semicontinuous and
convex functions such that ∩ ≠ ∅C φdomi i and ∩ ≠ ∅Q ϕdomi i . The system of split mixed equilibrium

problems is to find ∈ = ⋂

∗

=

x C Ci
N

i1 such that

( ) + ( ) − ( ) ≥ ∀ ∈

∗ ∗F x x φ x φ x x C, 0, ,i i i i (3.1)
and such that = ∈ = ⋂

∗ ∗

=

y Ax Q Qi
N

i1 solves

( ) + ( ) − ( ) ≥ ∀ ∈

∗ ∗G y y ϕ y ϕ y y Q, 0, .i i i i (3.2)
The solution set of system of split mixed equilibrium problems (3.1) and (3.2) is denoted by

( ) = { ∈ ∈ ⋂ ( ) ∈ ⋂ ( )}

∗ ∗

=

∗

=

F φ G ϕ x C x F φ Ax G ϕSSMEP , , , : MEP , and MEP , ,i i i i i
N

i i i
N

i i1 1

where ( )F φMEP ,i i is the set of solutions of mixed equilibrium problem, i.e.,

( ) ≔ { ∈ ( ) + ( ) − ( ) ≥ ∀ ∈ }

∗ ∗ ∗F φ x C F x x φ x φ x x CMEP , : , 0, .i i i i i i i

Remark 1. In Definition 1, if
1. =N 1, then the system of split mixed equilibrium problems is reduced to the split mixed equilibrium

problem studied in, e.g., [21].
2. = =φ ϕ 0, then the system of split mixed equilibrium problems is reduced to the system of split equi-

librium problems studied in, e.g., [20].
3. =N 1 and = =φ ϕ 0, then the system of split mixed equilibrium problems is reduced to the split equi-

librium problem studied in, e.g., [7,9–11].
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4. =H H1 2, =A I , =F Gi i, and =φ ϕi i, then the system of split mixed equilibrium problems is reduced to the
system of mixed equilibrium problems.

5. =H H1 2, =A I , =F Gi i, and = =φ ϕ 0i i , then the system of split mixed equilibrium problems is reduced to
the system of equilibrium problems studied in, e.g., [16,17].

Theorem 1. Let Ci and Qi, ≤ ≤i N1 , be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, →A H H: 1 2 be a bounded linear operator and →S C C: a nonexpansive mapping, where

= ⋂
=

C Ci
N

i1 . Let �× →F C C:i i i and �× →G Q Q:i i i be nonlinear bifunctions satisfying Assumptions (A1)–
(A6), �→ ∪ {+∞}φ C:i i and �→ ∪ {+∞}ϕ Q:i i proper lower semicontinuous and convex functions such
that ∩ ≠ ∅C domφi i and ∩ ≠ ∅Q domϕi i and let Gi be upper semicontinuous in the first argument. Assume
that = ( ) ∩ ( ) ≠ ∅F S SSMEP F φ G ϕΓ , , ,i i i i . Let { }xn be a sequence generated by ∈x C1 and
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where ∈ ( )a β δ, , 0, 1n n n , ∈ ( ∞)r 0,n , and
( )

∈γ 0, L
1 such that L is the spectral radius of ∗A A and ∗A is the

adjoint of A. Assume that the following conditions hold:

(i) < ≤ <

→∞
→∞

δ δ0 lim inf lim sup 1,
n

n
n

n

(ii) < ≤ <

→∞
→∞

β β0 lim inf lim sup 1,
n n

n
n

(iii) < ≤ <

→∞
→∞

α α0 lim inf lim sup 1,
n

n
n

n

(iv) <

→∞

r0 lim inf
n

n.

Then the sequence { }xn generated by (3.3) converges weakly to ∈p Γ.

Proof. We divide our proof into six steps.

Step 1. In the first step, we show that ( − )

∗A I T Ar
Gi
n is a L

1 -ism for all = …i N1, 2, , . Since Tr
Gi
n is firmly

nonexpansive and −I Tr
Gi
n is 1-ism, by using that ∗A is adjoint of A, we have

∥ ( − ) − ( − ) ∥ = 〈 ( − ) ( − ) ( − ) ( − )〉

= 〈( − ) ( − ) ( − ) ( − )〉

≤ 〈( − ) ( − ) ( − ) ( − )〉

= ∥( − ) ( − )∥

≤ 〈 ( − ) ( − ) ( − )〉

= 〈 − ( − ) − ( − ) 〉
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∗
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r
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2
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n n n n

n n

n n

n

n

n n

for all ∈x y H, 1. So, ( − )

∗A I T Ar
Gi
n is a L

1 -ism for all = …i N1, 2, , . On the other hand, since < <γ0 L
1 , we get

− ( − )

∗I γA I T Ar
G
n

i is a nonexpansive mapping.

Step 2. In the second step, we show that sequences { } { } { }x y z, ,n n n , and { }un are bounded. Let ∈q Γ. It means

that q is a fixed point of the mappings S T, r
Fi
n and − ( − )

∗I γA I T Ar
G
n

i . Since Tr
Fi
n and − ( − )

∗I γA I T Ar
G
n

i are
nonexpansive mappings, we have

∥ − ∥ = ∥ ( − ( − ) ) − ( − ( − ) ) ∥ ≤ ∥ − ∥
−

∗ ∗u q T I γA I T A x T I γA I T A q x qn N r
F

r
G

n r
F

r
G

n, 1 n
N

n
N

n
N

n
N (3.4)
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and

∥ − ∥ = ∥ ( − ( − ) ) − ( − ( − ) ) ∥ ≤ ∥ − ∥
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Using (3.4) and (3.5), we obtain

∥ − ∥ = ∥ + ( − ) − ∥ ≤ ∥ − ∥ + ( − )∥ − ∥ ≤ ∥ − ∥ ≤ ∥ − ∥z q δ u δ Su q δ u q δ Su q u q x q1 1 .n n n n n n n n n n n (3.6)

From (3.6), we have

∥ − ∥ = ∥ + ( − ) − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ ∥ − ∥ + ( − )∥ − ∥ ≤ ∥ − ∥

y q β x β Sz q
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1 .

n n n n n
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n n n n n
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So, we have from (3.5) and (3.7) that

∥ − ∥ = ∥ + ( − ) − ∥ ≤ ∥ − ∥ + ( − )∥ − ∥

≤ ∥ − ∥ + ( − )∥ − ∥ ≤ ∥ − ∥
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Hence, it follows from (3.8) that the sequence {∥ − ∥}x qn is nonincreasing and bounded below. Therefore, we
get {∥ − ∥}x qn and so { } { } { }x y z, ,n n n , and { }un are convergent (so they are bounded) sequences.

Step 3. In this step, we show that∥ − ∥ →u x 0n n . For this, we need to show∥ − ∥ → ∥ − ∥ →
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u u u u0, 0n n n i n i,1 , , 1
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n n

n n n

n

1 1

1

1 1

1 1 1

1 1

1 1 1 1

1 1 1 1

1 1

1 1 1

1

On the other hand, since

∥ − ∥ = ∥ + ( − ) − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ (∥ − ∥ + ( − )∥( − ) ∥ ) + ( − )∥ − ∥

≤ ∥ − ∥ + ( − )∥( − ) ∥

+
x q α Su α Sy q

α Su q α Sy q
α u q α y q
α u q γ Lγ I T Au α x q
x q α γ Lγ I T Au

1
1

1
1 1

1 ,

n n n n n

n n n n

n n n n

n n r
G

n n n

n n r
G

n

1
2 2

2 2

2 2

,1
2

,1
2 2

2
,1

2
n

n

1

1

we obtain

− ( − )∥( − ) ∥ ≤ ∥ − ∥ − ∥ − ∥
+

α γ Lγ I T Au x q x q1 .n r
G

n n n,1
2 2

1
2

n
1
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If we take limit from both sides, we have ∥( − ) ∥ →I T Au 0r
G

n,1n
1 . Since = = = ⋯= …u J u J J u J Jn n n1 ,1 1 2 ,2 1 2

= …
− − −

J u J J J J xN n N N N n1 , 1 1 2 1 , in a similar way, we see that

∥( − ) ∥ =

→∞

I T Aulim 0
n

r
G

n i,n
i (3.9)

for = … −i N1, 2, , 1 and

∥( − ) ∥ =

→∞

I T Axlim 0.
n

r
G

nn
N (3.10)

Also, since Tr
F
n

N is firmly nonexpansive, we get

∥ − ∥ = ∥ ( − ( − ) ) − ∥

≤ 〈 ( − ( − ) ) − ( − ( − ) ) − 〉

= 〈 − ( − ( − ) ) − 〉

= (∥ − ∥ + ∥( − ( − ) ) − ∥ − ∥ − − ( − ) ∥ )

≤ (∥ − ∥ + ∥ − ∥ − (∥ − ∥ + ∥ ( − ) ∥

− 〈 − ( − ) 〉))

−

∗

∗ ∗

−

∗

−

∗

−

∗

− −

∗

−

∗

u q T I γA I T A x T q
T I γA I T A x T q I γA I T A x q
u q I γA I T A x q

u q I γA I T A x q u x γA I T Ax

u q x q u x γ A I T Ax

γ u x A I T Ax

,
,

1
2
1
2

2 , .

n N r
F

r
G

n r
F

r
F

r
G

n r
F

r
G

n

n N r
G

n

n N r
G

n n N n r
G

n

n N n n N n r
G

n

n N n r
G

n

, 1
2 2

, 1

, 1
2 2

, 1
2

, 1
2 2

, 1
2 2 2

, 1

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

So, we have

∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ + 〈 − ( − ) 〉

≤ ∥ − ∥ − ∥ − ∥ + ∥ − ∥∥ ( − ) ∥

− − −

∗

− −

∗

u q x q u x γ u x A I T Ax
x q u x γ u x A I T Ax

2 ,
2 .

n N n n N n n N n r
G

n

n n N n n N n r
G

n

, 1
2 2

, 1
2

, 1

2
, 1

2
, 1

n
n

n
n

Last inequality with inequalities (3.5) and (3.7) implies that

∥ − ∥ ≤ ∥ + ( − ) − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ (∥ − ∥ − ∥ − ∥ + ∥ − ∥∥ ( − ) ∥) + ( − )∥ − ∥

+

−

− −

∗

x q α Su α Sy q
α u q α y q
α u q α x q
α x q u x γ u x A I T Ax α x q

1
1

1
2 1 .

n n n n n

n n n n

n n N n n

n n n N n n N n r
G

n n n

1
2 2

2 2

, 1
2 2

2
, 1

2
, 1

2
n

N

Hence, we obtain

∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ + ∥ − ∥∥ ( − ) ∥

≤ ∥ − ∥ − ∥ − ∥ + ∥ ( − ) ∥

− + −

∗

+

∗

α u x x q x q γα u x A I T Ax
x q x q γα M A I T Ax

2
2 ,

n n N n n n n n N n r
G

n

n n n r
G

n

, 1
2 2

1
2

, 1

2
1

2
n

N

n
N

(3.11)

where
�

= {∥ − ∥}

∈

−
M u xsup

n
n N n, 1 . Therefore, it follows from (3.10) and (3.11) that

∥ − ∥ =

→∞

−
u xlim 0.

n
n N n, 1 (3.12)

Similarly, we have

∥ − ∥ = ∥ ( − ( − ) ) − ∥

≤ 〈 ( − ( − ) ) − ( − ( − ) ) − 〉

= 〈 − ( − ( − ) ) − 〉

= (∥ − ∥ + ∥( − ( − ) ) − ∥ − ∥ −

− ( − ) ∥ )

≤ (∥ − ∥ + ∥ − ∥ − (∥ − ∥ + ∥ ( − ) ∥

− 〈 − ( − ) 〉))

−

∗

−

∗

−

∗

−

−

∗

−

−

∗

− − −

∗

−

− − − −

∗

−

− −

∗

−

− − −

− − − −

−

−

−

−

−

u q T I γA I T A u T q
T I γA I T A u T q I γA I T A u q
u q I γA I T A u q

u q I γA I T A u q u u

γA I T Au

u q u q u u γ A I T Au

γ u u A I T Au

,
,

1
2

1
2

2 , .

n N r
F

r
G

n N r
F

r
F

r
G

n N r
F

r
G

n N

n N r
G

n N

n N r
G

n N n N n N

r
G

n N

n N n N n N n N r
G

n N

n N n N r
G

n N

, 2
2

, 1
2

, 1 , 1

, 2 , 1

, 2
2

, 1
2

, 2 , 1

, 1
2

, 2
2

, 1
2

, 2 , 1
2 2

, 1
2

, 2 , 1 , 1

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

n
N

1 1 1

1 1 1 1

1

1

1

1

1
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So, we have

∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ + 〈 − ( − ) 〉

≤ ∥ − ∥ − ∥ − ∥ + ∥ − ∥∥ ( − ) ∥

− − − − − −

∗

−

− − − −

∗

−

−

−

u q u q u u γ u u A I T Au
x q u u γ u u A I T Au

2 ,
2 .

n N n N n N n N n N n N r
G

n N

n n N n N n N n N r
G

n N

, 2
2

, 1
2

, 2 , 1
2

, 2 , 1 , 1

2
, 2 , 1

2
, 2 , 1 , 1

n
N

n
N

1

1

This implies that

∥ − ∥ ≤ ∥ + ( − ) − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ (∥ − ∥ − ∥ − ∥

+ ∥ − ∥∥ ( − ) ∥) + ( − )∥ − ∥

≤ ∥ − ∥ − ∥ − ∥ + ∥ − ∥∥ ( − ) ∥

+

−

− −

− −

∗

−

− − − −

∗

−

−

−

x q α Su α Sy q
α u q α y q
α u q α x q
α x q u u

γ u u A I T Au α x q
x q α u u γα u u A I T Au

1
1

1

2 1
2 .

n n n n n

n n n n

n n N n n

n n n N n N

n N n N r
G

n N n n

n n n N n N n n N n N r
G

n N

1
2 2

2 2

, 2
2 2

2
, 2 , 1

2

, 2 , 1 , 1
2

2
, 2 , 1

2
, 2 , 1 , 1

n
N

n
N

1

1

Hence, we obtain

∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥ ∥ ( − ) ∥
− − +

∗

−

−α u u x q x q γα M A I T Au2 ,n n N n N n n n r
G

n N, 2 , 1
2 2

1
2

1 , 1n
N 1

where
�

= {∥ − ∥}

∈

− −
M u usup

n
n N n N1 , 1 , 1 . Therefore, it follows from (3.9) that

∥ − ∥ =

→∞

− −
u ulim 0.

n
n N n N, 2 , 1 (3.13)

With a similar way, we have

∥ − ∥ = ∥ − ∥ =

→∞

+

→∞

u u u ulim 0 and lim 0.
n

n i n i
n

n n, , 1 ,1 (3.14)

Since,

∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ + ⋯+∥ − ∥ + ∥ − ∥
− − −

u x u u u u u u u xn n n n n n n N n N n N n,1 ,1 ,2 , 2 , 1 , 1

using (3.12), (3.13), and (3.14), we obtain

∥ − ∥ =

→∞

u xlim 0.
n

n n (3.15)

Step 4. Now, we show that ∥ − ∥ =

→∞

u Sulim 0
n

n n . Since,

∥ − ∥ ≤ ∥ + ( − ) − ∥

≤ ∥ − ∥ + ( − )∥ − ∥

≤ ∥ − ∥ + ( − )( ∥ − ∥ + ( − )∥ − ∥ )

≤ ∥ − ∥ + ( − )( − )∥ − ∥

≤ ∥ − ∥ + ( − )( − )(∥ + ( − ) − ∥ )

≤ ∥ − ∥ + ( − )( − )( ∥ − ∥

+ ( − )∥ − ∥ − ( − )∥ − ∥ )

≤ ∥ − ∥ − ( − )( − )( − )∥ − ∥

+
x q α Su α Sy q

α u q α y q
α x q α β x q β Sz q
x q α β z q
x q α β δ u δ Su q
x q α β δ u q

δ Su q δ δ Su u
x q δ α β δ Su u

1
1
1 1

1 1
1 1 1
1 1

1 1
1 1 1 ,

n n n n n

n n n n

n n n n n n n

n n n n

n n n n n n n

n n n n n

n n n n n n

n n n n n n n

1
2 2

2 2

2 2 2

2 2

2 2

2 2

2 2

2 2

we get,

( − )( − )( − )∥ − ∥ ≤ ∥ − ∥ − ∥ − ∥
+

δ α β δ Su u x q x q1 1 1 .n n n n n n n n
2 2

1
2

Therefore, we obtain

∥ − ∥ =

→∞

Su ulim 0.
n

n n (3.16)

Step 5. In this step, we show that ( ) ⊂ω x Γw n , where ( ) = { ⇀ { } ⊂ { }}ω x x x x x x: ,w n n ni i . It is clear that
( ) ≠ ∅ω xw n because of boundedness of { }xn . Let us assume that p is an arbitrary element of ( )ω xw n . It means

that there exists a subsequence { }xni such that ⇀x pni . Using (3.15), we know that there exists a subse-
quence { }uni of { }un such that ⇀u pni . By (3.16) and Lemma 2, we have ∈ ( )p F S .
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Now, we show that ∈ ⋂ ( )
=

p F φMEP ,i
N

i i1 . Since = ( − ( − ) )

∗u T I γA I T A un r
F

r
G

n,1n n
1 1 , we get

( ) + ( ) − ( ) + 〈 − − + ( − ) 〉 ≥ ∀ ∈

∗F u y φ y φ u
r

y u u u γA I T Au y C, 1 , 0, .n n
n

n n n r
G

n1 1 1 ,1 ,1 1n
1

So, we can write

( ) + ( ) − ( ) + 〈 − − 〉 + 〈 − ( − ) 〉 ≥ ∀ ∈

∗F u y φ y φ u
r

y u u u
r

y u γA I T Au y C, 1 , 1 , 0, .n n
n

n n n
n

n r
G

n1 1 1 ,1 ,1 1n
1

Since F1 is a monotone mapping, we have

( ) − ( ) + 〈 − − 〉 + 〈 − ( − ) 〉 ≥ ( )

∗φ y φ u
r

y u u u
r

y u γA I T Au F y u1 , 1 , , ,n
n

n n n
n

n r
G

n n1 1 ,1 ,1 1n
1

and hence

( ) − ( ) + 〈 − − 〉 + 〈 − ( − ) 〉 ≥ ( )

∗φ y φ u
r

y u u u
r

y u γA I T Au F y u1 , 1 , , ,n
n

n n n
n

n r
G

n n1 1 ,1 ,1 1i
i

i i i
i

i ni i i
1

for all ∈y C1. It follows fromweakly convergence of uni to p, Condition (iv), (3.9), (3.14) and the proper lower
semicontinuity of φ1 that

( ) + ( ) − ( ) ≤ ∀ ∈F y p φ p φ y y C, 0, .1 1 1 1

Let = + ( − )y λy λ p1λ , for all ∈ ( ]λ 0, 1 and ∈y C1. It is clear that ∈y Cλ 1. So, last inequality holds for =y yλ,
that is,

( ) + ( ) − ( ) ≤F y p φ p φ y, 0.λ λ1 1 1

From Assumptions (A1)–(A6) and last inequality, we have

= ( ) + ( ) − ( )

≤ ( ) + ( − ) ( ) + ( ) + ( − ) ( ) − ( ) − ( − ) ( )

= ( ( ) + ( ) − ( )) + ( − )( ( ) + ( ) − ( ))

≤ ( ( ) + ( ) − ( ))

F y y φ y φ y
λF y y λ F y p λφ y λ φ p λφ y λ φ y
λ F y y φ y φ y λ F y p φ p φ y
λ F y y φ y φ y

0 ,
, 1 , 1 1
, 1 ,
, .

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1

Therefore, we have

( ) + ( ) − ( ) ≥ ∀ ∈F y y φ y φ y y C, 0, .λ λ1 1 1 1

By taking limit as →λ 0, we get

( ) + ( ) − ( ) ≥ ∀ ∈F p y φ y φ p y C, 0, ,1 1 1 1

that is, ∈ ( )p F φMEP ,1 1 . Similarly, since =
+ +

u J un i i n i, 1 , 1 for ≤ ≤ −i N1 2, =
−

u J xn N N n, 1 it follows from (3.9),
(3.10), (3.12), and (3.14) that ∈ ( )p F φMEP ,i i for ≤ ≤i N1 . So, we obtain that ∈ ⋂ ( )

=

p F φMEP ,i
N

i i1 for
∈ = ⋂

=

y C Ci
N

i1 . On the other hand, since A is a bounded linear operator, we get ⇀Ax Apni . Then, from
(3.9), (3.10), and (3.15), we have ⇀T Ax Apr

G
nni

k
i , for = …k N1, 2, , . So, from definition of T Axr

G
nni

k
i, we get

( ) + ( ) − ( ) + 〈 − − 〉 ≥G T Ax y ϕ y ϕ T Ax
r

y T Ax T Ax Ax, 1 , 0,k r
G

n k k r
G

n
n

r
G

n r
G

n nni
k

i ni
k

i
i

ni
k

i ni
k

i i

for all ∈y Qk. It follows from weakly convergence of T Axr
G

nni
k

i to Ap and upper semicontinuity in the first
argument of Gk that

( ) + ( ) − ( ) ≥ ∀ ∈G Ap y ϕ y ϕ Ap y Q, 0, .k k k k

This implies that ∈ ( )Ap G ϕMEP ,i i and so ∈ ⋂ ( )
=

Ap G ϕMEP ,i
N

i i1 for ∈ = ⋂
=

y Q Qi
N

i1 . Hence,
∈ (p F φSSMEP , ,i i )G ϕ,i i and so ∈p Γ.

Step 6. Finally, we show that ⇀ ∈x p Γn . If we assume that there exist subsequences { }xni and { }xnk which
converge weakly to p and q, respectively, then we obtain from Step 2 that ∥ − ∥

→∞
x plimn n and

∥ − ∥
→∞

x qlimn n exist. So, from Lemma 3, we have =p q. It means that ( )ω xw n is a singleton set. This
completes the proof. □
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Remark 2. In Theorem 1, if
1. =N 1, then we derive the split mixed equilibrium problems which were introduced by Onjai-uea and

Phuengrattana [21]. So, our problem generalizes their problem. Also, if we choose =δ 1n for all �∈n ,
then we derive their iterative algorithm for nonexpansive mappings.

2. = =φ ϕ 0i i , then the sequence { }xn generated by (3.3) converges weakly to a solution of system of split
equilibrium problems.

Now, we give the following theorem for the system of split variational inequality problems.

Theorem 2. Let C Q C Q H H A, , , , , ,i i 1 2 , and S be chosen as in Theorem 1. Let the bifunctions �× →F C C:i i i
and �× →G Q Q:i i i be defined by ( ) = 〈 ( ) − 〉

∗ ∗F x y A x y x, ,i i and ( ) = 〈 ( ) − 〉

∗ ∗G u v B u v u, ,i i , respectively,
where →A C H:i i 1 and →B Q H:i i 2 are monotone mappings. Then, the sequence { }xn generated by (3.3)
converges weakly to a solution of system of split variational inequality problems which is to find a point

∈

∗x C such that

〈 ( ) − 〉 ≥ ∀ ∈

∗ ∗A x y x y C, 0,i i

and such that = ∈

∗ ∗u Ax Q solves

〈 ( ) − 〉 ≥ ∀ ∈

∗ ∗B u v u v Q, 0, .i i

4 Numerical examples

Now, we give a numerical example to support our proof.

Example 1. Let �= = = [− ] = [− − ] ( ) = ( ) = × →H H C i Q i φ x ϕ x F C C H, , 0 , 10 , 0 , 0, :i i i i i i i1 2 1, ( ) =F x y,i

( − ) × → ( ) = ( + ) ( − )ix y x G Q Q H G x y i x y x, : , , 10i i i i2 , ≤ ≤ →i N S C H1 , : 1, =Sx x
2 , → =A H H Ax: , x

1 2 2 ,

where = ⋂ = [− ]
=

C C 1, 0i
N

i1 and = ⋂ = [− ]
=

Q Q 11, 0 .i
N

i1 It is clear that Fi and Gi satisfy Assumptions

(A1)–(A6), the set of fixed point of ( )S F S, is { }0 , the adjoint operator ∗A of A is defined by =

∗A x x
2 from

H2 to H1 and the spectral radius of ∗A A is =L 1
2 . First, we find a common solution ∈

∗x C for the following

system of mixed equilibrium problems:

( ) + ( ) − ( ) ≥ ∀ ∈

∗ ∗F x x φ x φ x x C, 0, ,i i i i

for ≤ ≤i N1 . Since we choose the mapping φ as 0, the point ∗x has to be a solution for the inequality
( − ) ≥

∗ ∗ix x x 0 for all ∈ [− ]x i, 0 . This problem has a unique solution =

∗x 0. It is obvious that the point
= =

∗ ∗y Ax 0 is a solution for the following system of mixed equilibrium problems:

( ) + ( ) − ( ) ≥ ∀ ∈

∗ ∗G y y ϕ y ϕ y y Q, 0, ,i i i i

for ≤ ≤i N1 , that is, =

∗y 0 solves the inequality ( + ) ( − ) ≥

∗ ∗i y y y10 0 for all ∈ [− − ]y i10 , 0 . So, we obtain
that =

∗x 0 is a common solution for the system of split mixed equilibrium problems and fixed point
problem, i.e., ∈ = ( ) ∩ ( )F S F φ G ϕ0 Γ SSMEP , , ,i i i i .

Next, we compute ( − ( − ) )

∗T I γA I T A xr
F

r
Gi

n
i

n . From Assumptions (A1)–(A6), it is known that the mappings

Tr
F
n

i and Tr
Gi
n are single value mappings. Let =T Ax zr

Gi
n . Then, we have








= ⇔ ( ) + ( ) − ( ) + ( − )( − ) ≥ ∀ ∈

⇔ ( + ) ( − ) + ( − ) − ≥ ∀ ∈

T Ax z G z y ϕ y ϕ z
r

y z z Ax y Q

i z y z
r

y z z x y Q

, 1 0,

10 1
2

0,

r
Gi

i i i
n

i

n
i

n
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So, we get








( − ( − ) ) = − − = − +

+ ( + )

= +

+ ( + )

∗ ∗I γA I T A x x A x T Ax x x x
i r

x x
i r2 4 4 4 10

3
4 4 4 10

.r
Gi

r
Gi

n n
n n

On the other hand, let =T u wr
F
n

i . Then, we have





















= ⇔ ( ) + ( ) − ( ) + ( − )( − ) ≥ ∀ ∈

⇔ ( − ) + ( − )( − ) ≥ ∀ ∈

⇔ ( − ) + ( − ) ≥ ∀ ∈

⇔ + − =

⇔ =

+

T u w F w v φ v φ w
r

v w w u v C

iw v w
r

v w w u v C

v w iw
r

w u v C

w i
r

u
r

w u
ir

, 1 0,

1 0,

1 0,

1 0

1
.

r
Fi

i i i
n

i

n
i

n
i

n n

n

n

From the last equality, we obtain that









( − ( − ) ) =

+

+

+ ( + )

∗T I γA I T A x
ir

x x
i r

1
1

3
4 4 4 10

.r
F

r
Gi

n n
n

i
n

Now, we show that the sequence { }xn generated by our iteration method (3.3) converges weakly to the

common solution =

∗x 0. Let = = = =

+ + + +

α β δ r, , ,n
n

n n
n

n n
n

n n
n

n1 2 1 3 1 4 1 , and =γ 1. It is clear that α β δ, ,n n n,

and rn satisfy Conditions (i)–(iv) of Theorem 1. Then, Algorithm (3.3) becomes




























































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In Table 1, we give some steps of Algorithm (4.1) for some initial values and special N. From the table,
it is clear that sequence { }xn generated by Algorithm (4.1) converges weakly to common solution =

∗x 0.

In Figure 1, we give the graphics of the fitted curves, which are generated according to the values given
in Table 1. For the fitting process third-degree polynomials were used.

Example 2. Next, we compare the performance of our Algorithm (3.3) with Algorithm (1.1) of Ugwunnadi
and Ali [20]. Let �= =H HN

1 2. For = …i N1, 2, , , let = { ∈ ∥ ∥ ≤ }C x H x: 1i and = [− ] × [− ] ×⋯×Q 10, 10 10, 10i

[− ]10, 10 , where = ⋂
=

C Ci
N

i1 and = ⋂
=

Q Qi
N

i1 . Define the bifunctions �× →F C C:i i i and �× →G Q Q:i i i

by ( ) = ( − )F x y y x,i
i
2

2 2 and ( ) = − + +G u v iu uvi iv, 3 2i
2 2, �→ ∪ {+∞}φ C:i i , and �→ ∪ {+∞}ϕ Q:i i are

defined by ( ) =φ x 0i for all ∈x Ci and ( ) =ϕ u 0i for all ∈u Qi. It is easy to show that

=

+

= …T z z
ir

i N
1

, 1, 2, , ,r
F

n
n

i

and

=

+

= …T w w
ir

i N
1 4

, 1, 2, , .r
G

n
n

i

Table 1: Some steps of Algorithm (4.1)

x −0.51 = , N 5= x −0.31 = , N 10= x −0.81 = , N 10=

x2 −1.56092 10−1
× −7.15331 10−2

× −1.90755 10−1
×

x3 −4.66326 10−2
× −1.58648 10−2

× −4.23062 10−2
×

x4 −1.35621 10−2
× −3.35334 10−3

× −8.94224 10−3
×

x5 −3.87231 10−3
× −6.85367 10−4

× −1.82764 10−3
×

x6 −1.09101 10−3
× −1.36677 10−4

× −3.64473 10−4
×

x7 −3.04315 10−4
× −2.67522 10−5

× −7.13391 10−5
×

x8 −8.42199 10−5
× −5.16014 10−6

× −1.37604 10−5
×

x9 −2.31623 10−5
× −9.83664 10−7

× −2.6231 10−6
×

x10 −6.33749 10−6
× −1.85707 10−7

× −4.9522 10−7
×

⋮ ⋮ ⋮ ⋮

x100 −1.2431 10−58
× −1.99996 10−75

× −5.33324 10−75
×

⋮ ⋮ ⋮ ⋮

x1000 −5.07494 10−584
× −2.86696 10−764

× −7.64523 10−764
×

Figure 1: Graphics of the fitted curves generated from Table 1.
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Let →S C H: 1 be defined by =Sx x
8 , which is nonexpansive and ( ) = { }F S 0 . Clearly = { }Γ 0 . We choose

the following parameters =

+

αn
n

n2 3 , =

+

+

βn
n
n

5 7
12 13 , =

+

+

δn
n
n

2 1
6 8 , =

+

rn
n

n 4 , and =γ 1
2 . The operator →A H H: 1 2 is

defined by =Ax x2 which is bounded and linear. The adjoint operator of A, i.e., →

∗A H H: 2 1 is defined by

=

∗A x x2 for all ∈x H2. Then Algorithm (3.3) becomes:
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For Algorithm (1.1), we take =Ti
x
8 for all �∈x N , = …i M1, 2, , , ( ) = − + +g u v ku uvk kv, 3 2k

2 2 for all

∈u v Q, , and = …k N1, 2, , , ( ) =f x x
2 , =Gx x for all �∈x N . We also choose the following parameters:

=

+

α n
1

1 , =

+

δ n
n3 5 , =

+

rn
n

n 4 , =

+

sn
n

n2 1 , =γ 0.25, =μ 1, =M 1, and =β 0.54. The initial value is generated

randomly in (− )2, 2 . We compare the performance of Algorithms (3.3) and (1.1) for different values of N as
follows: =N 20, 50, 100 and 500. We choose∥ − ∥ <

+

−x x 10n n1
5 as a stopping criterion and plot the graphs of

∥ − ∥
+

x xn n1 against a number of iterations for each algorithm. The results of the numerical computation are
reported in Table 2 and Figures 2–4.

5 Conclusion

In this article, we generalized several equilibrium problems by introducing the system of split mixed
equilibrium problems. We established an iterative algorithm and proved that the iterative sequence gene-
rated by the algorithm converges weakly to the common solution of considered problems. Since our
problem is fairly general, our results are very significant. Also, we substantiated our results by constructing

Table 2: Computation result for Example 2

Algorithm (3.3) Algorithm (1.1)

N 20= No of iter. 6 15
CPU time (s) 0.0018 0.0023

N 50= No of iter. 6 16
CPU time (s) 0.0022 0.0031

N 100= No of iter. 6 16
CPU time (s) 0.0079 0.0092

N 500= No of iter. 6 16
CPU time (s) 0.0091 0.0138
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a numerical model. In this model, we constructed an iterative sequence by choosing special mappings and
sequences, which satisfies the conditions of our theorem and calculated its steps in Mathematica software.
As can be seen from the table, iterative sequence converges strongly and hence weakly to the solution. Also,
we compare the rate of convergence of our method with the method of Ugwunnadi and Ali [20] and show
that our method converges faster than their method.

0 5 10 15
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100

||x
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1-x
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Algorithm (3.3)
Algorithm (1.1)

Figure 2: N 20= .
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Figure 3: N 100= .
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Figure 4: N 500= .
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