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Abstract: In this article, a new problem that is called system of split mixed equilibrium problems is
introduced. This problem is more general than many other equilibrium problems such as problems of
system of equilibrium, system of split equilibrium, split mixed equilibrium, and system of split variational
inequality. A new iterative algorithm is proposed, and it is shown that it satisfies the weak convergence
conditions for nonexpansive mappings in real Hilbert spaces. Also, an application to system of split varia-
tional inequality problems and a numeric example are given to show the efficiency of the results. Finally, we
compare its rate of convergence other algorithms and show that the proposed method converges faster.
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1 Introduction

Let H be a real Hilbert space and C be a nonempty, closed, and convex subset of H. Fori =1, 2,..., N, let
E : C x C — R be a family of bifunctions such that F(x, x) = 0 fori =1, 2,..., N. We define the following
problems:

1. The equilibrium problem is to find x* € C such that Fi(x*, x) > 0 for all x € C.
2. The system of equilibrium problems is to find x* € C such that F(x*, x) > 0 for all x € C.

Although the theory of equilibrium problems was first introduced by Fan [1] in 1972, the most signifi-
cant contributions to this problem were made by Blum and Oettli [2] and Noor and Oettli [3] in 1994. The
equilibrium problem has a great impact on the development of several branches of pure and applied
sciences, and it provides a natural and unified framework for solving several problems arising in physics,
engineering, economics, game theory, image reconstruction, transportation, network, and elasticity. It can
also be reformulated in the form of different mathematical problems such as an optimization problem, a
convex feasibility problem (see [4]), a variational inequality problem (see [5]), a minimization problem (see
[6]), @ minimax inequality problem, a fixed point problem, a complementarity problem, a saddle point
problem, or a Nash equilibrium problem in noncooperative games (see [2]). Therefore, it is natural to extend
such a problem to more general problems in several ways. The system of equilibrium problems and mixed
equilibrium problems was introduced and studied by some authors in, for instance, [15-19].
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Recently, Moudafi [7] introduced a split equilibrium problem which is a generalization of several
optimization problems such as split feasibility problem, split inclusion problem, split variational inequality
problem, and split common fixed point problem, see, e.g., [8—14]. By combining the ideas of split equilib-
rium problem with the system of equilibrium problems, in 2016, the system of split equilibrium problems
and mixed equilibrium problems was introduced by Ugwunnadi and Ali [20] and Onjai-uea and Phuen-
grattana [21], respectively, see also [22-24]. These problems are defined as follows:

1. The split equilibrium problem is to find x* € C such that F(x*, x) > 0, for all x € C, and such that
y* = Ax* € Q solves Gy(y*,y) >0 forall y € Q;

2. The system of split equilibrium problems is to find x* € C such that F(x*, x) > 0, for all x € C, and such
that y* = Ax* € Q solves G;(y*, y) > 0 for all y € Q, where {F} and {G;} are families of bifunctions;

3. The mixed equilibrium problem is to find x* € C such that Fy(x*, x) + @(x) — ¢(x*) > 0 for all x € C;

4. The split mixed equilibrium problem is to find x* € C such that Fy(x*, x) + ¢(x) — ¢(x*) = O forallx € C
and such that y* = Ax* € Q solves Fx(y*,y) + ¢(y) — ¢p(y*) >0 forally € Q,

where C and Q are nonempty, closed, and convex subsets of real Hilbert spaces H; and H,, respectively,
F:CxC—-R and G;: Q x Q - R are families of bifunctions satisfying F(x, x) = 0 for all x ¢ C and
Gi(y,y)=0forallYeQ, forI=1,2,..., N, ¢ : C >R U {+oo} and ¢ : Q —» R U {+c0o} are proper lower
semicontinuous and convex functions such that C n dom¢e # @ and Q n dom¢ + 2.

In recent years, many authors have made several efforts to develop implementable iterative methods for
solving all these problems. In 2016, Suantai et al. [10] considered the split equilibrium problem and
proposed the following iterative algorithm to find a common solution of fixed point problem for a non-
spreading multivalued mapping and the split equilibrium problem:

Up = T - YA (I = T,2)A) X,
Xns1 € OnXn + (1 — ay)Suy, Vn € N,

They proved a weak convergence theorem for the iterative sequence. In the same year, Ugwunnadi and Ali
[20] established the following algorithm to solve the system of split equilibrium problems and showed that
the sequence generated by their algorithm converges strongly to the common solution of considered
problem and fixed point problem for a finite family of continuous pseudocontractive mappings.

Yo = PelXn + AB(T 3 — D) Axy),
Zn = ﬁnyn +(1- ﬂn) ]in]r,,yrp 1.1
Xn+1 = aan(Xn) + Opxn + (1 = 61 - anuG)z,, Vn e N,

where gM - TM T ... T2 TI

SM,n ~SM-1,n S2,n “S1,n

,jgzl,andTrgx={zeC:g(z,y)+%(y—z,z—x>20,VyeC}.

One year later, Onjai-uea and Phuengrattana [21] proposed another iterative algorithm to find a solu-
tion for the split mixed equilibrium problem for A-hybrid multivalued mappings. They proved that the
sequence generated by the following iterative algorithm converges weakly to a common solution of fixed
point problem and split mixed equilibrium problem.

Uy = T - yA(I - T)A)x,,
Vo = OnXp + (1 — an) Wy, Wy, € Sup, (1.2)
Xne1 = ByWn + (1 = B,)zn, zn € Sy,, n € N,

Motivated and inspired by these problems and iterative methods, we introduce a new problem called
system of split mixed equilibrium problems, which generalizes all these problems stated above and propose
a new iterative algorithm to find a common solution of fixed point problem and system of split mixed
equilibrium problems. We prove that sequence generated by our algorithm converges weakly to the solu-
tion. Also, we give some corollaries and numeric results to show that our results generalize and extend
many results in the literature.
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2 Preliminaries

Throughout this article, we use N and R to represent the set of natural and real numbers, respectively, “—”
for strong convergence of a sequence and “—” for the weak convergence. Let C and Q be nonempty closed
convex subsets of real Hilbert spaces H; and H,, respectively, A : H, — H, a bounded linear operator,
F:CxC—->R and F,: Q x Q —» R nonlinear bifunctions, and S be a mapping from C onto H. A point
x € C is called a fixed point of S if Sx = x and the set of fixed points of S is denoted by F(S). A mapping
S : C — H is said to be nonexpansive if

[Sx = Syll < lIx =yl

firmly nonexpansive if

ISx — Syl < <(Sx - Sy, x - y>
and v-inverse strongly monotone (v-ism) if

(Sx = Sy, x —y) = vISx - Syl?

forall x, y € C. It is easy to see from the Schwarz inequality that every firmly nonexpansive mapping is also
a nonexpansive mapping.

Lemma 1. [25] Let C be a nonempty closed convex subset of a uniformly convex Banach space X, and
S : C — C be a nonexpansive mapping with F(S) + &. Then F(S) is closed and convex.

Lemma 2. [26] Let C be a nonempty closed convex subset of a real Hilbert space H, and S be a nonexpansive
self-mapping on C. If F(S) + &, then I — S is demiclosed at O; i.e., if x, — x and (I - S)x, — 0, then
(I-8)x=0,ie.,x € F(S). Here, I is the identity mapping of H.

Lemma 3. Let H be a Hilbert space and {x,} a sequence in H. Let u,v € H be such that lim,_,.,||x, — u| and
limy,_, oollXn — Vil exist. If {xn,} and {xn,} are subsequences of {x,} which converge weakly to u and v, respectively,
thenu =v.

Lemma 4. [27] Let H be a real Hilbert space. Then, we have
Ix = yI? = IxI* = Iyl* = 2¢x =y, y»,
Ix + yI? < x> + 2<y, x + y,
and
IAx + (1 = Dyl = AxIP + (1 = Dllyl? - A0 = D) Ix - yl?
forall x,y € H and A € [0, 1]. Also, if {x,} is a sequence in H weakly converging to z € H, then

lim sup |Ix, — yI* = lim sup Ix, — zI* + llz - yI*>, Vy € H.

n—oo n—oo

We need the following assumptions to solve a mixed equilibrium problem for a bifunction F: C x C - R

and a mapping ¢:

(Al) Fx,x)=0,VxeC,

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0,Vx,y € C,

(A3) limy_oF(Az + 1 - A)x,y) < F(x,y) forall x,y, z € C,

(A4) Vx € C,y — F(x,y) is convex and lower semicontinuous,

(A5) for each x € C, A € (0, 1], and r > 0, there exist a bounded subset D ¢ C and a € C such that for any
z € C\D,

F(z,a) + p(a) - p(z) + %(a -z,z-Xxy <0.

(A6) Cis a bounded set.
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Lemma 5. [28] Let C be a nonempty closed convex subset of a Hilbert space H; and ¢ : C —» R U {+o0}
a proper lower semicontinuous and convex mapping such that C n domg = &. Suppose that bifunction

F:Cx C— R and a mapping ¢ satisfy Conditions (A1)-(A6). For r > 0 and x € H,, let T,F :H — C bea
mapping defined by

T,F(x) = {z €eC:F(z,y) + o(y) — 9o(z) + %(y -z,z-xy>0,Vye C}. 2.1)

Assume that either (A5) or (A6) holds. Then:
(i) for each x € H,, T,FX + J,
(i) TF is single valued,
(iii) TF is firmly nonexpansive,
(iv) F(TF) = MEP(F, @) and it is closed and convex.

Let ¢ : Q —» R U {+00} be a proper lower semicontinuous and convex mapping such that Q n dom¢ = @.
Suppose that bifunction G : Q x Q —» R and a mapping ¢ satisfy Conditions (A1)-(A6). For s > 0 and
u e H. Let TS : H, — Q be a mapping defined by

Tf(u) = {v € Q:G,w) + p(w) — p(v) + é(w -v,v—uy >20,Vw € Q}. 2.2)

Then clearly TS satisfies (i)—(iv) of Lemma 5, and F(TS) = MEP(G, ¢).

3 Main results

First, we introduce the system of split mixed equilibrium problems in the following form:

Definition 1. Let C; and Q; be nonempty closed convex subsets of real Hilbert spaces H; and H,, respectively.
Let A : H — H, be a bounded linear operator, F;: C; x C; > R and G; : Q; x Q; - R, 1< i < N, nonlinear
bifunctions and let ¢; : CG; = R U {+co} and ¢, : Q; = R U {+co} be proper lower semicontinuous and
convex functions such that C; n domg,; # & and Q; N dom¢, # &. The system of split mixed equilibrium

problems is to find x* € C = Y, C; such that

F(x*, x) + ¢;(x) - ¢,(x*) 2 0, Vx € G, (3.1
and such that y* = Ax* € Q = Y, Q; solves
Gi(y",y) + ¢(y) — ¢(y") > 0, ¥y € Q.. 3.2)

The solution set of system of split mixed equilibrium problems (3.1) and (3.2) is denoted by
SSMEP(F, ¢,, Gi, ) = {x* € C : x* € (\{; MEP(E, ¢) and Ax* € [\ MEP(G;, ¢)},
where MEP(F, ¢,) is the set of solutions of mixed equilibrium problem, i.e.,

MEP(F, ¢;) = {x* € C; : E(x*, x) + ¢,(x) — ¢;(x*) = 0, Vx € Cj}.

Remark 1. In Definition 1, if

1. N =1, then the system of split mixed equilibrium problems is reduced to the split mixed equilibrium
problem studied in, e.g., [21].

2. ¢ = ¢ = 0, then the system of split mixed equilibrium problems is reduced to the system of split equi-
librium problems studied in, e.g., [20].

3. N=1and ¢ = ¢ = 0, then the system of split mixed equilibrium problems is reduced to the split equi-
librium problem studied in, e.g., [7,9-11].
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4. H = H, A = I, F; = G;, and @, = ¢;, then the system of split mixed equilibrium problems is reduced to the
system of mixed equilibrium problems.

5. Hi=H,A=1IF=Gj,andg, = ¢, = 0, then the system of split mixed equilibrium problems is reduced to
the system of equilibrium problems studied in, e.g., [16,17].

Theorem 1. Let C; and Q;, 1 < i < N, be nonempty closed convex subsets of real Hilbert spaces H; and H,,
respectively, A : H — H, be a bounded linear operator and S : C — C a nonexpansive mapping, where
C= ﬂ{il Ci. Let F; : C; x C; > R and G; : Q; x Q; —» R be nonlinear bifunctions satisfying Assumptions (Al)-
(A46), @; : C; = R U {+00} and ¢, : Q; —» R U {+oo} proper lower semicontinuous and convex functions such
that C; n domg, # @ and Q; N dom¢; + & and let G; be upper semicontinuous in the first argument. Assume
that T’ = F(S) n SSMEP(E, @, G;, ¢;) # &. Let {x,} be a sequence generated by x € C and

Xn+1 = ansun + (1 - an)Sym

yn = ﬁnxn + (1 - ﬁn)SZm

zZp = 6y + (1 = 6,)Suy,

Uy = TR - yA (I - TE) A uy1,

(3.3)
Un1 = TR - yA*(I - TE?) A)up,s,

Unn-2 = T = yA*(I = T AU n-1,
Unn-1 = TV - yA (I - TS A)xy, VN € N,

where ay, B,,, 6, € (0,1), 1, € (0, 00), and y € (O, %) such that L is the spectral radius of A*A and A* is the
adjoint of A. Assume that the following conditions hold:

(i) 0 <liminfé, < limsupé, <1,

n—oo n—oo

(i) 0 <liminff, <limsupf, <1,
n-—oo n—-oo

(iii) 0 < liminfa, < limsupa, < 1,
n—oo n—oo

(iv) 0 < lim infr,.
n—oo

Then the sequence {x,,} generated by (3.3) converges weakly to p € T.

Proof. We divide our proof into six steps.
Step 1. In the first step, we show that A"(I - TZ)A is a %-ism for all i =1,2,..., N. Since T%" is firmly

nonexpansive and I — T,fi is 1-ism, by using that A* is adjoint of A, we have
IA(I = TEHAX = AT - TOHAYIP = AU - THAX - y), A - TIHAX - y))
= - THAKX - y), AA (I - TPHAX - y))
<L - THAX - y), 0 - THAMX - y))
=L|{I - TEHAX - y)IP
<LA(x - y), d - TEHAKX - y))
=L{x -y, AU - T Ax - AU - TP Ay)
for all x, y € H;. So, A*(I - T,‘ji)A isa %-ism foralli =1, 2,..., N. On the other hand, since 0 < y < %, we get
I-yA(I- T,ff)A is a nonexpansive mapping.

Step 2. In the second step, we show that sequences {x,}, {},}, {z}, and {u,,} are bounded. Let g € T'. It means
that g is a fixed point of the mappings S, TF' and I - yA*(I - TS)A. Since T and I - yA*(I - Tf)A are
nonexpansive mappings, we have

Mtnn1 = qll = ITNI = YA = TE¥)A)X = T = yA* (= TiMA) gl < lIx, = gl 3.4)
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and

lun = gl = ITEUI - yAUT = TE)A)uns — THA - yA T - TFA) g < lun: - qll
< TR - yA U - TP A)un, — TR - yA U - TE)A)gl| 3.5)
< upo = gl < -+ < upn-1 = qll < %2 = 4l

Using (3.4) and (3.5), we obtain
Izn = gl = 160ty + (1 = ) Sun — gll < Gnlln — gll + 1 = 6) Sun — gl < lun — gl < 1%, — gll.  (3.6)

From (3.6), we have

ly, - al =1B,x. + (1 = B,)Szn — gl
< Bl =gl + A = BISz, — gl (3.7
< Bulxe = gl + A =Bz — gl < I, - qll.

So, we have from (3.5) and (3.7) that

X1 = gl = laaSup + (1 = @n) Sy, — qll < anllSun — gll + 1 = an) ISy, - 4qll (3.8)
< tpllun = gl + @ = a)lly, = gl < % - ql.

Hence, it follows from (3.8) that the sequence {||x,, — ¢l|} is nonincreasing and bounded below. Therefore, we
get {|lx, — qll} and so {x4}, {),,}, {za}, and {u,} are convergent (so they are bounded) sequences.

Step 3. In this step, we show that|lu, — x| — 0. For this, we need to show [lu, — un 1]l — O, lltn,; — Un,is1ll = O
(1<i<N-2)and lu,n-1 — Xull = O. Let J; = T,HF"(I - yA(I - T,f")A). So we can write u, = Ji)5 ... Jyxn. Also,
we know that the mapping J; is nonexpansive mapping and g € T is a fixed point of J;. Thus, we have

lun — gl = iun,1 — ql?
= IITrf‘(I - yAd - Tr(,,;l)A)un,l - ql?
< llun1 — g — YA U = T Aun,1 |?
< N1 = qI? + AU = TE) Aunl? - 2y<un1 — g, AU — T2 Aun,1)
= lun,1 — gl? + y*>CA U - Tr‘,fl)Aun,l,A*(I - Tf,fl)Aun,O + 2y<A(q — up,1), 0 - Trfl)Aun,O
= 1 — qI? + yXU - T2 Aun,1, AAT - TE) A1) + 2y<A(G — Un1)
+ - Trfl)Aun,l, (I - Trffl)Aun,O— 29 ~ Trfl)Aun,h a- Trfl)Aun,O
<Nt = qI? + Ly = T8 Aug1, I = TE) Aun1y + 2y<Aq — T Auy1, (I - T A1)
= 2K = TE) A1, (I = T8 Autg1)
1
< llun1 — gl + Ly2IT = TE) Auga P + 2)/EII(I — T Aun IP - 21T — T Au,s P
= luns = g + y(Ly = DI = T3 Attt [P
On the other hand, since
%21 — glI* = llataSun + (1 — an) Sy, — qlI?
< anllSuy, — gl + (1 - an) ISy, — gl
< anllun - ql* + A - an)ly, - ql?
< an(lluny — qlI* + yLy - DIA - T,f‘)Aun,lllz) + (1 - an)lx, - ql?
< %2 — ql? + any@Ly - DI - Trfl)Aun,lllz,

we obtain

—any(Ly = DI = Tg) At I? < % = qI? = Xne1 - gl
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If we take limit from both sides, we have |(I - T,fl)Aun,lll — 0. Since u, = hiup1 = hhuno == hh...
In-1un,n-1 =ik ... J-1INXn, in a similar way, we see that
lim (I - T, Auy,ill = 0 (3.9)
n—oo
fori=1,2,...,N-1and
lim (I - T¥)Ax, || = 0. (3.10)
n—oo

Also, since T,f” is firmly nonexpansive, we get
ltny-1 = gl = IT¥A = yAI - T A)x, - T, gl
< (TN - yA (I = TP A X — TiNg, (I - YA (I = TN A) X — @)
= Qunn-1 = 4, (L= YA U = TN A) X0 — @)
= %(”un,N—l - ql? + Id = yA (T = TN A) Xy = qIF — lnn-1 — Xo — YA = T Axa )
< %(”un,N—l = qlI? + %0 = qlI? = (vt = Xl? + YA T = T2¥) Axy |2
= 2yQupN-1 = Xny A = T AXp))).
So, we have
lnn-1 = I < X0 — qIP = lunn-1 = Xul? + 2y<Un,n-1 — X, AU = T3 Axy)
<n = qI? = lttnn-1 = Xnl? + 2ty -1 = Xl AU = Tim) Axq|l.
Last inequality with inequalities (3.5) and (3.7) implies that

"Xn+1 - 61||2 < ”ansun + (1 - an)SYn - C]||2
< apluy - qI° + (1 - an)ly, - gl
<y lltn,N-1 — ql’ + (1 - ap)lx, — ql?

< (X = gl = lunn-1 = XulP? + 2VlUnn-1 = XalIA T = TN Axall) + (1 = ) 1%, — gl
Hence, we obtain

an ”un,N—l - Xn”2 < ”Xn - 61||2 - "Xn+1 - q”2 + 2)’0ln "un,N—l - Xn ” "A*(I - Trf,;N)AXn "

N 5 G (3.11)
< lxn = gl = Ixns1 — ql* + 2yanMIIA*(I — T.%) Axal,
where M = sup{|un,n-1 — Xxll}. Therefore, it follows from (3.10) and (3.11) that
neN
nlim lun,n-1 = Xnll = O. (3.12)

Similarly, we have
ltnn-2 — qI? = 1T = yA*(I = T A)un-1 — T¥1q]
< (T - yA (I = TV) A upy-y — Tivg, (I - yA* (I = T A)ugn-1 — )
= Qunn-2 — g, I = YA = T) A upn-1 — @)
= %(”un,N—Z - qlP + 10 - yA U = TEYA)upn-1 = qIP = ltbnn-2 — UnN-1
- YA - TV ) Aty |P)
< %(”un,N—Z = qIP + lunn-1 = IP = (v = Unn-1lP + YA = TE%1) Aty n-1 [P

= 2yCun,N-2 — UnN-1, A*(I = TN Aty y-1))).
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So, we have
Gy_
lunn-2 = qI* < lupn-1— g’ = lunn-2 = UnN-1l? + 2y{Unn-2 — Unn-1, AT — TN Aty n-1)
Gy_
< xn = qlIP = lunn-2 = Unn-117 + 2Vl -2 = Un N1 AT = TN Aty v |l
This implies that

IXns1 — ql? < llanSun + (1 — an) Sy, — gl
< tpllun, = gl + 1 = an)ly, - gl
< tpllun,n-2 = qI + (1 = @) X, — gl
< op([IXn = qIP = lun,n—2 = Un,n-1IP
+ 2V U n-2 = Unn-1IIA T = TV Aug v ll) + (1 = a) % — gl

< "Xn - II||2 — Qn "un,N—Z - un,N—l”2 + 2}’0ln "un,N—Z - un,N—l”llA*(I - TrE,;Nfl)Aun,N—lll-
Hence, we obtain
an "un,N—Z - un,N—l”2 < ”Xn - 61||2 - ||Xn+1 - 61||22yanM1||A*(1 - Trfol)Aun,N—lny

where M; = sup{|lun,n-1 — Un,n-1ll}. Therefore, it follows from (3.9) that

neN .
lim [lup,n-» = Unn-1ll = O. (3.13)
n—.oo
With a similar way, we have
lim [[tn,; = Un,is1ll = 0 and lim [lu, — uy,ll = 0. (3.14)
n—-oo n—-oo

Since,
lun = Xl < lutn = Ul + ln,1 = Unoll + -+ ltnv-2 = Unn-1ll + lUnn-1 = Xnll
using (3.12), (3.13), and (3.14), we obtain
lim |u, — x,| = 0. (3.15)

n—oo

Step 4. Now, we show that lim |lu, — Su,| = 0. Since,

oo
%01 — gl < llanSuy + (1 - ) Sy, — ql?

< lun - gl + (1 - an)lly, - ql?

< lx, — g + (1 - @) Bl — gl + 1 = B,) 1Sz — qII*)

< e =gl + (1 - @)@ = B)lIzn — gl

< e — gl + 1 = a) (X = B,) (I6un + (1 — 8,)Suy — ql*)

< Ixa =gl + (1 - @)@ = B,) (Bnllun — gl

+ (1= 8,)[ISun — ql* = 8,(1 = 8,)ISun — uy|?)
< xe = gl = 8,(1 — @) (1 = B)A = 8,) [ISun — unl?,

we get,
Sn(1 — an)(1 = B = 8)ISun — unl? < X0 — ql* = Xns1 — gl
Therefore, we obtain

nlim ISu, — uy,| = 0. (3.16)
Step 5. In this step, we show that wy(x,) c T', where w,(x,) = {x : X, — X, {Xn,} € {x}}. It is clear that
wy(x,) # & because of boundedness of {x,}. Let us assume that p is an arbitrary element of w,,(x,). It means
that there exists a subsequence {x,} such that x,, — p. Using (3.15), we know that there exists a subse-
quence {u,} of {u,} such that u,, — p. By (3.16) and Lemma 2, we have p € F(S).
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Now, we show that p € ¥, MEP(E, ,). Since uy, = T,i(I - yA*(I - T A)up,1, we get
Fi(un, y) + @,(y) — @ (un) + r—1n<y = Un, Un — Un1 + YA = TE)Aun ) >0, Vy € G
So, we can write
Filun ¥) + @4(y) - 9y(t) + %@ Uy U — U1} + %@ Uy YA = T A1) 2 0, Vy € G
Since F; is a monotone mapping, we have

1 1
2uY) = @y(ttn) + —CY = Uy Un = Un1) + —CY = Uy, YA - T Aup,) > Fi(y, Un),

n n
and hence

1 1
2uY) = @ylttn) + Y = Uniy Uny = Un1) + —<Y = Uy YA = T At 1) = iy, un),
n; n;

forally e C;. It follows from weakly convergence of u,, to p, Condition (iv), (3.9), (3.14) and the proper lower
semicontinuity of ¢, that

F(y,p) + ¢,(p) - ¢,(y) <0, VyeC.

Lety,=Ay + 1 - A)p, forall A € (0, 1] and y € C,. It is clear that y; € C;. So, last inequality holds for y =y,
that is,

E(y, p) + ¢(p) — ¢,() < 0.
From Assumptions (A1)-(A6) and last inequality, we have

0 = E, ) + o) — ¢:(n)

AE(y, y) + A = D FE(y, p) + Ap,(y) + 1 = De,(p) - Ap,(y) - 1 = Do, (y)
AFE, Y) + 0,(y) — () + 1 = H)(FEO, b) + ¢,(p) — ¢,(1)

< AFE(, y) + @ (y) — o,(n).

I IA

A

Therefore, we have

B y) + () - 9,00 20, vy € G
By taking limit as A — 0, we get

B@,y) + 9,(y) -¢(p) 20, Vye G,

that is, p € MEP(F, ¢,). Similarly, since uy,; = Jiquniv1 for 1 <i < N — 2, up y_1 = Jy Xy it follows from (3.9),
(3.10), (3.12), and (3.14) that p € MEP(F, ¢,) for 1<i < N. So, we obtain that p ¢ ﬂ{il MEP(F, ¢,) for
y € C =Y, Ci. On the other hand, since A is a bounded linear operator, we get Ax,, — Ap. Then, from
(3.9), (3.10), and (3.15), we have T,‘:ikAxn,. — Ap, fork=1,2,..., N. So, from definition of T,fikAxni, we get

GH(TAxy Y) + By) = (T Axy) + ——(y = T8 Ay, TOAxy, = Aty > O,
1 1 rni 1 1
for all y € Qy. It follows from weakly convergence of T,fikAxni to Ap and upper semicontinuity in the first
argument of G, that

Gk(Ap,y) + ¢ (y) — ¢ (Ap) 20, Vy € Qk.

This implies that Ap € MEP(G;, ¢) and so Ap e ¥, MEP(G; ¢) for ye Q=",Q. Hence,
p € SSMEP(E, ¢,,G;, ¢;) and so p € T

Step 6. Finally, we show that x, — p € I'. If we assume that there exist subsequences {x,} and {x,} which
converge weakly to p and g, respectively, then we obtain from Step 2 that lim,_.[x, — p| and
lim,,_ o [IX, — gl exist. So, from Lemma 3, we have p = q. It means that w,(x,) is a singleton set. This
completes the proof. O
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Remark 2. In Theorem 1, if

1. N =1, then we derive the split mixed equilibrium problems which were introduced by Onjai-uea and
Phuengrattana [21]. So, our problem generalizes their problem. Also, if we choose 6, =1 for alln € N,
then we derive their iterative algorithm for nonexpansive mappings.

2. @; = ¢, = 0, then the sequence {x,} generated by (3.3) converges weakly to a solution of system of split
equilibrium problems.

Now, we give the following theorem for the system of split variational inequality problems.

Theorem 2. Let C;, Q;, C, Q, Hy, H,, A, and S be chosen as in Theorem 1. Let the bifunctions F,; : C; x C; > R
and G;i: Q; x Q; » R be defined by E(x,y) = {(A;(x*),y — x*) and Gi(u, v) = {(B;(u*), v — u*), respectively,
where A; : C; —» H; and B; : Q; — H, are monotone mappings. Then, the sequence {x,} generated by (3.3)
converges weakly to a solution of system of split variational inequality problems which is to find a point
x* € C such that

<Ai(X*)’y - X*> 2 O’ Vy € Ci
and such that u* = Ax* € Q solves

(Bi(u*), v — u*) 20,V € Q.

4 Numerical examples

Now, we give a numerical example to support our proof.

Example 1. Let Hi=H, =R, (;=[-i,0],Q; =[-10 -, 0], ¢,(x) = ¢,(x) =0, F: C; x C; = H;, FEx,y) =
ix(y = x), Gi : Qi x Qi = Hy, Gi(x, ¥) = (10 + )x(y = x), 1<i<N,S:C—>H,Sx=3, A:H — H,Ax=7,
where C=(¥,Ci=[-1,0] and Q =¥, Q; = [-11,0]. It is clear that F and G; satisfy Assumptions
(A1)—(A6), the set of fixed point of S, F(S) is {0}, the adjoint operator A* of A is defined by A*x = g from

H, to H; and the spectral radius of A*A is L = % First, we find a common solution x* € C for the following
system of mixed equilibrium problems:

E(, x) + ¢9,(x) - 9(x) 2 0, Vx e G,

for 1 <i < N. Since we choose the mapping ¢ as 0, the point x* has to be a solution for the inequality
ix*(x — x*) = 0 for all x € [—i, 0]. This problem has a unique solution x* = 0. It is obvious that the point
y* = Ax* = 0 is a solution for the following system of mixed equilibrium problems:

Gi(y*’ }/) + ¢,(}’) - 4’,()’*) 2 01 V)’ € Qi:

for1 <i < N, thatis, y* = 0 solves the inequality (10 + i)y*(y — y*) = O forall y € [-10 - i, O]. So, we obtain
that x* = 0 is a common solution for the system of split mixed equilibrium problems and fixed point
problem, i.e., 0 € I' = F(S) n SSMEP(E, ¢,, G;, ¢,).

Next, we compute T,ff(I - yA(I-T, ,fi)A)x. From Assumptions (A1)—(A6), it is known that the mappings

T[i and T are single value mappings. Let TS’ Ax = z. Then, we have

TSAx =z & Glz,y) + $(y) - $(2) + }(y 2z -A) =0, VyeQ

n

e (10+)z(y —2) + rl(y—z)(z— g) >0, VyeQ
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o (y- z)((lO +Dz+ l(z _ gn >0, VyeO

Tn
s le+i+l - X o
Tn 2,
b

zZ=—"—.
2+ 210 + i)ry,

So, we get
(I - yAd - TS A)X =x - A*g - TrfiAx) =x- % + m = %X + m.
On the other hand, let Tfiu = w. Then, we have
Trfiu =w o Fw,v) + @) - g(w) + %(v -w)w-u)=20, Weg(

@iw(v—w)+l(v—w)(w—u)20, Vv € C;
rn

@(v—w)(iw+ rl(w—u)jzo, Vv € C;

n

()
=
I

1+in,

From the last equality, we obtain that

. 1 3x X
THQ - yA T - TOAx = — | s |,
"( y ( rn) ) 1+irn(4 4+4(10+l)rnJ

Now, we show that the sequence {x,} generated by our iteration method (3.3) converges weakly to the
common solution x* = 0. Let a, = #, B, = ﬁ, 8y=——,th=——,andy = 1. It is clear that a, f,, 6,

3n+1’ 4n+1’°
and r, satisfy Conditions (i)—(iv) of Theorem 1. Then, Algorithm (3.3) becomes

Xpr = — Ty b Y,
" ome2 " mae 2™
. n n+lz
W i 4n+2°"

n 2n+1
Zn n»

= Uy +
3n+1 6n + 2

L An1l3 1 .
"Tsn+1l4 414 (1041 |

4n+1
(4.1)
Lo An+13 1 y
T en+ 14 4+4.10+2)" | 7
4n+1

4n+1

u _ 4n +1 2 N 1 )
n,N-2 B+N)n+1|4 4+4.(10+N-1) n n,N-1s

u 1 =
N 4 444 (10 + N)-"

4n+1

n+1 i+ L X vneN
(4+Nn+1 " )
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Table 1: Some steps of Algorithm (4.1)

X =-05N=5 x =-0.3,N=10 X =-0.8, N =10
X -1.56092 x 107! —7.15331 x 1072 -1.90755 x 107!
X3 -4.66326 x 1072 -1.58648 x 1072 -4.23062 x 1072
X4 -1.35621 x 1072 -3.35334 x 1073 -8.94224 x 1073
Xs -3.87231 x 1073 -6.85367 x 107 -1.82764 x 1073
X6 -1.09101 x 1073 -1.36677 x 1074 -3.64473 x 1074
X7 -3.04315 x 1074 -2.67522 x 1075 -7.13391 x 107>
Xg -8.42199 x 1073 -5.16014 x 107¢ -1.37604 x 1075
X9 -2.31623 x 1075 -9.83664 x 1077 -2.6231 x 107¢
X10 -6.33749 x 107° -1.85707 x 1077 —-4.9522 x 1077
X100 -1.2431 x 10738 -1.99996 x 107> -5.33324 x 1077°
X1000 —-5.07494 x 107584 -2.86696 x 107764 —-7.64523 x 107764

In Table 1, we give some steps of Algorithm (4.1) for some initial values and special N. From the table,
it is clear that sequence {x,} generated by Algorithm (4.1) converges weakly to common solution x* = 0.

In Figure 1, we give the graphics of the fitted curves, which are generated according to the values given
in Table 1. For the fitting process third-degree polynomials were used.

Example 2. Next, we compare the performance of our Algorithm (3.3) with Algorithm (1.1) of Ugwunnadi
and Ali [20]. Let H; = RN = H,. Fori=1,2,..., N, letC; ={x € H: ||x| < 1} and Q; = [-10, 10] x [-10, 10] x---x
[-10, 10], where C = ¥, C; and Q = ¥, Q;. Define the bifunctions F;: C; x C; » R and G;: Q; x Qi —» R
by E(x,y) = %(y2 - x?) and Gi(u, v) = -3iu? + 2uvi + iv?, @, : C; > R U {+0c0}, and ¢, : Qi » R U {+oo} are
defined by ¢,(x) = O for all x € C; and ¢,(u) = O for all u € Q;. It is easy to show that

Thiz=—%_ i=1,2,..,N,
" 1+ in,
and
w
Giw = —, i=1,2,..,N
" 1 + 4ir,

1 d
J
J T-0.4
~—— N=52x,=-0,5 ¢ :
— N=10,x,=-0,3 J
—— N=10,x; = 0,8 ? 1 ys

Figure 1: Graphics of the fitted curves generated from Table 1.
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Let S : C — H, be defined by Sx = %, which is nonexpansive and F(S) = {0}. Clearly I = {0}. We choose
the following parameters a,, = ﬁ, B, = 12::;, n = %, Ih= ﬁ, andy = % The operator A : H, — H, is
defined by Ax = 2x which is bounded and linear. The adjoint operator of 4, i.e., A* : H, — Hj is defined by

A*x = 2x for all x € H,. Then Algorithm (3.3) becomes:

Xn+1 = n up + n+3 Yo
8(2n + 3) 8(2n + 3)
5n+7 n+6
W one 13 8@ 3
_2n+1 4n + 2

Zn = u, + Up,
" en+3 " 86n+3)

", = n+4 1_(1_ n+4)2un1’
n+ 4 5n + 4 ’

n+4 n+4
Up1 = 1-11- 2u, -,
! 3n+4[ ( 9n+4ﬂ "2
unN_2=$l—1—L 2y N1,
’ nN-1)+4 n(4N -7) + 4 '

n+4 n+4
UnN-1= 1-|1- —————— | |2
N nN+4{ ( n(4N—3)+4H "

For Algorithm (1.1), we take T; = % forall x e RN, i=1,2,..., M, g(u,v) = -3ku? + 2uvk + kv? for all
u,veQ,and k=1,2,...,N, f(x) = g, Gx = x for all x € RN. We also choose the following parameters:
= ﬁ, = T’ls = #, Sp = #, y=0.25 u=1,M=1, and B = 0.54. The initial value is generated
randomly in (-2, 2). We compare the performance of Algorithms (3.3) and (1.1) for different values of N as
follows: N = 20, 50, 100 and 500. We choose ||x,,1 — X,|| < 10 as a stopping criterion and plot the graphs of
IX.:1 — X | against a number of iterations for each algorithm. The results of the numerical computation are
reported in Table 2 and Figures 2-4.

5 Conclusion

In this article, we generalized several equilibrium problems by introducing the system of split mixed
equilibrium problems. We established an iterative algorithm and proved that the iterative sequence gene-
rated by the algorithm converges weakly to the common solution of considered problems. Since our
problem is fairly general, our results are very significant. Also, we substantiated our results by constructing

Table 2: Computation result for Example 2

Algorithm (3.3) Algorithm (1.1)

N =20 No of iter. 6 15

CPU time (s) 0.0018 0.0023
N =50 No of iter. 6 16

CPU time (s) 0.0022 0.0031
N =100 No of iter. 6 16

CPU time (s) 0.0079 0.0092
N =500 No of iter. 6 16

CPU time (s) 0.0091 0.0138
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Figure 2: N = 20.
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Figure 3: N = 100.
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Figure 4: N = 500.

a numerical model. In this model, we constructed an iterative sequence by choosing special mappings and
sequences, which satisfies the conditions of our theorem and calculated its steps in Mathematica software.
As can be seen from the table, iterative sequence converges strongly and hence weakly to the solution. Also,
we compare the rate of convergence of our method with the method of Ugwunnadi and Ali [20] and show

that our method converges faster than their method.
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