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1 Introduction

Let …X X, , n1 be a random sample on X with absolutely continuous distribution function F and let ≤X Xn n1: 2:
≤…≤ Xn n: be the corresponding order statistics. Define
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Let F0, F1, F2 be the c.d.f. of the two-parameter exponential, the Pearson type I and the Pareto distribution of
second kind given by
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There is rich literature on characterizations of the aforementioned distributions via linear regression of
order statistics or their functions. We mention here the studies of Dallas [1], Wang and Shrivastava [2],
Nagaraja and Nevzorov [3], Dębińska and Wesołowski [4] and Bieniek and Szynal [5].

The main aim of this paper is to characterize the aforementioned distributions via two measures of
dependence, namely, the Pearson covariance and the pseudo-covariance measure recently proposed by
Pawlas and Szynal [6]. Let us recall these notions.

The Pearson covariance is defined by

( ) = −X Y EXY EXEYCov , ,

∈ ∈ ∈X L Y L XY L, ,1 1 1 (where L1 is the space of integrable variables), and the pseudo-covariance
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where ∈X L1, ∈Y L0 (where L0 is the space of all random variables having a continuous distribution) and for
∈ ( )p 0, 1 , ( )y p is the quantile function of the random variable Y .
Taking into account that

| ( )| ≤ ( )

( )X Y X YCov , Cov , ,P D,

we see that pseudo-covariance provides information on dependent uncorrelated random variables.

Example 1.1. (Pawlas and Szynal [6])
Let the cumulative density function ( )f x y,X Y, of a random vector ( )X Y, have the form:
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The marginal distributions of X and Y are uniform on (− )1, 1 , ( ) ≠ ( )⋅ ( )f x y f x f y,X Y X Y, , so X and Y are
dependent. The random variables X and Y are uncorrelated ( ( ) = )X YCov , 0 , while ( ) = ≠

( ) X YCov , 0PD 2 21
315 .

2 Characterization via covariances

First we recall the results of Wang and Shrivastava [2].

Proposition 2.1. Suppose the distribution F of X is continuous with finite first moment. Then for some j,
≤ ≤ −j n1 1 it holds that

(a) ( | = ) =E Z X x θj j n: if and only if X follows exponential distribution with θ and some μ;
(b) ( | = ) = − + +

+ +

E Z X x x 1j j n θ
μ

θ:
1

1 1 if and only if X follows Pearson type I distribution with θ μ, and

=ν + +θ μ 1;
(c) ( | = ) = + −

− −
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μ

θ:
1

1 1 if and only if X follows Pareto distribution with θ μ, and = + −ν μ θ1 .

Moreover, we should mention the result of Swanepoel [7]:

∼ ( ) =X F Z Xif and only if Cov , 0.n0 1 1:
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Before giving the main result we point out that for an exponential distribution F0 with =μ 0 and =θ 1
we have
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where = −X X EX0 and ( ) = ( ) −x p x p EXo
j n: , as =EZ 1j and ( | = ) = =E Z X x θ 1j j n: . Taking into account the

relation
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we conclude that ( ) =Z XCov , 0j j n: .
Now consider the order statistics ≤ ≤…≤Y Y Yn n n n1: 2: : related to the sequence of i.i.d. random variables

…Y Y Y, , , n1 2 with distribution function F0 with μ and >θ 0. Then for any = …n 1, 2, we have
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where ( … )X X X, , ,n n n n1: 2: : is the order statistics related to a sample from the standard exponential distribu-
tion. For = … −j n1, , 1, we can write
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From Proposition 2.1, we know that ( | = ) =E Z X x θj j n: , which gives (2). Hence, ( ) =Z XCov , 0j j n: .
One can also show that for the Pearson distribution F1 and the Pareto distribution F2 the equality
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is satisfied. For the Pearson distribution F1, we obtain
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which gives (4).
Using similar arguments for the Pareto distribution of second kind we have
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which gives (4).
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Our characterization result is as follows.

Theorem 2.1. Let …X X, , n1 be ≥n 2 i.i.d. random variables X with an absolutely continuous distribution F and
let ≤ ≤…≤X X Xn n n n1: 2: : be the corresponding order statistics.

The equality
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holds true if and only if ∈ { }F F F F, ,0 1 2 .

Proof. We stated above that property (5) is satisfied by the distribution functions F F F, ,0 1 2. Moreover, we
know that
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But the above Schwarz inequality reduces to equality if and only if for a real number c

( ( ) − ) = ( | = ( )) −c x p EX E Z X x p EZ .j n j j n j: : (6)

Furthermore, we know (Wang and Shrivastava [2]) that

∫

( | = ( )) =

( )

( ( ))

− ( )

( )

∞

E Z X x p
x F x

F x p
x p

d

¯ .j j n
x p

:

But

∫ ∫ ∫ ∫
( ) = − ( − ( )) = − ( − ( ))| + ( ) = ( ) ( ( )) + ( )

( )

∞

( )

∞

( )

∞

( )

∞

( )

∞

x F x x F x x F x F x x x p F x p F x xd d 1 1 ¯ d ¯ ¯ d .
x p x p

x p

x p x p

Therefore, (6) takes the form

∫

( ( ) − ) =

( )

( ( ))

− ( ) −

( )

∞

c x p EX
x F x

F x p
x p EZ

d

¯ ,j n
x p

j:

where ( ) = − ( )F x F x¯ 1 . Taking into account that

∫

( ( ) − ) =

( ) ( ( )) + ( )

( ( ))

− ( ) −

( )

∞

c x p EX
x p F x p F x x

F x p
x p EZ

¯ ¯ d

¯ ,j n
x p

j:

we get

∫

( ( ) − ) =

( )

( ( ))

−

( )

∞

c x p EX
F x x

F x p
EZ

¯ d

¯ .j n
x p

j:
(7)

By differentiating both sides of (7), we obtain

∫

′( ) =

− ′( ) ( ( )) + ( ( )) ′( ) ( )

( ( ))

( )

∞

cx p
x p F x p f x p x p F x x

F x p

¯ ¯ d

¯ .x p
2

2

The above equality can be rewritten in the following form:

∫

−

( + ) ( ( )) ′( )

( )

= −

( ( )) ′( )

( ( ))

( )

∞

c F x p x p
F x x

f x p x p
F x p

1 ¯
¯ d ¯ .

x p

(8)

288  Piotr Pawlas and Dominik Szynal



From the above it follows that + >c 1 0. Now integrating both sides of (8), we have
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3 Final remarks

The characterization condition of Wang and Shrivastava [2] does not include the case of uniform distribu-
tion on ( )0, 1 , which we get for = −c .1

2 The characterization of power distribution via covariances is pre-
sented also by Pawlas and Szynal [8].
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