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Abstract: Properties of linear regression of order statistics and their functions are usually utilized for the
characterization of distributions. In this paper, based on such statistics, the concept of Pearson covariance
and the pseudo-covariance measure of dependence is used to characterize the exponential, Pearson and
Pareto distributions.
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1 Introduction

Let X, ..., X;; be a random sample on X with absolutely continuous distribution function F and let X;., < X.,
<...< Xp.n be the corresponding order statistics. Define

1 g .
Zj:—.z()(j+i:n_){j:n)’ ]=l,...,n—l.
n-Jia
Let Fy, F;, F, be the c.d.f. of the two-parameter exponential, the Pearson type I and the Pareto distribution of

second kind given by

1-e®wWo x>u; 0>0,
o, elsewhere;

Fyx) = {

0
u), —co<U<x<v<oo; 6>0,

o, elsewhere;

0
u), xX>u; 6>0; y>-o0,

o, elsewhere.
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There is rich literature on characterizations of the aforementioned distributions via linear regression of
order statistics or their functions. We mention here the studies of Dallas [1], Wang and Shrivastava [2],
Nagaraja and Nevzorov [3], Debinska and Wesolowski [4] and Bieniek and Szynal [5].

The main aim of this paper is to characterize the aforementioned distributions via two measures of
dependence, namely, the Pearson covariance and the pseudo-covariance measure recently proposed by
Pawlas and Szynal [6]. Let us recall these notions.

The Pearson covariance is defined by

Cov(X, Y) = EXY - EXEY,

X e I, Y ¢ L1, XY € L! (where L! is the space of integrable variables), and the pseudo-covariance

1

1
2 2

1 1
CovP)(X, Y) = fly(p)lzdp I(E(XIY =y(p)) - EX)’dp |, @
0 0

where X € I, Y € L° (where L° is the space of all random variables having a continuous distribution) and for
p € (0, 1), y(p) is the quantile function of the random variable Y.
Taking into account that

|Cov(X, Y)| < CovPD)(X, V),

we see that pseudo-covariance provides information on dependent uncorrelated random variables.

Example 1.1. (Pawlas and Szynal [6])
Let the cumulative density function fx, y(x, y) of a random vector (X, Y) have the form:

%[1 Fxy0 -y, X < 1Al <1,

fxy(x,y) =
o, x| =1V |yl > 1.
The marginal distributions of X and Y are uniform on (-1, 1), fxy(x,y) # fx(x)- fr(y), so X and Y are
dependent. The random variables X and Y are uncorrelated (Cov(X, Y) = 0), while Cov???)(X, Y) = 2,

315

2 Characterization via covariances
First we recall the results of Wang and Shrivastava [2].

Proposition 2.1. Suppose the distribution F of X is continuous with finite first moment. Then for some j,

1<j<n-1itholds that

(@) E(Zj|X;.n = x) = 0 if and only if X follows exponential distribution with 8 and some y;

(b) E(Z|Xjn = x) = —ﬁx +1+ ﬁ if and only if X follows Pearson type I distribution with 6, u and
v=0+pu+1;

() E(Zj|Xjn = x) = ﬁx +1- ﬁ if and only if X follows Pareto distribution with 8,y andv =u +1 - 6.

Moreover, we should mention the result of Swanepoel [7]:

X ~ F, if and only if Cov(Zy, X;.,) = O.
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Before giving the main result we point out that for an exponential distribution Fo with y = 0 and 6 = 1
we have

1

2

o=

1 1
Cov(PD) (20, XP,,) = f(xf’(p) Ydp f(E(Z; Xj.n = x(p)) - EZYdp | =0, @
0 0
where X% = X — EX and x°(p) = x(p) - EX;.n, as EZ; = 1 and E(Z;|X;., = x) = 0 = 1. Taking into account the
relation

|Cov(Z;, Xj.n)| = ICov(Z), X2,)| < CovPD(ZD, X7,),

we conclude that Cov(Z;, X;.,) = O.
Now consider the order statistics ¥;., < V5., <...< ¥,.,, related to the sequence of i.i.d. random variables
Y, Y5, ..., Y, with distribution function F, with p and 6 > 0. Then for any n = 1, 2,... we have

(Yiens Yons o5 Yaun) = (0Xiin + U, 0Xoin + W, -y OXon + 1), 3)
where (Xi.n, X5.n,..., Xn:n) is the order statistics related to a sample from the standard exponential distribu-
tion. For j = 1, ..., n — 1, we can write

1 =y

n-j 0
EZj= —— Y (EYjim — EYjn) = —— Y (EXjion — EX;n) = .
n-Ji n-Jjia

From Proposition 2.1, we know that E(Z;|X;., = x) = 8, which gives (2). Hence, Cov(Z;, Xj.,) = 0.
One can also show that for the Pearson distribution F; and the Pareto distribution F, the equality

|Cov(Z;, Xi.n)| = Cov(Z]-O, Xﬁn) = Cov‘P’m(Z}), X})m), (4)
is satisfied. For the Pearson distribution F;, we obtain

Cov(Zj, Xj:n) = EXj:nE(Z;|Xj.n)) — EXj:nEZ;

= B[ X[y g+ 1+ ]
1+86 1+86

1 u 1
-EX. )| ————EX:., +1 + = - Var(X..,).
]'n[ 1+6 " 1+6j 1+6 *jen)

From the other side we have

1

1
f(E(Z}’lXﬁn = X§(0)) - EZVdp | = 1 VarlXn)
0]

which gives (4).
Using similar arguments for the Pareto distribution of second kind we have

1
0-1

Var(X;.n)

1 )2 1 )2
COV(Z)', )(j;n) = E[&n[m&n +1+ 9 1]) - E)(]n(e __lE)(j:n +1+ g _ 1] =

and

1
2

1

1
| E@E = 300 - EZrap | - - Varth,
0

which gives (4).
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Our characterization result is as follows.

Theorem 2.1. Let X, ..., X,, ben > 2 i.i.d. random variables X with an absolutely continuous distribution F and
let Xi., < X.n<...< Xy.n be the corresponding order statistics.
The equality

|Cov(Zj, Xj.n)| = Cov(ZP, Xj2,) = CovPD(ZD, X7, (©)

holds true if and only if F € {F,, F;, F>}.

Proof. We stated above that property (5) is satisfied by the distribution functions Fy, F;, F,. Moreover, we
know that

1
2 2

1 1
ICOV(Zy, Xjn)| = 1COV(Z0, X0,)| < CovPP (29, X0,) = j (x°(p) 2dp j (E(Z;|X;un = x(p)) — EZ)2dp
0 0

But the above Schwarz inequality reduces to equality if and only if for a real number ¢
C(X(p) - E)(]n) = E(Z] |)(j;n = X(p)) - EZ] (6)

Furthermore, we know (Wang and Shrivastava [2]) that

Jj;) xdF(x)
E(Z;|X;.n = x(p)) = F(X—(p)) - x(p).

But

I xdF(x) = - I xd(1 - F(x)) = =x(1 = F(x)) |53y + I F(x)dx = x(p)F(x(p)) + I F(x)dx.

x(p) x(p) x(p) x(p)
Therefore, (6) takes the form

I:;) xdF(x)
c(x(p) - EXjin) = “Faw) x(p) - EZ;,

where F(x) = 1 - F(x). Taking into account that

xXPFp) + [ Foodx

c(x(p) - EXjin) = Fo®) - x(p) - EZ,

we get
:;)F(x)dx :
c(x(p) - EX;.p) = T(p)) - EZ;. (7)

By differentiating both sides of (7), we obtain

X PFP) + @) Q) [ Foodx
F(x(p)) '

The above equality can be rewritten in the following form:

_ C+ DFx@)X'(®) _ fx®)x'(p)
| °; Food F(x(p)) (8)

ox'(p) =
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From the above it follows that ¢ + 1 > 0. Now integrating both sides of (8), we have

(c + Dln JF(x)dx = In Fix(p)) + InA, A>0.
x(p)

Hence, we obtain

fﬁuxuzwAFaw»ﬁh
x(p)

Letting x(p) = y in (9), we note that

IF(x)dx = (AF(y)))e.
y

Thus, we have

F(y) = 2 f ) (B(y) ).
c+1

Now consider the following cases:

Casel. - - = 1[c = —1} Then
c+1 2

f(x) = constant,

. . . . . A
i.e., we obtain a uniform distribution on an interval (a, b), where b — a = >

Case 2. c # —%. Then

i Adi dF(x)
1—F c+l =
( 00) c+1 dx

which gives

Idx = CAf‘l '[ A - F(x)) S1dFx).

Assume that Z*! = 1 (c = 0). Then

c+1

jdx =A .[(1 - F(x))'dF(x),

which gives

-x=A In(1 - F(x)) + B.

— 289

9

(10)

(11)

Let S = (Xmin, Xmax) b€ the support of the distribution F. For x = X, we have F(xyin) = 0 and — Xpin = B.

Hence,
X — Xmi
In(1 - F(x)) = -———2,
( () n
which gives
Fx)=1- e‘xjxfa"i", for x > Xmin, A > 0 (exponential case).
Case 3. ¢ # 0. From (11) we get
1
x= AN C Ry + B,

Cc
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c 1
For—m >0 (c# -5 CE€ (-1, 0)), we have

x—-B

1
Ac+1

C

Fix)=1-

But

Acit

Xmin = + B, Xmax = B

and

_c+l _c+l
X — X ¢ Xmax — X ¢
F(X) — 1 _ [ max \J — 1 _ ( max j .
Xmin — Xmax Xmax — Xmin

Thus, we can write

1- (u
F(x) = v-u
0 elsewhere (Pearson case).

0
), —0<U<X<V<oo, 6>0;

Case 4. —ﬁ < 0 (¢ > 0). Then we have

1
Ac+1

and consequently

0 elsewhere (Pareto case).

3 Final remarks

The characterization condition of Wang and Shrivastava [2] does not include the case of uniform distribu-
tion on (0, 1), which we get for ¢ = —%. The characterization of power distribution via covariances is pre-
sented also by Pawlas and Szynal [8].
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