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Abstract: Given Hilbert space operators T,S € B(H), let A and 6 € B(B(H)) denote the elementary
operators Args(X) = (LyRs - I)(X) = TXS - X and 6rs(X)=(Lr - R)(X)=TX-XS. Let d=A or 6.
Assuming T commutes with S*, and choosing X to be the positive operator S*"S" for some positive
integer n, this paper exploits properties of elementary operators to study the structure of n-quasi
[m, d]-operators df's(X) = O to bring together, and improve upon, extant results for a number of classes of
operators, such as n-quasi left m-invertible operators, n-quasi m-isometric operators, n-quasi m-self-
adjoint operators and n-quasi (m, C) symmetric operators (for some conjugation C of H ). It is proved that
S" is the perturbation by a nilpotent of the direct sum of an operator Si* = (Sls7zy )" satisfying dr's, (I) = 0,
T = Tls7z, with the 0 operator; if S is also left invertible, then S" is similar to an operator B such that
dlg"*’B(I ) = 0. For power bounded S and T such that ST* - T*S = 0 and Ar s(S*"S™) = 0, S is polaroid (i.e.,
isolated points of the spectrum are poles). The product property, and the perturbation by a commuting
nilpotent property, of operators T, S satisfying d"s(I) = O, given certain commutativity properties, transfers
to operators satisfying S*"dy"s(I)S™ = 0.

Keywords: Hilbert space, elementary operators, n-quasi m-left invertible operator, poles, product of operators,
perturbation by nilpotents
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1 Introduction

Let B(X) (resp., B(H)) denote the algebra of operators, equivalently bounded linear transformations, on
a complex infinite dimensional Banach space X (resp., Hilbert space ) into itself. Given operators
T, S € B(X), let Ly and Rs € B(B(X)) denote, respectively, the operators

Ly(X) = TX, Rs(X) = XS

of left multiplication by T and right multiplication by S. The elementary operators Ar s and 67,5 € B(B(X))
are then defined by

Ars(X) = (LyRs - I)(X) = TXS - X
and
8r,5(X) = (Lt — Ry)(X) = TX - XS.

Let dr,s € B(B(X)) denote either of the operators Ar s and 61 s. Let I denote the identity of B(X) and let
m > 1 be some integer. Then
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Rt = brs @D = Y, (1) Tism "
j=0
and
87(1) = 61,565 (D)) = z<-1>f(;i“jrm—fsf. o
j=0

We say in the following that an operator S € B(X) is an m - (d, T) operator if df's(I) = 0. Examples of
m — (d, T) operators S € B(X) occur quite naturally. Thus, if an operator S € B(X) is m-left invertible by
T € B(X), then
o m
) = -, |Tmoismei =
g5 = Y. (-1} rmisi 0

j=0

[1-3]; if S € B(X) is m-isometric, then
< m
a0 - S (stn s o
j=0
[4-6]; if S € B(H) is m-self-adjoint, then
1) = Y0 [ Jsrnnsi=o
j=0
[7]; and if S € B(H) is (m, C)-isometric for some conjugation C of H, then
< m
6 cscD) = Z(—l)’(}- jS*(’"’f)CSfC =0
j=0

[8]. Operators S € m — (d, T), in particular the classes consisting of m-isometric and (m, C)-isometric
operators [9], have been studied in a number of papers in the recent past (see cited references for further
references). A generalization of the class consisting of m-isometric (resp., (m, C)-isometric) operators
which has drawn some attention in the recent past is that of the n-quasi m-isometric (resp., n-quasi
(m, C)-isometric) operators, where an operator S € B(H) is said to be n-quasi m-isometric (resp., n-quasi
(m, C)-isometric) for some integer n > 1 if S*”Ag’l’s(l )S™ = AYSE,S(S*"S") = 0 (respectively, S*"Ag* csc(I)S™ = 0)
[10,11]. In keeping with current terminology [10-12], we say in the following that an operator S € B(H) is
n-quasi[m, dl-intertwined by T € B(H) (equivalently, T is an n-quasi[m, d]-intertwining of S) for some integer
n>1if

S*nd(I)S™ = 0.

It is immediate from the definition that if S € B(H) is n-quasi [m, d]-intertwined by T, [S, T*] =
ST* - T*S = 0 (thus $*"df"s(I)S™ = df's(S*"S") = 0), T{ = T*[swzy; and S; = Slgwzy, then df's, (I) = 0. Choosing
T = S*, we prove in the following that if S*"d;’Z’S(I )S" =0 and if d = A (resp., d = 6 and S is injective), then
there exist a positive operator Q and an operator A such that A;{{ 4(Q) =0 and S" is similar to A (resp.,
6 ya (Q) = 0 and 6 s"(P) = O, P a quasi-affinity). Furthermore, if S is left invertible, then there exists an
operator B € B(H) such that S" is similar to B and dgi, g = 0.

Left m-invertible Banach space (as also m-isometric, m-self-adjoint Hilbert space [7]) operators
are known to satisfy the properties that: if S;, T; € B(X), i = 1, 2, are such that S; is left m;-invertible by
T; and [Sy, S2] = 0 = [T, T3], then S;S; is left (m; + m, — 1)-invertible by T; Io; if S; € B(X) is left m;-invertible
by T, € B(X) and N; € B(X) is an nj-nilpotent operator which commutes with S;, then S; + N; is left
(my + n; — 1)-invertible by T; [3]. These results, which hold equally well for [m, d]-intertwinings, have
extensions to n-quasi [m, d]-intertwining (Hilbert space) operators S, T. Let us say that S; € B(H) is
n(S)-quasi [m, dJ-intertwined by T, € B(H) for some operator S € B(H) if

S*ndffls (I)S" = 0.
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We prove that if S;, T; € B(H) (i = 1, 2) are some operators such that S; is n(S)-quasi [m;, d]-intertwined
by T, S; is [m,, d]-intertwined by D, [S;, S2] =0 = [T, ] and [S, S;] =0 =[S, T{] (i = 1, 2), then §;S; is
n(S)-quasi[(m; + m, — 1), d]-intertwined by T; T,. For an n-quasi m;-isometric S € B(H) and an m,-isometric
T € B(‘H) such that S, T commute, this implies that ST is an n-quasi (m; + m, — 1)-isometry. Again, if S is
n(S)-quasi[m, d]-intertwined by T, N; € B(H) are nilpotent operators (i = 1, 2),[S, Nj] = 0 = [S, T*], [Np, T] =
0 = [S, N3] and S is injective in the case in which d = §, then (S* + Nf)"*”l*ldﬁ}’;{gfﬁ 2I)(S + N)rtm-1 = Q.
Translated to left invertible n-quasi m-isometric operators S € B(H) such that S commutes with an
n;-nilpotent operator N € B(H), this implies that there exists an m-isometric operator B € B() such that
(S + N)™*m-1 s similar to B.

Recall that a Banach space operator A € B(X) is polaroid if the isolated points of the spectrum of A,
points € isoo(A), are poles of (the resolvent of) A. It is known, [6, Theorem 2.4], that contractive (more
generally, power bounded) m-isometric Banach space operators S (i.e., contractions, respectively, power

bounded, S € B(X) such that Z;":O (-1 Gn] [S™-ix|> = O for all x € X) are isometric, hence polaroid. This

result extends to power bounded S, T € B(X) such that AT s(I) = 0. We prove in the following that the nth
power (hence the operator itself) of an n-quasi m-isometric operator in B(H) is polaroid whenever it is
a contraction (more generally, power bounded). Indeed, we prove more: Power bounded operators
S, T € B(H) such that [S, T*] = 0 and AT 5(S*"S") = O are polaroid.

The rest of this paper is organized as follows. We introduce our notation/terminology, along with some
complementary results, in Section 2. Here we have a first look at the structure of n-quasi [m, d]-operators.
Section 3 is devoted to proving the polaroid property for n-quasi left m-invertible operators, Section 4
considers the product of an n-quasi [my, d]-operator with an [m,, d]-operator and Section 5 deals with
perturbation by nilpotents. As we point out at various points in the paper, our results represent a
considerable improvement upon various extant results.

2 Complementary results

Given a Banach space operator A € B(X), we denote the isolated points of the spectrum o(A) (resp., the
approximate point spectrum g, (A), the surjectivity spectrum oy (A)) of A by isoo(A) (resp., iso 0,(A),
isoos,(A)). Let A — A denote A — Al. The operator A is said to have SVEP, the single-valued extension
property, at a point A of the complex plane C if, for every neighborhood O, of A, the only analytic function
f: O) — X satisfying (A — w)f(u) = 0 for all u € O, is the function f = 0; we say that A has SVEP if it has
SVEP at every A € C. The ascent asc(A) (resp., descent dsc(A)) of A is the least non-negative integer n such
that A(0) = A "D (0) (resp., A"X = A™1X); if no such integer exists, then asc(4) = co (resp., dsc(4) = co).
It is well known, [13-16], that asc(A) < co implies A has SVEP at 0 and dsc(4) < co implies A*, the dual
operator, has SVEP at 0, and that finite ascent and descent imply their equality. A point A € isoo(A) is a pole
of (the resolvent of) A if asc(A — 1) = dsc(A — A) < oo.

For a given operator A € B(X), let II,(A) = {A € isog,(A): there exists an integer d > 1 such that
asc(A — A) < d and (A — 1)@+ is closed} = set of left poles of A, and let TI(A) = {A € isoo(A) : asc(A - A) =
dsc(A — 1) < oo} = set of poles of A. Then II(A) ¢ I1,(A) and a necessary and sufficient condition for
A € I1,(A) to imply A € II(A) is that A* has SVEP at A [13]. We say that A is polaroid (resp. left polaroid) if
A € a(A) : A € isoa(A)} = II(A) (resp., {A € 0(A) : A € isoag,(A)} = [1,(A)). To every A € isoa(A), there corres-
ponds a decomposition

X =Hy(A-21) & KA - 1),

where Hy(A — A), the quasinilpotent part of A — A, and K(A - A), the analytic core of A — A, are the sets

Ho(A - Q) = {X € X: lim (A - A = 0}
n—oo
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and

K(A - 1) = {x € X : there exists a sequence {x,} ¢ X and § > 0 for which
X =X, (A — D)Xxpy1 =X, and |x,|| < 6"x| forall n=1,2, ...}

[13]. Ho(A - A) and K(A - A) are generally non-closed hyperinvariant subspaces of A — A such that
(A - A)P(0) € Hy(A - A) for all positive integers p and (A — A)K(A — A1) = K(A — A). A necessary and
sufficient condition for a A € isoo(A) to be a pole of A is that Hy(A — 1) = (A — A)™(0) for some integer n > 0.
(The number n is then said to be the order of the pole at A; if n = 1, then the pole is said to be a simple pole.)

Similarities preserve spectrum (hence, isolated points of the spectrum), the ascent and the descent.
Hence: Similarities preserve the polaroid property. Recall that an A € B(X) is an isometry if |Ax| = |x| for all
x € X. Isometries are normaloid operators, i.e., if an A € B(X) is isometric, then |A| equals the spectral
radius r(4) = limn_,oollA"ll%. The inverse of an isometry, whenever it exists as a bounded operator, is again
an isometry. Since the restriction of an isometry to an invariant subspace is again an isometry, isometries
are totally hereditarily normaloid operators (see [17]). Conclusion: Invertible isometries are polaroid ([17];
see also [15, Theorem 1.5.13]).

Given operators S, T € B(X), it is seen that

k
AT = (LyRs — DFATF ) = Y (-1) @ TN (1) Sk
j=0

and

k
5PN = (Lr — ROKGPD) = Y (-1) G‘] THI81(1) ST

j=0

for all integers m, k > 1. Hence:

Lemma 2.1. If df"s(I) = 0, then d§ 1(I) = O for all integers t > m.

For an operator S € B(H), let S"(H) denote the closure of the range of S", and let S*~™(0) denote the
kernel of S*". If an operator T € B(‘H) is such that [S, T*] = ST* — T*S = 0, then ‘H has a direct sum

decomposition H = S"(H) & S*~"(0), and S, T* have upper triangular representations
S1 So I Tg
S = , T*= , 3
[o 52] [ T; ®

S}=0 and [S, T{] = 0.

where

The hypothesis S*"dr's(I)S™ = 0 implies that if d = A, then

m
STAT St = 0 & s*"{Z(—ni G")Tmismi}s" =0
j=0

S B ]
X 0 par J X X5 0 O
and if d = 6, then

2 (m L
*nQm n _ *N _1\J . m-jgj n_
STérs(NS"=0 e S {z (-1 (] )T S}S 0

j=0

o5 ST B )
X* 0 i=0 J X X 0 O
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for some operators X and Xj; (i = 1, 2, 3). Hence

{Z( 1)1( ]T"‘ s f}s 0o Z( 1)1( )T’" ISt =0

j=0
and

s;‘"{i 1)1( jT’""Sl}Sl 0o Z 1)1( jT’""Sl_ ,

i.e., d}fsl (I) = 0. Consequently, [2, Remark 2.7] and Lemma 2.1, d o, S,,(I ) = O for every integer p > 1. Hence,

S*nd]{'}; v

(I)S" =0, for all integers p > 1.
The observations that

NRBI) = AN} g(I)B - Af p(I), 6 EI) = A8J 5(I) - 81 5(I)B
lead to the implication

di's, () = 0 & df. 5 (I) = 0 for all integers ¢ > m,

and hence

Sdfs(S" =0 = S*"df,S(I)S" =0 for all integers t > m.
If we let X denote the operator

n-1
X=Y) SS,S4,
j=0

Sn:(sr Xj
0 o)

Now if S*"ATs(I)S" =0, then AT1 s,(I) = 0 implies §; is (m-left invertible, hence) left invertible.

Consequently, if 51 has a dense range (or, equivalently, S; has SVEP at 0), then the operator S" is similar to
St ST'X
0

then

A = Sl'® 0 (with the similarity implemented by the invertible operator E = ). Observe that the

operator A is not left m-invertible (i e., there does not exist an operator B € B(H) such that Af 4(I) = 0).
Letting T = S* (so that S*™"AZL (I)S" = O — such operators have been called n-quasi m-isometric [11]), it then
follows that SJ* is m- 1sometr1c and, if 81 has a dense range, S™ is similar to A. Operators S € B(H) for which
,s(I ) = 0 are called m-self-adjoint operators [7]. If S*"6 & (I)S™ =0 (i.e., if S is n-quasi m-self-adjoint),
then (81, hence) S? is m-self-adjoint for all integers p > 1 [7]. More is true, as we prove in the following.
Given a positive operator (0 < )Q € B(H), we say that the operator S € B(H) is [m, Q]-isometric (resp.,
[m, Q]-self-adjoint) if Ag’i’S(Q) O (resp., 6 s(Q) 0); we say that S € [m, d(Q)] 1fd"'5(Q) 0,d = A oré.
We assume in the following that S{' = (Sls7z;)" has the polar decomposition S = U, Py. It is then clear that
U; is an isometry and P; > O is invertible in the case in which S is n-quasi m-isometric, and U; is isometric
and P; > 0 is injective in the case in which S is n-quasi m-self-adjoint and injective. Define the operator
PeBSY(H)o S*™0)) by P=P & L.

Proposition 2.2. Let S € B(H) be such that S*”ds"{ (I)S™ = 0 for some integers m, n > 1.

(i) If d = A, then there exist operators Q, A € B(H) such that Q > 0, A%’A(Q) = 0 and S" is similar to A.

(ii) If d = 6 and the operator S is injective, then there exist operators Q, A € B(H) such that Q > 0,
0% 4(Q) =0 and 4 "(P) =
(iii) If S is left invertible, then there exists an operator B € B(H) such that d gi) () = 0 and S™ is similar to B.
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Proof. The hypothesis S*”dg'},S(I)S” = 0 implies ds"fp,s l,,(I ) = 0, and hence

s ndm

SPSP(I)S" =0 forallintegers p > 1.

sn = [Sln X).
0 O
Define the operators 4;, A and Q by

L UX
A = P U, A:(Al PBX) and Q:( 1 Ui J

Let, as above,

0 XU, XX
Let L, denote (as above) the identity of B(S~*"(0)).

(i). If d = A, then (upon letting p = n in the above) we have:

0 B s;“o"“slx””'(u1 )
@(PGBI)(X* o){ 2 )I(JJ(X* oj [o oj }0 o) ek =

m
S*"Agln Sn(I)S" =0 & S*”{Z 1)1( js*"(m -j) gnim—j) }sn =0

m\(U; 0\(PU; o\" ’(UlPl x]’"*"(U1 X]_
@2(11(]]()(* oj( ] o o) loo)~°
m\( A; U1 U X\(4 PX\"7
° Z( 1](1 )[X J X oj[o OJ(O 0) -0
m\( A; L UrX\(4, PX\"T
° Z( 1)](1 )(X o} (X*Ul X*XJ(O 0) =0
m\( A A1 PXY"
@2(11(]%{ j oj =0
o Z( 1)1[;")A m-=j) QAm-i = 0
o A’" =

Set P, o L = P. Then

s = (UBP i g‘j - p (‘31 P BXJP _ P14P,

i.e., S" is similar to A.
(ii). If d = 6, then (following the notation developed above):
SR (DS" =0 = ST I)S" =

el

S*n(m 1+1)Sn()+l 0

‘E

Sm-)(P, @ L) ( ) (P ® L)SY =

-
()

{i (7t J (5, S)mo P:fJ}P—o
4

<m-) QAT =

Evidently, P = P, @ L, is a quasi-affinity such that 8 s«(P) = 0
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(iii). Assume now that S is left invertible. Then P and Q (defined as above) are positive invertible, and

STAR ((I)S"=0 = STAL. Sn(I)S" 0= Z( 1)1(] jA*(’” DA™ =
j=0

o Z( 1) ( j(Q”A*Q) (Q%AQ*%)"H -0
and

STER (DS =0 = SM6M(I)S" =0 = Z( 1)1( jA*O" QA =
j=0

o Z( 1)1( j( Q1A°Q ) (Q%AQ-;)j -

Now define B € B(H) by

B = Q:AQ3;
then
dp () =0
Since
B = QIAQ i = QiPS"P1Q} = LS"L' = S" = [IBL, L = Q3P,
S™ is similar to B. (]

Let D denote the open unit disk in C and let dD denote the boundary of D.

Corollary 2.3. (cf. [18, Corollary 4.3]) If d = A in the statement of Proposition 2.2 and the operator Q (in the
proof of the proposition) is injective, then 0,(S) < dD.

Proof. The hypotheses imply Z} o (=1 ( j HQzAm JXH = 0 for all x € H . Consider a A € g,(S) such that
Ax = Ax. Then, since Q is injective,

i 1)1( j|/\|2<m -j) HQZX
j=0

Since S" is similar to A, 0,(S)" = 0,(S") = 0,(A) < (D). O

‘ —0o(1-MP)"=0e A =1.

Proposition 2.2 is a generalization of some extant results. For example, if d = A, n = 1 and m = 2, then
S*Ag*’ DS =0 (i.e., S is 1-quasi 2-isometric) implies qu*’ 4(Q) = 0 (where the operators A, Q are as defined
in the proof of the proposition and the operator S is similar to A); if S is also left invertible, then
Ag*’ () = 0 (i.e., B is 2-isometric) for some operator B similar to the operator S (cf. [10, Theorem 2.5]). In
their considerations on the spectral properties of A-contractions, L. Suciu and N. Suciu [18] define an
operator S € B(H) to be n-quasi isometric if S*(S*S — 1)S" = 0. In our terminology, this equates to
S*"Ag+ (I)S™ = 0 (equivalently, “S is n-quasi 1-isometric”). Thus, for n-quasi isometric operators S, S{* is
isometric; indeed, since S;"(S;'S; — I)S]* = 0, S; is isometric. Assume now that n =1 and O is a normal
eigenvalue of S (i.e., S7X(0) ¢ $*~1(0)). Then S =S; ® 0 is a partial isometry (cf. [18, Theorem 3.12 and
Corollary 3.13]). For a general n-quasi isometry S, S = (“(9)1 ?2)
and S, is n-nilpotent. Consequently, S has SVEP and hence [18, Theorem 4.6]: (i) 0(S) = 0,(5%). (ii)
0(S) = D, the closed unit disk, if S; is not invertible and o(S) ¢ aD U {0} if S; is invertible. In either case,

) € B(S"(H) @ S*~(0)), where S; is isometric
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04(S) <€ daD U {0}. (iii) If A, u are two distinct non-zero eigenvalues of S, then A, i € 0,(S;) and the correspond-
ing eigenspaces are mutually orthogonal. Observe that if n = 1, then S; is isometric. If also ||S|| < 1, then
SPS*P = SPSP + SP15,S5:S; %~V @ 0 is a contraction (thus: SPS;? + SP71S,S:S; P~V < I). Consequently,

L S;PSo

S*PSP =
SeSPYSiSo

] > SPS*P

for all integers p > 1 [18, Theorem 3.3].
Let C be a conjugation of H (i.e., C: H — H is a conjugate-linear operator such that C?> = I and
(Cx,y> = {Cy, x) for all x,y € H ). If one chooses T = CS*C in df"s(I) = O, then

Al s =0 & AL o(I) =0

defines the class of (m, C)-isometric operators and

8o o) =0 & 81 o (1) =0

defines the class of (m, C)-symmetric operators [9,8]. It is known [9,8] that

g ) =0 dé*,csc(l) = 0 for all integers t > m

and

dé'*l,csc(l ) =0 e dlly () =0 forall integers p > 1.

It is clear that if S*"ds”{CSC(I )S™ = 0, then S € B(S"(‘H) @ S* "(H)) has a representation

n
csic=clSt X C:c(Ulp1 X]c
0 0 0 0

(where the operator X is as defined above). In particular, if the conjugation C : S"(H) & S*"(H)
— S"(H) & S*™(H) has a representation C = C; & G, then

(h) =0 = S"d nHs*=o0

dm m
S1,C1S81C S*P,csPe

for all integers p > 1. If, now, S satisfies the additional property that CSCS = S?, then
S*"dS’Q”CSC(I)S" =0 S*"dg’{s(I)S” =0

and Proposition 2.2 applies. In general, Proposition 2.2 seemingly does not extend to operators S satisfying

S*”dg{csc(l )S™ = 0. Define the operator M € B(H) by

- (5 %)
0 0
(where U; and X are the operators defined above). The following proposition says that a result very similar
to Proposition 2.2 holds in the case in which [C,M] =0 and C = C; & G,.

Proposition 2.4. Let S € B(H) be such that S*”ds”{csc(l )S™ = 0 (so that S is either n-quasi (m, C)-isometric
or S is n-quasi (m, C) symmetric), where the conjugation C = C;® G, : S"(H) & S*(0) — S (H) & S*(0)
satisfies [C, M] = 0.

(i) Ifd = A, then there exist operators Q, A € B(H) such thatQ > 0, A%,CAC(Q) =0= A?A*C’A(CQC) and S" is
similar to A.
(ii) If d = 6 and the operator S is injective, then there exist operators Q, A € B(‘H) such that Q > 0,
6 cac(Q) = 0 = 8. ,(CQC) and by s7(P) = 0.
(iii) If S is left invertible, then there exists an operator B € B(‘H) such that dgz‘,CBC(I ) = 0 and S" is similar
to B.
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Proof. We start by observing that

$dl o (S = 0 & S

S csPc(I)Sn =0

for all integers p > 1.

(i). Case d = A. Following the notation of the proof of Proposition 2.2, we have:
STdgh CS”C(I)Sn =0 e S*H{Z( 1)1[] )s*mm—;)csn(m—nc}sn _
j=0

PN Z( 1)}(} )S*n(m 1+1)C5n(m ]+1)C 0

j=0
m m—j+1 m-j+1

- Z(-l)}( )PlUl 0 C(UlPl Xj Cc-o
fars X 0 0 0

m * m-j *
o P 0 Z(_l)j(r'nj Uk O Uur o
0 b)| & i\xP o \x o
y (cl UG clxczj(clpl UG clplxczj'"‘f GPG O)_
0 0 0 0 0 b

o Z i 1)}( )UlPl o' L UGG [clplulc1 C1P1XC2jm_j o
XP o) (XUGU XCXG)\ 0 0

By hypothesis, [C, M] = 0. Hence

L UGXG) (L UX
CX=XG, [C, Uj) =0 and
' » 1C Ul [X*UICIUl Xclxczj [X v, xx)” ¢

for some positive operator Q. Consequently,

u;p o)’ (C1P1U1C1 C1P1XC2)mj
Snam (DS =0 = 1y =0
eseD ]Z(:)( )[ )(X*Pl Oj ¢ 0 0

= AT (@) =0 & Al ,(CQC) = 0

where, as before, the operator A is defined by A = (P10U1 PBXJ = PS"p-1,

(ii). Case d = 8. The hypothesis S is injective implies P > 0 has a dense range. Using the same notation as
above, we have:

S8R (DS"=0 = Z( 1)1( js*“m JEsniC = 0
j=0

- (3 e im0 9

x(clUlcl Clxczj(clplUlCl C1P1XC2jj}(C1P1C1 0]: 0

0 0 0 0 0 b
o i (‘l)j(r‘nj U;P 0 ’""Q[clplulc1 clplxczj" o
e i)lxp 0 0 0
m
= ) (- 1)1( ]A*(’" DQCAIC =0
j=0
& 81 Q) =0 8. ,(CQC) = 0

It being evident that 6, sn(P) = 0, P > O a quasi-affinity, the proof is complete.
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(iii). Arguing as in the proof of Proposition 2.2, it is seen that P= P @ L > 0 and Q > O are invertible;
furthermore, CQC = Q. Since

m | |

Z I)J( )A*ai QCAYC =0 o Z (- 1)1( j( ’iA*Q%)a’ (CQ%AQ*%C)b’ _
j=0 fars

for all positive integers a; and b;, we have

d?,CBC(I) =06 dcr%*C,B(I) = O’ B = Q%AQ_%.

Clearly, S" = P-'Q":BQ:P is similar to B. O

3 The polaroid property

If AT s(I) = 0 for some S, T € B(X) (i.e., if S € B(X) is left m-invertible by T € B(X)), then 0 ¢ 0,(S) (for if
0 € 0,(S) and {x,} ¢ X is a sequence of unit vectors such that lim Sx, = O, then

n—-oo

m
Z 1)1'@") Tm-ism-ix,

lim ||x,| = hm IAF s(D x|l = hm =0

n—oo

is a contradiction). Indeed, if A € g,(S), and {x,} ¢ X is a sequence of unit vectors such that lim (S - A)x, = 0,
then e

lim A7 s(I)x, = lim {Z( 1)1( ij IS]X,,} lim {Z( 1)1( )(AT)’" an}

lim(1 - AT)"x, =0 = % € g (T).

n—oo

A similar argument, using this time the fact that
AT (D) = Z( 1)1( jsﬂm-n T*m=) = 0,

shows that A € g,(T) implies % € 05,(S) for all non-zero A. (Here oy,(-) denotes the surjectivity spectrum.)

If we assume S, ATs(I) =0, to be a contraction satisfying o(S) = D, then isoo(S) = @ and S is
(vacuously) polaroid. If, instead, we assume that S is an invertible contraction with spectrum a subset of
the boundary oD of the unit disk D, then S is normaloid (i.e., |S]| = r(S)) and o(S) consists of the peripheral
spectrum (= {A:|A| =r(S)}) of S. The normaloid property of S implies that asc(S-A) <1 and
dim(X\(S - A)(X)) > O [14, Proposition 54.2]. Thus, if the range (S — A)4(X) is closed for some integer
d > 1, then (S — A)(X) is closed [15, Proposition 4.10.4] and asc(S — A) < 1, i.e., A is a left pole of S. Since A
is a boundary point of the spectrum, A is indeed a pole of S. Conclusion: “A necessary and sufficient
condition for a point A € d(S) to be a pole of S for a given left m-invertible contraction S (i.e., a contraction
S such that AT s(I) = O for some T € B(X)) with o(S) < dD is that (S - A1)(X) is closed.”

The hypothesis that S is a left m-invertible contraction (resp., T is a right m-invertible contraction),
even that S is an invertible contraction (resp., T is an invertible contraction), is not sufficient for S to be
polaroid. For example, the operator S = (I + Q)!, I the identity operator and Q the Volterra integra-
tion operator, is invertible with ¢(S) = {1} and ||S|| = 1 [19, solution 190, page 302]. Since (I + Q) - I =
QU+ Q) '=-(I+0Q)Q and (I + Q! - IM| < | + Q) IQ"" converges to 0 as n — oo, S is not
polaroid. Again, if welet T= (I + Q) and S =1 + Q, then S is not polaroid. A sufficient condition for an
operator S, A7 5(I) = 0, to be polaroid is that both S, T are power bounded. We recall: A € B(X) is power
bounded if there exists a positive scalar M such that sup,n|[A"| < M.
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Theorem 3.1. If S, T € B(X) satisfy AT s(I) = O for some integer m > 1, then a sufficient condition for S to be
polaroid is that S, T are power bounded.

Proof. If S, T are power bounded, then there exist scalars M;, M, such that

sup [|S"| < My, sup||T™ < M,

neN neN

(and hence r(S) = r(T) = 1). This, in view of the fact that (0 ¢ 0,(S) and) {% :0# ¢ 0,,(5)} C 0,(T) implies
0,(S) € dD. Hence,

0(S) = D if S is not invertible and ¢(S) < dD if S is invertible.

Trivially, S is polaroid in the case in which ¢(S) = D. Assume hence that S is invertible (so that o(S) < oD).
Since A7 (I) = O implies AT, go(I) = 0 for all integers p > 1, we have upon defining the operator C, by

m-1 m
Cp = (—1)"”1{ 2 (-1 (j jTﬂm-ﬂsp(m-f-l)}
j=0
that
C,S? =1, all integers p > 1.

Evidently, the operator S? is left invertible by C, for all integers p > 1, and

Gl < {1 + (T) +oet (mrf 2) + (mrﬁ 1)}M11|/Iz <2"MLM, = M

for all integers p > 1. Thus, for all x € X and integers p > 1,
1
Ixll = I1C, SPx|l < M||SPx]l & (M)IIXII < ||SPx]|.

Since already
ISPxl < 1ISPHlxll < Myllx]

for all x € X, it follows that S is similar to an invertible isometry (on an equivalent Banach space). (This is
well known - see, for example, [20].) The proof now follows, since invertible isometries are polaroid and
the polaroid property is preserved by similarities. O

Power bounded m-isometric operators satisfy the property that they are isometric — see [6, Theorem
2.4] and [21, Theorem 2.4]. Hence:

Corollary 3.2. Power bounded m-isometric Banach space operators, i.e. power bounded operators S € B(X)
such that Ars"*,s(l) = 0, are polaroid.

The Power bounded hypothesis on S may be dropped in the case in which AZ*,S(I) =0 (i.e., the

operator S is 2-isometric), for the reason that invertible 2-isometries are isometries: 2-isometric Banach
space operators are polaroid. Corollary 3.2 extends to operators S € B(H) satisfying A% ...(I) for some

conjugation C (i.e., to (m, C)-isometries S € B(H)). Observe that if S is power bounded, then so is CSC and
0,(CSC) = 0,(S) (= complex conjugate of g,(S)) for every conjugation C. Hence:

Corollary 3.3. Power bounded (m, C)-isometries € B(H) are polaroid.

Extension to n-quasi left m-invertible operators. Theorem 3.1 extends to n-quasi left m-invertible
operators S € B(H),
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m
AR () S™ = S*”{Z(—l)i G”j T’"‘fS’”‘f}S” -0,
j=0

such that [S, T*] = ST* — T*S = 0. Letting S and T* have the upper triangular representations (2), it is seen
that (o(S) = o(S) U {0}, S{(H) = S{'H, [S1, T{] = 0 and)

m

m\_. .
ns,(h) = Z(—l)l(]. jTlm ismi— @
j=0

st x

(so that S; is left m-invertible by T;). Recall from the previous section that S" = ( , where S/ is left

m-invertible by T7'. Since S and T power bounded imply S and T]' are power bounded, S;* (therefore, S;)
is polaroid. Hence:

Theorem 3.4. Power bounded operators S, T € B(H) satisfying S*"AT s(I)S™ = O such that [S, T*] = 0 are
polaroid.

Proof. Since S = St 5o , Where S; is polaroid and S, is n-nilpotent, the proof follows from the inequalities

S
that asc(S — A) < asc(S; — A) + asc(S, — A) and dsc(S — A) < dsc(S; — A) + dsc(S, — A) for all complex A
[16, exercise 7, page 293]. O

Remark 3.5. Theorem 3.4 has an n-quasi m-isometric and an n-quasi (m, C)-isometric analogue, namely:

Power bounded n-quasi m-isometric operators S € B(‘H), STAE (I)S" =0, and power bounded n-quasi
(m, C)-isometric operators S € B(H), S*"As+,csc(I)S™ = 0, such that C = C, & G, are polaroid.

In particular, 1-quasi 2-isometries are polaroid [10]: This follows since operators S such that S*Ag*’s(l )S=0

1

have a representation (f) g], where the operator S; (satisfying Aéf‘, s, () = 0) is polaroid. Observe here that

either 0(S) = D or ¢(S) < dD U {0}.

It is easily seen that for an m-symmetric operator S € B(H), 6§E’CSC(I) =0, 04S) = ,(CSC) and
A € 048) = A € 0,(CS*C) = a5(S). (Recall: gy, (S) = the surjectivity spectrum of S.) Hence, a(S) = 0,(S) U
0u(S) € 05(S) € 0(S), i.e., 0(S) = 0(CSC) = 04(S) = 04,(S). The argument of the proof of Theorem 3.4 implies
that if the left invertible operator S € B(H) is n-quasi m-symmetric, S*"S;’{ cscS" =0, and C = C; ® G, then
S is power bounded implies that if S| is polaroid, then (S", therefore) S is polaroid.

For m-self-adjoint operators S € B(H), 6;(5’5(1) = 0, it is seen that if A is an eigenvalue of S with an
eigenvector x and ji is an eigenvalue of S* with an eigenvector y, then (A — fi)xy = 0. Hence, the
eigenvalues of an m-self-adjoint operator are real. Since A is a pole of S implies A is an eigenvalue of S, the
poles of S are all real. Consider now a left invertible n-quasi m-self-adjoint operator S € B(H),
S5 ((I)S™ = 0. Then, follow an argument similar to that above, S is polaroid if the left invertible m-self-
adjoint operator S{' is polaroid, and this happens if and only if the isolated points of the intersection of o(S;)
with the real line consist of the poles of S;.

Self-adjoint Riesz Idempotents. Restricting ourselves to operator S, T € B(H) for which S*"AT' (I)S™ = 0
(i.e., n-quasi left m-invertible operators in B(H)) for which[S, T*] = 0, in the following we consider conditions
guaranteeing the self-adjointness of the Riesz idempotents P attached with the poles A € isoa(S) of S. It is clear
from the above that if a point A # 0 is a pole of S, then S has a matrix representation

A X %

§=10 Sy ¥
0 0 S
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with respect to the decomposition H = (S; — A)™(0) & (S; — A)(H) & S*™0). If x = (xq, %, x3) € (S — A)7(0),
then (necessarily) x3 = x, = 0. Hence x € (S — 1)71(0) if and only if x = (x, 0, 0). Consider now (S — A)*~1(0).
Since (S — A)71(0) < (S — A)*~1(0) if and only if X;x = 0 = Y;'x,

(S=A10) < (S-1)"10) & (S - A)*S - A)0) c {0}

Evidently, if (S — A)*(S — A)"(0) c {0}, then (S — A)"1(0) < (S — A)*~1(0). The point A being a simple pole of
S, if (S — A)*(S - A)(0) < {0}, then ((S — A)(H) is closed and)

H =GS-S -DH)=PHoI-PY)H =(S-A1"10) & (S - N)10)
=S -A0) @ (S -2 0) = LH & PLH = PyH* = Py'H = (I - P)H,

i.e., Py is self-adjoint.
Consider now the case in which A = 0 is a pole of S. Then PyH = S™(0) and S™" has a triangulation

o (3 27

0 0){S(0)

where S; is invertible (since 0 € isog(S") implies O ¢ o(S;")). Since x = (), %) € S™(0) if and only if
x = (-5;"Xx, %), S™0) < S*™0) if and only if Xx = 0, i.e., if and only if S*(S*~(0)) = {0} (and then
S™(0) = S*~"(0)). Arguing as above, it now follows that the projection P, is self-adjoint if and only if
S": §*"(0) — {0}. We have proved:

Proposition 3.6. Given an n-quasi left m-invertible operator S € B(H) such that [S, T*] = O, the Riesz
projection P, corresponding to a pole A # O (resp., A =0) of S is self-adjoint if and only if (S — A)*:
(§ = A)(0) — {0} (resp., S™: §*7"(0) — {0}).

Remark 3.7. It is immediate from the above that if S € B(H) is a 1-quasi 2-isometry, then the Riesz
projection P, corresponding to a pole A# 0 (resp., A =0) is self-adjoint if and only if (S - A)*:
(S - )1(0) — {0} (resp., S : S*1(0) — {0}); cf. [10, Theorems 2.7 and 2.8].

4 Products

Let S;, T; € B(X), i = 1, 2, be such that [S;, S;] =0 = [T}, 5] and d;i’fsi(I) = 0. Then

n

n . P
Nirss, = LrLgRsRs, — " = {Lg, (L,Rs, - DRs, + (LyRs, = D" = z[j)Aggng TRETA] ¢

j=0
implies
" n . . A
A%szslsz(n = Z(j\)TlnilA?zjéz(I)SlnijA%l,Sl(I)
j=0
and
n o ) o )
611,55, = (Lnly, — Rs,Rs,)" = {L, (L, — Rs)) + (L, — Rs,)Rs }" = Z(ijﬂ_’{jﬁfi 61,5, R,
j=0
implies

" n P . .
Snssh = X7 18140855/
j=0
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m+mp—

Letting n = my + m, — 1, since di,sz(l) =0 for all j > m, and dr§, Y[y = 0 for all j < m, — 1 (implies
m +m, —1-j>m), we have:

Lemma 4.1. If S;, T; € B(X), i =1, 2, are such that [S;, S;] = 0 = [T}, ] and d;,-r,lis,-(l) = 0, then dggg"gsja) = 0.

The following theorem is an n(S)-quasi [m, d]-version of these results. (Recall here that the operators
S, T € B(X) are n(S)-quasi [m, d-intertwined for an operator S € B(H) if S*"dy's (I)S™ = 0.)

Theorem 4.2. If S*"d}x,"'isi(I)S" =0, i=1,2, for some operators S, S1, S>, T, T, € B(H) such that [S, S;] =0 =
(S, T/] and [Sy, S3] = O = [T, T5), then S*”d}fggigl(l)S" =0 (i.e,, T, and S,S, are n(S)-quasi[m; + m, — 1, d]-
intertwined).

Proof. The hypotheses imply that the operators S, S; and T;" have the upper triangular matrix represent-

ations
So1 Soo S Sio n Tio) .
S = y Si = 5 T = 5 = 1’ 2’
( 0 So lo Sy l T l

with respect to the decomposition H = S"(H) & S*"(0) of H . The hypothesis S*"d}:lsl(l )S™ = 0 implies
dr's () = 0 and the hypothesis S*"dr% (I)S" = 0 implies dr?g (I) = 0. Hence, since the hypothesis
[S1, S2] = 0 = [T;, T5] implies Sy, Sa1] = O = [Ty, T1], Lemma 4.1 implies dﬂlirfﬂéu(ll) = 0. Finally, since

my+my—-1
Y M gy symemed (0 4
j=0 J Zz Z3

n —
for some operators Z; (i =1, 2, 3), and S" = (Sgl f){j for some operator X, with respect to H = SY(H) &
S§*70),

ST ISt = 0,

i.e., 1T, and S;S, are n(S)-quasi [m; + m, — 1, d]-intertwined. a

Remark 4.3.

(i) Recall that T is a strict left m-inverse of S if AYr(I) =0 but A’s'f}l(l) +# 0 [2,3]. Letting m; =1 in
A%’lsl (I = 0 (so that T is a left 1-inverse of Sy, i.e., }S; = I), it follows that T, T5 is a strict left m,-inverse
of ;S if and only if A?ngzl(l ) # 0 [3, Theorem 13], i.e., if and only if T5 is a strict left m,-inverse of S,.
Theorem 4.2 does not extend to n(S)-quasi strict [m; + m, — 1, d]-intertwinings. Thus, given T; an
n(S)-quasi left 1-inverse of §; (i.e., S*"Ar, 5,(I)S™ = 0) and T; a strict left m-inverse of S, (i.e., A’T';SZ Hh=0
and A’TZ,‘;Z(I) # 0), T, may not be an n(S)-quasi strict left m-inverse of S;S,. To see this, consider
operators S; and T; satisfying the commutativity hypotheses of Theorem 4.2 such that T is left 1-inverse
of Sy1, Ty is a left (m — 1)-inverse of S, and T, is a strict left m-inverse of Sy. Define S; and T; by

S1=5101,5=52055T1=T1e] and L=Theo T,

(with respect to the decomposition H = S*(H) & S*~"(0) of ). Then T; is an n(S)-quasi left 1-inverse
of S;, T5 is a strict left m-inverse of S, and T; T is not an n(S)-quasi strict left m-inverse of S;S,.

(ii) Trivially, one may replace n(S)-quasi by n(S;S)-quasi, i = 1, 2, in the conclusion of Theorem 4.2.

Given Hilbert spaces H;, i =1, 2, let H; & H, denote the completion, endowed with a reasonable
uniform cross-norm, of the algebraic tensor product H;® H, and, for A; € B(Hy), i=1,2, let
A ® A, € B(H; ® H;) denote the tensor product of A; and A,. Theorem 4.2 applies to tensor products of
n-quasi left m-invertible, m-isometric and (m, C)-isometric operators. Let A;, B; (i=1,2) and S, T be
operators in B(H).
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Corollary 4.4.IfA;"df , (DAl = 0 = d2, (I) and[4;, Bf] = 0, then(A, ® A"l (1 ® 1) (A ® A,)" = 0.

Proof. Define the operators S, S; and T;, i = 1, 2, by
S=5=4A@®1, T,=B®I S=I%94 and L =I1®B,.
Then, since [4;, B{] = 0,
[S1,8]=0=[T, L] and [S,T{]=0=[S, S|
(i =1, 2). Theorem 4.2 applies to prove
(A7 ® Drdgi o, ([ ® 1) (4 ® D" = 0.

Multiplying by (I ® B;)" on the left and by (I ® B;)" on the right, the proof follows. O
Translated to (m, C)-isometric operators, Theorem 3.1 and Corollary 3.2 imply the following.

Corollary 4.5. Given conjugations C and D, if:

(i) S, T € B(H) are commuting operators such that S*nArs@,csc(I )S'=0 = A’T"Z prpD» [Ss CSC] = 0 =[S, DTD]
and [T, CSC] = 0 = [DTD, CSC), then

M+ -1 M+ my - 1 R .
(ST) ™A s (ST = (STy™ Y (—1)’( j ](ST)*(’"I”"H-”<CSCDTD)m1+mz-1-J (ST)" = 0.
j=0

In particular, if C = D, then
(ST)*“A’S'?;{"CZS’TIC(I) (ST)"=0
(i.e., ST is n-quasi (m; + m, — 1, C)-isometric).
(i) A*"A’Z{CAC(I)A" =0-= B*“A’gz,DBD(I)B" and [A, CAC] = 0O, then

(A ® By"AR e copsny I ®@ D(A® B =0

(i.e., A ® B is n-quasi (m; + m, — 1, C ® D)-isometric).

Proof. (i) If we define S;and T;,i = 1, 2, by S; = CSC, S, = DTD, T, = S*and T = T*, then S, S;and T; (i = 1, 2)
satisfy the hypotheses of Theorem 4.2. Hence, the proof of (i). The proof of (ii) is evident. O

Corollary 4.4 generalizes [11, Theorem 2.3] (proved for the case n = 0 and C = D), and Corollaries 2.1,
3.5 and Proposition 3.5 (proved for the cases n = 2, 3 of part (ii) of our Corollary 4.4) of [11].

Corollary 4.5 takes the following simpler form for m-isometries.
Corollary 4.6. Given operators S, T € B(H) such that S*"A?{S(I )S"=0 = A’T"E’T(I ) (i.e., S is n-quasi
my-isometric and T is m,-isometric):
(i) if[S, T] = O, then (ST)*”A’S"}T*{'?T*(I) (ST)" = 0O (i.e., ST is n-quasi (m; + m, — 1)-isometric);

(i) (S® T)*"A'S’ig;"{géT(I ®N(S®T)'=0 (i.e.,, S® T is n-quasi (m; + m, — 1)-isometric).

A version of Corollary 4.6 holds for m-self-adjoint and m-symmetric operators.

Corollary 4.7. Let S, T € B(H) satisfy [S, T] = 0 and let C be a conjugation of H . If:

(i) S is n-quasi m;-self-adjoint and T is m, self-adjoint, then ST is n-quasi (m; + m, — 1)-self-adjoint (i.e.,

SEMI)S™) = 0 = 87,(I) = 0 implies (ST)™" 82" YI) (ST)" = 0);
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(ii) S is n-quasi my-symmetric with the symmetry implemented by the conjugation C, T is m,-symmetric with
the symmetry implemented by the conjugation C and [S, CSC] = O, then ST is n-quasi m; + m, — 1-sym-
metric with the symmetry implemented by the conjugation C (i.e., S*"Gs 'oucDS" =0 = SI'L?CTC(I )=0

and [S, CSC] = 0 implies (ST)*"5S'"1T”E§TC(I) (ST)M);

(iii) S is n-quasi m;-self-adjoint and T is m,-self-adjoint, then S ® T is n-quasi (m; + m, — 1)-self-adjoint;

(iv) Sis n-quasi my-symmetric and T is m,-symmetric (with the symmetry implemented by the conjugation C
for S and T), then S ® T is n-quasi (m; + my, — 1)-symmetric (with the symmetry implemented by the
conjugation C).

5 Perturbation by nilpotents

Gu [3, Theorem 2] proves that if T € B(X) is a left (right) m-inverse of S € B(X) and N € B(X) is an n-nilpotent
which commutes with T, then T + N is a left (resp., right) (m + n — 1)-inverse of S. Consequently, If T is a left
m-inverse of S, Nj is an n;-nilpotent which commutes with T and N, is an n,-nilpotent which commutes with S,
then T + N; is a left (m + n; + n, — 2)-inverse of S + N,. Translated to m-isometric (and (m, C)-isometric)
operators S, this implies: If N € B(H) is an n-nilpotent operator which commutes with S, then S + N is an
(m + 2n — 2)-isometric [5] (resp., (m + 2n — 2, C)-isometric [9]) operator. A similar result holds for m-self-
adjoint and (m, C)-symmetric operators [8,7]. In the following, we consider perturbation by commuting
nilpotents of operators S, T € B(X) satisfying df's(I) = 0, and using an elementary argument we prove:

Theorem 5.1. If dr's(I) = 0 and N € B(X) is an n-nilpotent operator satisfying S, N] = 0, then d}'fgflgl(l )=0
Proof. We start by proving that

A2 (D) = [ ]TIA” JON  and

P
Z
D

Z 1)1( jsl’ SN

bfs D =

The proof is by induction. Both the equalities being true for p = 1, assume their validity for some k > 1.
Then

AP N) = Ars(Df s y() + TAF g N(DN

_ Ak k k k k k 2 Ak-1r72
= Aps(D) + {(kj + (k ~ J}TAT’SN + {(k C 1) + (k " 2J}T AT SN
-+ {[kj + (k)}TkAT,SNk + (ijkHNkJrl
1 0 0

k+1

_ z (k + 1]T]Ak+1 ](I)N}

and

81,5(6f s.n(D) — 8f s, NN

g o) o[t ot
k(K)o K K _ (k[ K|k
+{( (k)= (k_l)}ZiT,sN SuM

k+1

> (- 1)1[" * ljak” DN,

j=0

S5 ()
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Recall now that df's(I) = O implies df s(I) = O for all integers ¢t > m. Hence, since N/ = 0 for all j > n,
df s, y(I) = 0 for all p such that p — n + 1 > m (in particular, if p = m + n - 1). O

Trivially, df"s(I) = O if and only if dg'*',T*(I) = 0 (where we have used I to denote the identity of both
B(X) and B(X*)). Hence:

Corollary 5.2. If df's(I) = 0 and N; € B(X) (i = 1, 2) are n;-nilpotent operators satisfying [S, Ni] = 0 = [T, Ny],
then df s %(I) = 0.

For perturbation by commuting nilpotents of n-quasi [m, d]-operators (i.e., operators S, T € B(H) such
that S*"dr's(I)S™ = 0), we have the following.

Theorem 5.3. Suppose that S*'dr's(I)S™ = O for some operators S, T € B(H) and integers m,n > 1. If
N; € B(H), i = 1, 2, are n;-nilpotent operators such that [S, Nj] = 0 = [S, T*] and [N,, T] = 0 = [N, S], then
(§" + NP ldpe i (D (S + Nyt = 0.

Proof. Letting S and T* have the upper triangular representations (3) of Section 2, it follows from the
hypotheses that N; and N, have the upper triangular representations

N, = Ny Ny and N = Ny N{o
0 Np 0 N

(with respect to the decomposition H = S"(H) & S*~(0)), where
Nii = Njj =0 =Ny = N33 and [Ny, S;] = 0 = [Ny, Ti].
The hypothesis S*"df"s(I)S™ = 0 implies df's,(I;) = 0. Hence,
d£1++1\rflzl1t§l12+_1\2711 (Il) = 0.
This, since

(S + Nl)n+n1—1 — ((51 + 1\]11)n+nr1 Z]

0 0

(for some operator Z) and
_ 0 Z
s =, )
for some operators Z; (i = 1, 2, 3), implies
(87 + Ny dpin i (D (S + Nyt = 0.

This completes the proof. O
More can be said in the case in which T = S* (i.e., when S is n-quasi m-isometric [11]).

Corollary 5.4. Given an operator S € B(‘H) such that S*”A’S"*’S(I )S" =0, let N € B(H) be an ny-nilpotent
operator such that [S, N] = 0. Then:

(i) S*‘”*"l‘l)AQ:%’i£iN(I) S+ Nywm1=0 (ie, (S+N) is an (n + n; — 1)-quasi (m + 2n; — 2)-isometric
operator).

(it) If S1 = Sls7gy has a dense range (or, S has SVEP at 0), then (S + N)ywm-1js similar to the operator
(51 + Nl)anrl ® 0.
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(iii) There exists a positive operator Q and an operator A similar to S™™~! such that A2 = 0 (ie.,
A A

A is (m + 2n; - 2, Q)-isometric. Furthermore, if S is also left invertible, then S ™! is similar to an
(m + 2ny — 2)-isometric operator.

Proof. The proof of (i) follows from Theorem 5.3. To prove (ii), we start by observing that if we let
N, N ____
N = [01 Noj (with respect to the decomposition H = SN(H) & S*(0)), then (N' = NJ = 0 and S = 0 in
2
the corresponding representation (3) for S)

(S + N)n+n1—1 — ((Sl + Nl)n+n171 X]
0 0

for some operator X. The operators S; and N; commute, and S; is left invertible (since S; is left m-
invertible). Hence, since g,(S; + N;) € 04(S1) + 0.(N;) = 04(S1), S1 + Nj is left invertible. Define the operator

-1
EeB(H)byE = ((Sl + Nyt X ; then (since either of the hypotheses S; has a dense range and S; has

0
SVEP at O implies) E is invertible with

E1l= ((S1 + Nl)*(mnrl) — (S + Nl)(mnll)Xj.
0 1

If we now define A € B(H) by A = (S; + N1 ¢ 0, then (S + N)"*™~1 = E-1AE. To prove (iii), we start by
observing from the proof of Theorem 5.3 that the current hypotheses imply (S; + Ny)? is (m + 2n; — 2)-
isometric and (S + N)? is (n + n; — 1)-quasi (m + 2n; — 2)-isometric for all integers p > 1. Choose

p=n+n -1 and let (S; + N)™™-1 have the polar decomposition (S; + N)"*-1 = UP; (so that U; is

Up X

an isometry and P; is positive invertible). Let (S + N)*m-1 = and argue as in the proof of

Proposition 2.2. Then, upon defining Q > 0 as in the proof of Proposition 2.2 and lettingm + 2n; - 2 — j = ¢,

m+2n;-2
S+ N)*(Yl+'l1—1){ z\‘l (_1)j(m + 2}711 - ZJ(S + NYystorem=1) (S 4 N)t(n+n1—1)}(s + N)yrm-1 = 0
j=0
o '“ZZ (_py[m* 2= 2)(UiP 0 tQ(PlUl PXY _,
fard j XP 0 0 0 ’
Now define the operator A by A = (PIOUI PE)X . Then A is (m + 2n;, — 2, Q)-isometric and S"*m-1 = P-14P,

where P = P, & L,. To complete the proof, assume now that S is left invertible. Then P and Q are invertible
positive operators, B = Q2AQ> is (m + 2n; — 2)-isometric and S"*u-1 = E-IBE, E = Q:2P. O

The corresponding result for n-quasi (m, C)-isometries S, S*nAfsn*,csc(I )S" =0, such that C=C & G
(with respect to the decomposition H = S"(H) & S*~"(0)) is the following. Define the operator M (as

l(])l g), where the isometry U; and the operator X are as in the polar decomposition

(above) of Sn+m-1,

before) by M = (

Corollary 5.5. Let S € B(H) be an n-quasi [m, Cl-isometry such that C = C; ® G, with respect to the
decomposition H = S"(H) & S*~"(0). If N € B(‘H) is an n;-nilpotent operator such that [S, N] = 0, then:

(i) S+ N is (n + n; — 1)-quasi (m + 2n — 1, C)-isometric.

(i) (S + NYvm-lis similar to (S; + N)"*" 190, S; = Sls7n and Ny = Nlgigg, whenever Sy has a dense range
(or S{ has SVEP at 0).

(iii) If also [C, M] = 0, then (S + N)**"~1 is similar to an (m + 2n; — 2, C)-isometry.
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Proof. The hypothesis
SO c5c)S" =0 = A oo (h) =0

m _ m+n;—1 _
© Asic,s, () = 0= Apsi oy () =0

m+n-1 — m+2n-2 —
© ASmyas @ =0 = Ao ivye.sen@ =0

m+2n;-2 _
& DNt s, ) = 0

=S+ N)*(”*"l’l)Ag’iﬁ%‘z,‘cz(sm)c(l)smmfl -o.

This proves (i). The proof of (ii) follows from the proof of Corollary 5.4, and the proof of (iii) follows from
the argument of the proof of Corollary 5.4 and Proposition 2.4 applied to

(S+ Ny ATRE | (ST = 0

. "”%1’2 Co(m+ 2n, - 2\(U;P, oY( L UrGXG\(GP UG GPXG) _ o
pard j XP 0\ XUIGU X*GXG 0 0 ’

where t = m + 2n; — 2 - j. This completes the proof. O

We remark in closing that Corollaries 5.4 and 5.5 have an m-self-adjoint and m-symmetric operator
version. For example, if S € B(H) satisfies S*"égﬁl,s(I)S" =0 and N € B(H) is an nj-nilpotent which
commutes with S, then:

(i) Si+ Ny, where S; = Slswz and Ny = Nlgrz;, satisfies 65'?,15\?;1,’511\,1 I) = 0;
(i) (S* + N*)"+”1‘155"1LZV’11’§§N(I) (S + Nyr=m-1 = Q;
(iii) if S is also left invertible, then (S + N)™*™~1 is similar to an (m + 2n; — 2)-self-adjoint operator.

We leave the proof of the above, and the formulation of the corresponding result for m-symmetric
operators (for which C = C; @ G, : S"(‘H) & S*™0) — S™(H) & S*~™(0))) to the reader.
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