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Abstract: Given Hilbert space operators �∈ ( )T S B, , let Δ and �∈ ( ( ))δ B B denote the elementary
operators ( ) = ( − )( ) = −X L R I X TXS XΔT S T S, and ( ) = ( − )( ) = −δ X L R X TX XST S T S, . Let =d Δ or δ.
Assuming T commutes with ∗S , and choosing X to be the positive operator ∗S Sn n for some positive
integer n, this paper exploits properties of elementary operators to study the structure of n-quasi
[ ]m d, -operators ( ) =d X 0T S

m
, to bring together, and improve upon, extant results for a number of classes of

operators, such as n-quasi left m-invertible operators, n-quasi m-isometric operators, n-quasi m-self-
adjoint operators and n-quasi ( )m C, symmetric operators (for some conjugation C of � ). It is proved that
Sn is the perturbation by a nilpotent of the direct sum of an operator �= ( | )

( )
S Sn

S
n

1 n satisfying ( ) =d I 0T S
m

, 11 1 ,

�= ∣
( )

T T S1 n , with the 0 operator; if S is also left invertible, then Sn is similar to an operator B such that

( ) =∗d I 0B B
m

, . For power bounded S and T such that − =
∗ ∗ST T S 0 and ( ) =

∗S SΔ 0T S
n n

, , S is polaroid (i.e.,
isolated points of the spectrum are poles). The product property, and the perturbation by a commuting
nilpotent property, of operatorsT S, satisfying ( ) =d I 0T S

m
, , given certain commutativity properties, transfers

to operators satisfying ( ) =
∗S d I S 0n

T S
m n
, .

Keywords: Hilbert space, elementary operators, n-quasim-left invertible operator, poles, product of operators,
perturbation by nilpotents
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1 Introduction

Let �( )B (resp., �( )B ) denote the algebra of operators, equivalently bounded linear transformations, on
a complex infinite dimensional Banach space � (resp., Hilbert space � ) into itself. Given operators

�∈ ( )T S B, , let LT and �∈ ( ( ))R B BS denote, respectively, the operators

( ) = ( ) =L X TX R X XS,T S

of left multiplication by T and right multiplication by S. The elementary operators ΔT S, and �∈ ( ( ))δ B BT S,
are then defined by

( ) = ( − )( ) = −X L R I X TXS XΔT S T S,

and

( ) = ( − )( ) = −δ X L R X TX XS.T S T S,

Let �∈ ( ( ))d B BT S, denote either of the operators ΔT S, and δT S, . Let I denote the identity of �( )B and let
≥m 1 be some integer. Then
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∑( ) = ( )( ) = (− )
−

=

− −I I
m
j T SΔ Δ Δ 1T S

m
T S T S

m

j

m
j m j m j

, , ,
1

0








(1)

and

∑( ) = ( ( )) = (− )
−

=

−δ I δ δ I
m
j T S1 .T S

m
T S T S

m

j

m
j m j j

, , ,
1

0








(2)

We say in the following that an operator �∈ ( )S B is an − ( )m d T, operator if ( ) =d I 0T S
m
, . Examples of

− ( )m d T, operators �∈ ( )S B occur quite naturally. Thus, if an operator �∈ ( )S B is m-left invertible by
�∈ ( )T B , then

∑( ) = (− ) =

=

− −I
m
j T SΔ 1 0T S

m

j

m
j m j m j

,
0








[1–3]; if �∈ ( )S B is m-isometric, then

∑( ) = (− ) =

=

∗( − ) −
∗ I

m
j S SΔ 1 0S S

m

j

m
j m j m j

,
0








[4–6]; if �∈ ( )S B is m-self-adjoint, then

∑( ) = (− ) =

=

∗( − )
∗δ I

m
j S S1 0S S

m

j

m
j m j j

,
0








[7]; and if �∈ ( )S B is ( )m C, -isometric for some conjugation C of � , then

∑( ) = (− ) =

=

∗( − )
∗δ I

m
j S CS C1 0S CSC

m

j

m
j m j j

,
0








[8]. Operators ∈ − ( )S m d T, , in particular the classes consisting of m-isometric and ( )m C, -isometric
operators [9], have been studied in a number of papers in the recent past (see cited references for further
references). A generalization of the class consisting of m-isometric (resp., ( )m C, -isometric) operators
which has drawn some attention in the recent past is that of the n-quasi m-isometric (resp., n-quasi
( )m C, -isometric) operators, where an operator �∈ ( )S B is said to be n-quasi m-isometric (resp., n-quasi
( )m C, -isometric) for some integer ≥n 1 if ( ) = ( ) =

∗ ∗
∗ ∗S I S S SΔ Δ 0n

S S
m n

S S
m n n

, , (respectively, ( ) =
∗

∗S I SΔ 0n
S CSC

n
, )

[10,11]. In keeping with current terminology [10–12], we say in the following that an operator �∈ ( )S B is
n-quasi[ ]m d, -intertwined by �∈ ( )T B (equivalently, T is an n-quasi [ ]m d, -intertwining of S) for some integer

≥n 1 if

( ) =
∗S d I S 0.n

T S
m n
,

It is immediate from the definition that if �∈ ( )S B is n-quasi [ ]m d, -intertwined by T, [ ] =
∗S T,

− =
∗ ∗ST T S 0 (thus ( ) = ( ) =

∗ ∗S d I S d S S 0n
T S
m n

T S
m n n

, , ), �= ∣
∗ ∗

( )
T T S1 n and �= |

( )
S S S1 n , then ( ) =d I 0T S

m
, 11 1 . Choosing

=
∗T S , we prove in the following that if ( ) =

∗
∗S d I S 0n

S S
m n

, and if =d Δ (resp., =d δ and S is injective), then
there exist a positive operator Q and an operator A such that ( ) =∗Δ Q 0A A

m
, and Sn is similar to A (resp.,

( ) =∗δ Q 0A A
m

, and ( ) =δ P 0A S, n , P a quasi-affinity). Furthermore, if S is left invertible, then there exists an
operator �∈ ( )B B such that Sn is similar to B and ( ) =∗d I 0B B

m
, .

Left m-invertible Banach space (as also m-isometric, m-self-adjoint Hilbert space [7]) operators
are known to satisfy the properties that: if �∈ ( )S T B,i i , =i 1, 2, are such that Si is left mi-invertible by
Ti and [ ] = = [ ]S S T T, 0 ,1 2 1 2 , then S S1 2 is left ( + − )m m 11 2 -invertible by T T1 2; if �∈ ( )S B1 is left m1-invertible
by �∈ ( )T B1 and �∈ ( )N B1 is an n1-nilpotent operator which commutes with S1, then +S N1 1 is left
( + − )m n 11 1 -invertible by T1 [3]. These results, which hold equally well for [ ]m d, -intertwinings, have
extensions to n-quasi [ ]m d, -intertwining (Hilbert space) operators S T, . Let us say that �∈ ( )S B1 is

( )n S -quasi [ ]m d, -intertwined by �∈ ( )T B1 for some operator �∈ ( )S B if

( ) =
∗S d I S 0.n

T S
m n

,1 1
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We prove that if �∈ ( )S T B,i i ( = )i 1, 2 are some operators such that S1 is ( )n S -quasi [ ]m d,1 -intertwined
by T1, S2 is [ ]m d,2 -intertwined by T2, [ ] = = [ ]S S T T, 0 ,1 2 1 2 and [ ] = = [ ]

∗S S S T, 0 ,i i ( = )i 1, 2 , then S S1 2 is
( )n S -quasi [( + − ) ]m m d1 ,1 2 -intertwined by T T1 2. For an n-quasi m1-isometric �∈ ( )S B and an m2-isometric

�∈ ( )T B such that S T, commute, this implies that ST is an n-quasi ( + − )m m 11 2 -isometry. Again, if S is
( )n S -quasi [ ]m d, -intertwined by T, �∈ ( )N Bi are nilpotent operators ( = )i 1, 2 , [ ] = = [ ]

∗S N S T, 0 ,1 , [ ] =N T,2
= [ ]

∗S N0 , 2 and S is injective in the case in which =d δ, then ( + )
∗ ∗ + −S N n n

1
11 ( )( + ) =

+ +

+ + − + −d I S N 0T N S N
m n n n n

,
2

1
1

2 1
1 2 1 .

Translated to left invertible n-quasi m-isometric operators �∈ ( )S B such that S commutes with an
n1-nilpotent operator �∈ ( )N B , this implies that there exists an m-isometric operator �∈ ( )B B such that
( + )

+ −S N n n 11 is similar to B.
Recall that a Banach space operator �∈ ( )A B is polaroid if the isolated points of the spectrum of A,

points ∈ ( )σ Aiso , are poles of (the resolvent of) A. It is known, [6, Theorem 2.4], that contractive (more
generally, power bounded) m-isometric Banach space operators S (i.e., contractions, respectively, power

bounded, �∈ ( )S B such that ∑ (− ) ∥ ∥ =
=

−
m
j S x1 0j

m j m j
0

2






for all �∈x ) are isometric, hence polaroid. This

result extends to power bounded �∈ ( )S T B, such that ( ) =IΔ 0T S
m

, . We prove in the following that the nth
power (hence the operator itself) of an n-quasi m-isometric operator in �( )B is polaroid whenever it is
a contraction (more generally, power bounded). Indeed, we prove more: Power bounded operators

�∈ ( )S T B, such that [ ] =
∗S T, 0 and ( ) =

∗S SΔ 0T S
m n n

, are polaroid.
The rest of this paper is organized as follows. We introduce our notation/terminology, along with some

complementary results, in Section 2. Here we have a first look at the structure of n-quasi [ ]m d, -operators.
Section 3 is devoted to proving the polaroid property for n-quasi left m-invertible operators, Section 4
considers the product of an n-quasi [ ]m d,1 -operator with an [ ]m d,2 -operator and Section 5 deals with
perturbation by nilpotents. As we point out at various points in the paper, our results represent a
considerable improvement upon various extant results.

2 Complementary results

Given a Banach space operator �∈ ( )A B , we denote the isolated points of the spectrum ( )σ A (resp., the
approximate point spectrum ( )σ Aa , the surjectivity spectrum ( )σ Asu ) of A by ( )σ Aiso (resp., iso σa(A),

( )σ Aiso su ). Let −A λ denote −A λI . The operator A is said to have SVEP, the single-valued extension
property, at a point λ of the complex plane � if, for every neighborhood �λ of λ, the only analytic function

� �→f : λ satisfying ( − ) ( ) =A μ f μ 0 for all �∈μ λ is the function ≡f 0; we say that A has SVEP if it has
SVEP at every �∈λ . The ascent ( )Aasc (resp., descent ( )Adsc ) of A is the least non-negative integer n such
that ( ) = ( )

− −( + )A A0 0n n 1 (resp., � �=
+A An n 1 ); if no such integer exists, then ( ) = ∞Aasc (resp., ( ) = ∞Adsc ).

It is well known, [13–16], that ( ) < ∞Aasc implies A has SVEP at 0 and ( ) < ∞Adsc implies ∗A , the dual
operator, has SVEP at 0, and that finite ascent and descent imply their equality. A point ∈ ( )λ σ Aiso is a pole
of (the resolvent of) A if ( − ) = ( − ) < ∞A λ A λasc dsc .

For a given operator �∈ ( )A B , let ( ) = { ∈ ( )A λ isoσ AΠ :a a there exists an integer ≥d 1 such that
( − ) ≤asc A λ d and ( − )

+A λ d 1 is closed} = set of left poles of A, and let ( ) = { ∈ ( ) ( − ) =A λ isoσ A asc A λΠ :
( − ) < ∞} =dsc A λ set of poles of A. Then ( ) ⊆ ( )A AΠ Πa and a necessary and sufficient condition for

∈ ( )λ AΠa to imply ∈ ( )λ AΠ is that ∗A has SVEP at λ [13]. We say that A is polaroid (resp. left polaroid) if
{ ∈ ( ) ∈ ( )} = ( )λ σ A λ σ A A: iso Π (resp., { ∈ ( ) ∈ ( )} = ( )λ σ A λ σ A A: iso Πa a ). To every ∈ ( )λ σ Aiso , there corres-
ponds a decomposition

� = ( − ) ⊕ ( − )H A λ K A λ ,0

where ( − )H A λ0 , the quasinilpotent part of −A λ, and ( − )K A λ , the analytic core of −A λ, are the sets

�{ }( − ) = ∈ ∥( − ) ∥ =

→∞

H A λ x A λ x: lim 0
n

n
0 n

1
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and

� �( − ) = { ∈ { } ⊂ >

= ( − ) = ∥ ∥ ≤ ∥ ∥ = …}+

K A λ x x δ
x x A λ x x x δ x n

: there exists a sequence and 0 for which
, and for all 1, 2,

n

n n n
n

0 1

[13]. ( − )H A λ0 and ( − )K A λ are generally non-closed hyperinvariant subspaces of −A λ such that
( − ) ( ) ⊆ ( − )

−A λ H A λ0p
0 for all positive integers p and ( − ) ( − ) = ( − )A λ K A λ K A λ . A necessary and

sufficient condition for a ∈ ( )λ σ Aiso to be a pole of A is that ( − ) = ( − ) ( )
−H A λ A λ 0n

0 for some integer >n 0.
(The number n is then said to be the order of the pole at λ; if =n 1, then the pole is said to be a simple pole.)

Similarities preserve spectrum (hence, isolated points of the spectrum), the ascent and the descent.
Hence: Similarities preserve the polaroid property. Recall that an �∈ ( )A B is an isometry if ∥ ∥ = ∥ ∥Ax x for all

�∈x . Isometries are normaloid operators, i.e., if an �∈ ( )A B is isometric, then ∥ ∥A equals the spectral

radius ( ) = ∥ ∥→∞r A Alimn
n n

1
. The inverse of an isometry, whenever it exists as a bounded operator, is again

an isometry. Since the restriction of an isometry to an invariant subspace is again an isometry, isometries
are totally hereditarily normaloid operators (see [17]). Conclusion: Invertible isometries are polaroid ([17];
see also [15, Theorem 1.5.13]).

Given operators �∈ ( )S T B, , it is seen that

∑( ) = ( − ) ( ( )) = (− ) ( )
+

=

− −I L R I I k
j T I SΔ Δ 1 ΔT S

m k
T S

k
T S
m

j

k
j k j

T S
m k j

, ,
0

,







and

∑( ) = ( − ) ( ( )) = (− ) ( )
+

=

−δ I L R δ I k
j T δ I S1T S

m k
T S

k
T S
m

j

k
j k j

T S
m j

, ,
0

,







for all integers ≥m k, 1. Hence:

Lemma 2.1. If ( ) =d I 0T S
m
, , then ( ) =d I 0S T

t
, for all integers ≥t m.

For an operator �∈ ( )S B , let �( )Sn denote the closure of the range of Sn, and let ( )
∗−S 0n denote the

kernel of ∗S n. If an operator �∈ ( )T B is such that [ ] = − =
∗ ∗ ∗S T ST T S, 0, then � has a direct sum

decomposition � �= ( ) ⊕ ( )
∗−S S 0n n , and ∗S T, have upper triangular representations

= =
∗

∗ ∗

∗
S S S

S
T

T T
T0

,
0

,1 0

2

1 0

2



















 (3)

where

= [ ] =
∗S S T0 and , 0.n

2 1 1

The hypothesis ( ) =
∗S d I S 0n

T S
m n
, implies that if =d Δ, then

∑

∑

( ) = ⇔ (− ) =

⇔ (− ) =

∗ ∗

=

− −

∗

∗

=

− −

S I S S
m
j T S S

S
X

m
j

T S X
X X

S X

Δ 0 1 0

0
0

1
0 0

0

n
T S
m n n

j

m
j m j m j n

n

j

m
j

m j m j
j

j j

n

,
0

1

0

1 1 1

2 3

1













































































and if =d δ, then

∑

∑

( ) = ⇔ (− ) =

⇔ (− ) =

∗ ∗

=

−

∗

∗

=

−

S δ I S S
m
j T S S

S
X

m
j

T S X
X X

S X

0 1 0

0
0

1
0 0

0

n
T S
m n n

j

m
j m j j n

n

j

m
j

m j j
j

j j

n

,
0

1

0

1 1 1

2 3

1












































































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for some operators X and Xij ( = )i 1, 2, 3 . Hence

∑ ∑(− ) = ⇔ (− ) =
∗

=

− −

=

− −S
m
j T S S

m
j T S1 0 1 0n

j

m
j m j m j n

j

m
j m j m j

1
0

1 1 1
0

1 1  




























and

∑ ∑(− ) = ⇔ (− ) =
∗

=

−

=

−S
m
j T S S

m
j T S1 0 1 0,n

j

m
j m j j n

j

m
j m j j

1
0

1 1 1
0

1 1  




























i.e., ( ) =d I 0T S
m

,1 1 . Consequently, [2, Remark 2.7] and Lemma 2.1, ( ) =d I 0T S
m

,p p
1 1

for every integer ≥p 1. Hence,

( ) = ≥
∗S d I S p0, for all integers 1.n

T S
m n

,p p

The observations that

( ) = ( ) − ( ) ( ) = ( ) − ( )
+ +I A I B I δ I Aδ I δ I BΔ Δ Δ ,A B

m
A B
m

A B
m

A B
m

A B
m

A B
m

,
1

, , ,
1

, ,

lead to the implication

( ) = ⇔ ( ) = ≥d I d I t m0 0 for all integers ,T S
m

T S
t

, 1 , 11 1 1 1

and hence

( ) = ⇒ ( ) = ≥
∗ ∗S d I S S d I S t m0 0 for all integers .n

T S
m n n

T S
t n

, ,

If we let X denote the operator

∑=

=

−

− −X S S S ,
j

n
n j j

0

1

1
1

0 2

then

=S S X
0 0

.n
n
1








Now if ( ) =
∗S I SΔ 0n

T S
m n

, , then ( ) =IΔ 0T S
m

, 11 1 implies S1 is (m-left invertible, hence) left invertible.

Consequently, if S1 has a dense range (or, equivalently, ∗S1 has SVEP at 0), then the operator Sn is similar to

= ⊕A S 0n
1 (with the similarity implemented by the invertible operator =E S S X

0 1

n n
1 1






). Observe that the

operator A is not left m-invertible (i.e., there does not exist an operator �∈ ( )B B such that ( ) =IΔ 0B A
m

, ).
Letting =

∗T S (so that ( ) =
∗

∗S I SΔ 0n
S S
m n

, – such operators have been called n-quasi m-isometric [11]), it then
follows that S n

1 is m-isometric and, if S1 has a dense range, Sn is similar to A. Operators �∈ ( )S B for which
( ) =∗δ I 0S S

m
, are called m-self-adjoint operators [7]. If ( ) =

∗
∗S δ I S 0n

S S
m n

, (i.e., if S is n-quasi m-self-adjoint),
then (S1, hence) S p

1 is m-self-adjoint for all integers ≥p 1 [7]. More is true, as we prove in the following.
Given a positive operator �( ≤ ) ∈ ( )Q B0 , we say that the operator �∈ ( )S B is [ ]m Q, -isometric (resp.,

[ ]m Q, -self-adjoint) if ( ) =∗ QΔ 0S S
m

, (resp., ( ) =∗δ Q 0S S
m

, ); we say that ∈ [ ( )]S m d Q, if ( ) =∗d Q 0S S
m

, , =d Δ or δ.
We assume in the following that �( )= |

( )
S Sn

S
n

1 n has the polar decomposition =S U Pn
1 1 1. It is then clear that

U1 is an isometry and ≥P 01 is invertible in the case in which S is n-quasi m-isometric, and U1 is isometric
and ≥P 01 is injective in the case in which S is n-quasi m-self-adjoint and injective. Define the operator

�∈ ( ( ) ⊕ ( ))
∗−P B S S 0n n by = ⊕P P I1 2.

Proposition 2.2. Let �∈ ( )S B be such that ( ) =
∗

∗S d I S 0n
S S
m n

, for some integers ≥m n, 1.

(i) If =d Δ, then there exist operators �∈ ( )Q A B, such that ≥Q 0, ( ) =∗ QΔ 0A A
m

, and Sn is similar to A.

(ii) If =d δ and the operator S is injective, then there exist operators �∈ ( )Q A B, such that ≥Q 0,
( ) =∗δ Q 0A A

m
, and ( ) =δ P 0A S, n .

(iii) If S is left invertible, then there exists an operator �∈ ( )B B such that ( ) =∗d I 0B B
m

, and Sn is similar to B.
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Proof. The hypothesis ( ) =
∗

∗S d I S 0n
S S
m n

, implies ( ) =∗d I 0S S
m

,p p
1 1

, and hence

( ) = ≥
∗

∗S d I S p0 for all integers 1.n
S S
m n

,p p

Let, as above,

=S S X
0 0

.n
n
1








Define the operators A1, A and Q by

= = =

∗

∗ ∗
A P U A A P X Q I U X

X U X X
,

0 0
and .1 1 1

1 1 1 1

1


















Let I2 denote (as above) the identity of ( ( ))
−∗B S 0n .

(i). If =d Δ, then (upon letting =p n in the above) we have:

∑

∑

∑

∑

∑

∑

∑

( ) = ⇔ (− ) =

⇔ ( ⊕ ) (− ) ( ⊕ ) =

⇔ (− ) =

⇔ (− ) =

⇔ (− ) =

⇔ (− ) =

⇔ (− ) =

⇔ ( ) =

∗ ∗

=

∗ ( − ) ( − )

∗

∗

=

∗

∗

− −

=

∗

∗

∗

∗

− −

=

∗

∗

−
∗

∗

−

=

∗

∗

− ∗

∗ ∗

−

=

∗

∗

− −

=

∗( − ) −

∗

∗

S I S S
m
j S S S

P I U
X

m
j

S
X

S X U X P I

m
j

U
X

P U
X

U P X U X

m
j

A
X P

U
X

U X A P X

m
j

A
X P

I U X
X U X X

A P X

m
j

A
X P

Q A P X

m
j A QA

Q

Δ 0 1 0

0
0

1 0
0 0 0 0 0

0

1 0
0

0
0 0 0 0 0

0

1 0
0

0
0 0 0 0 0

0

1 0
0 0 0

0

1 0
0 0 0

0

1 0

Δ 0.

n
S S
m n n

j

m
j n m j n m j n

j

m
j

n m j n m j

j

m
j

m j m j

j

m
j

m j m j

j

m
j

m j m j

j

m
j

m j m j

j

m
j m j m j

A A
m

,
0

1 2
1

0

1 1 1
1 2

0

1 1 1 1 1 1

0

1

1

1 1 1 1

0

1

1

1 1

1

1 1

0

1

1

1 1

0

,

n n



 

 







 

 





































































































































































































































Set ⊕ =P I P1 2 . Then

= = =
− −S U P X P A P X P P AP

0 0 0 0
,n 1 1 1 1 1 1  













i.e., Sn is similar to A.

(ii). If =d δ, then (following the notation developed above):

∑

∑

∑

∑

( ) = ⇒ ( ) =

⇔ (− ) =

⇔ (− ) ( ⊕ ) ( ⊕ ) =

⇔ (− ) =

⇔ (− ) =

⇔ ( ) =

∗ ∗

=

∗ ( − + ) ( + )

=

∗ ( − )

∗

∗

=

∗

∗

− ∗

∗ ∗

=

∗( − )

∗ ∗

∗

S δ I S S δ I S

m
j S S

m
j S P I U

X
U X P I S

P
m
j

U P
X P

I U X
X U X X

P U P X P

m
j A QA

δ Q

0 0

1 0

1 0
0 0 0

0

1 0
0 0 0

0

1 0

0.

n
S S
m n n

S S
m n

j

m
j n m j n j

j

m
j n m j nj

j

m
j

m j j

j

m
j m j j

A A
m

, ,

0

1 1

0
1 2

1 1
1 2

0

1 1

1

1 1

1

1 1 1

0

,

n n






































































































Evidently, = ⊕P P I1 2 is a quasi-affinity such that ( ) =δ P 0A S, n .
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(iii). Assume now that S is left invertible. Then P and Q (defined as above) are positive invertible, and

( ) ( )

∑

∑

( ) = ⇒ ( ) = ⇒ (− ) =

⇔ (− ) =

∗ ∗

=

∗( − ) −

=

− ∗
−

−
−

∗ ∗S I S S I S
m
j A QA

m
j Q A Q Q AQ

Δ 0 Δ 0 1 0

1 0

n
S S
m n n

S S
m n

j

m
j m j m j

j

m
j m j m j

, ,
0

0

n n

1
2

1
2

1
2

1
2





















and

( ) ( )

∑

∑

( ) = ⇒ ( ) = ⇒ (− ) =

⇔ (− ) =

∗ ∗

=

∗( − )

=

− ∗
−

−

∗ ∗S δ I S S δ I S
m
j A QA

m
j Q A Q Q AQ

0 0 1 0

1 0.

n
S S
m n n

S S
m n

j

m
j m j j

j

m
j m j j

,
0

0

n n

1
2

1
2

1
2

1
2





















Now define �∈ ( )B B by

=
−B Q AQ ;1

2
1
2

then

( ) =∗d I 0.B B
m

,

Since

= = = ⇒ = =
− − − − −B Q AQ Q PS P Q LS L S L BL L Q P, ,n n n1 1 11

2
1
2

1
2

1
2

1
2

Sn is similar to B. □

Let � denote the open unit disk in � and let �∂ denote the boundary of � .

Corollary 2.3. (cf. [18, Corollary 4.3]) If =d Δ in the statement of Proposition 2.2 and the operator Q (in the
proof of the proposition) is injective, then ( ) ⊆ ∂σ S Dp .

Proof. The hypotheses imply ∑ (− ) =
=

−
m
j Q A x1 0j

m j m j
0

21
2







for all �∈x . Consider a ∈ ( )λ σ Sp such that
=Ax λx. Then, since Q is injective,

∑(− ) | | = ⇔ ( − | | ) = ⇔ | | =

=

( − )
m
j λ Q x λ λ1 0 1 0 1.

j

m
j m j m

0

2 2 21
2







Since Sn is similar to A, �( ) = ( ) = ( ) ⊆ ∂( )σ S σ S σ Ap
n

p
n

p . □

Proposition 2.2 is a generalization of some extant results. For example, if =d Δ, =n 1 and =m 2, then
( ) =

∗
∗S I SΔ 0S S,

2 (i.e., S is 1-quasi 2-isometric) implies ( ) =∗ QΔ 0A A,
2 (where the operators A Q, are as defined

in the proof of the proposition and the operator S is similar to A); if S is also left invertible, then
( ) =∗ IΔ 0B B,

2 (i.e., B is 2-isometric) for some operator B similar to the operator S (cf. [10, Theorem 2.5]). In
their considerations on the spectral properties of A-contractions, L. Suciu and N. Suciu [18] define an
operator �∈ ( )S B to be n-quasi isometric if ( − ) =

∗ ∗S S S S1 0n n . In our terminology, this equates to
( ) =

∗
∗S I SΔ 0n

S S
n

, (equivalently, “S is n-quasi 1-isometric”). Thus, for n-quasi isometric operators S, S n
1 is

isometric; indeed, since ( − ) =
∗ ∗S S S I S 0n n
1 1 1 1 1 , S1 is isometric. Assume now that =n 1 and 0 is a normal

eigenvalue of S (i.e., ( ) ⊆ ( )
− ∗−S S0 01 1 ). Then = ⊕S S 01 is a partial isometry (cf. [18, Theorem 3.12 and

Corollary 3.13]). For a general n-quasi isometry S, �= ∈ ( ( ) ⊕ ( ))
∗−S S S

S
B S S

0
0n n1 0

2









 , where S1 is isometric

and S2 is n-nilpotent. Consequently, S has SVEP and hence [18, Theorem 4.6]: (i) ( ) = ( )
∗σ S σ Sa . (ii)

�( ) =σ S ¯ , the closed unit disk, if S1 is not invertible and �( ) ⊆ ∂ ∪ { }σ S 0 if S1 is invertible. In either case,
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�( ) ⊆ ∂ ∪ { }σ S 0a . (iii) If λ μ, are two distinct non-zero eigenvalues of S, then ∈ ( )λ μ σ S, p 1 and the correspond-
ing eigenspaces are mutually orthogonal. Observe that if =n 1, then S1 is isometric. If also ∥ ∥ ≤S 1, then

= + ⊕
∗ ∗ − ∗ ∗( − )S S S S S S S S 0p p p p p p

1 1 1
1

0 0 1
1 is a contraction (thus: + ≤

∗ − ∗ ∗( − )S S S S S S Ip p p p
1 1 1

1
0 0 1

1
1). Consequently,

= ≥
∗

∗

∗ − ∗

∗S S
I S S

S S S S
S Sp p

p

p
p p1 1 0

0 1
1

0 0











for all integers ≥p 1 [18, Theorem 3.3].
Let C be a conjugation of � (i.e., � �→C : is a conjugate-linear operator such that =C I2 and

〈 〉 = 〈 〉Cx y Cy x, , for all �∈x y, ). If one chooses =
∗T CS C in ( ) =d I 0T S

m
, , then

( ) = ⇔ ( ) =∗ ∗I IΔ 0 Δ 0CS C S
m

S CSC
m

, ,

defines the class of ( )m C, -isometric operators and

( ) = ⇔ ( ) =∗ ∗δ I δ I0 0CS C S
m

S CSC
m

, ,

defines the class of ( )m C, -symmetric operators [9,8]. It is known [9,8] that

( ) = ⇔ ( ) = ≥∗ ∗d I d I t m0 0 for all integersS CSC
m

S CSC
t

, ,

and

( ) = ⇔ ( ) = ≥∗ ∗d I d I p0 0 for all integers 1.S CSC
m

S CS C
m

, ,p p

It is clear that if ( ) =
∗

∗S d I S 0n
S CSC
m n

, , then � �∈ ( ( ) ⊕ ( ))
∗−S B S Sn n has a representation

= =CS C C S X C C U P X C
0 0 0 0

n
n
1 1 1
















(where the operator X is as defined above). In particular, if the conjugation � �( ) ⊕ ( )
∗−C S S: n n

� �→ ( ) ⊕ ( )
∗−S Sn n has a representation = ⊕C C C1 2, then

( ) = ⇒ ( ) =
∗

∗ ∗d I S d I S0 0S C S C
m n

S CS C
m n

, 1 ,p p
1 1 1 1

for all integers ≥p 1. If, now, S satisfies the additional property that =CSCS S2, then

( ) = ⇔ ( ) =
∗ ∗

∗ ∗S d I S S d I S0 0n
S CSC
m n n

S S
m n

, ,

and Proposition 2.2 applies. In general, Proposition 2.2 seemingly does not extend to operators S satisfying
( ) =

∗
∗S d I S 0n

S CSC
m n

, . Define the operator �∈ ( )M B by

=M U X
0 0

1








(whereU1 and X are the operators defined above). The following proposition says that a result very similar
to Proposition 2.2 holds in the case in which [ ] =C M, 0 and = ⊕C C C1 2.

Proposition 2.4. Let �∈ ( )S B be such that ( ) =
∗

∗S d I S 0n
S CSC
m n

, (so that S is either n-quasi ( )m C, -isometric
or S is n-quasi ( )m C, symmetric), where the conjugation � �= ⊕ ( ) ⊕ ( ) → ( ) ⊕ ( )

∗− ∗−C C C S S S S: 0 0n n n n
1 2

satisfies [ ] =C M, 0.

(i) If =d Δ, then there exist operators �∈ ( )Q A B, such that ≥Q 0, ( ) = = ( )∗ ∗Q CQCΔ 0 ΔA CAC
m

CA C A
m

, , and Sn is

similar to A.
(ii) If =d δ and the operator S is injective, then there exist operators �∈ ( )Q A B, such that ≥Q 0,

( ) = = ( )∗ ∗δ Q δ CQC0A CAC
m

CA C A
m

, , and ( ) =δ P 0A S, n .

(iii) If S is left invertible, then there exists an operator �∈ ( )B B such that ( ) =∗d I 0B CBC
m

, and Sn is similar

to B.
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Proof. We start by observing that

( ) = ⇔ ( ) =
∗ ∗

∗ ∗S d I S S d I S0 0n
S CSC
m n n

S CS C
m n

, ,p p

for all integers ≥p 1.

(i). Case =d Δ. Following the notation of the proof of Proposition 2.2, we have:

∑

∑

∑

∑

∑

( ) = ⇔ (− ) =

⇔ (− ) =

⇔ (− ) =

⇔ (− )

× =

⇔ (− ) =

∗ ∗

=

∗ ( − ) ( − )

=

∗ ( − + ) ( − + )

=

∗

∗

− + − +

=

∗

∗

−
∗

∗

−

=

∗

∗

− ∗

∗ ∗

−

∗S d I S S
m
j S CS C S

m
j S CS C

m
j

P U
X

C U P X C

P
I

m
j

U P
X P

U
X

C U C C XC C P U C C P XC C P C
I

m
j

U P
X P

I U C XC
X U C U X C XC

C P U C C P XC

0 1 0

1 0

1 0
0 0 0

0

0
0 1 0

0
0
0

0 0 0 0
0

0 0

1 0
0 0 0

0.

n
S CS C
m n n

j

m
j n m j n m j n

j

m
j n m j n m j

j

m
j

m j m j

j

m
j

m j

m j

j

m
j

m j m j

,
0

0

1 1

0

1 1
1

1 1
1

1

2 0

1 1

1

1

1 1 1 1 2 1 1 1 1 1 1 2 1 1 1

2

0

1 1

1

1 1 1 2

1 1 1 1 2

1 1 1 1 1 1 2

n n

 





 







































































































































































By hypothesis, [ ] =C M, 0. Hence

= [ ] = = =

∗

∗ ∗

∗

∗ ∗
C X XC C U I U C XC

X U C U X C XC
I U X

X U X X
Q, , 0 and1 2 1 1

1 1 1 2

1 1 1 1 2

1 1

1





















for some positive operator Q. Consequently,

∑( ) = ⇒ (− ) =

⇒ ( ) = ⇔ ( ) =

∗

=

∗

∗

− −

∗

∗ ∗

S I S
m
j

U P
X P

Q C P U C C P XC

Q CQC

Δ 0 1 0
0 0 0

0

Δ 0 Δ 0,

n
S CSC
m n

j

m
j

m j m j

A CAC
m

CA C A
m

,
0

1 1

1

1 1 1 1 1 1 2

, ,























where, as before, the operator A is defined by = =
−A P U P X PS P

0 0
n1 1 1 1







.

(ii). Case =d δ. The hypothesis S is injective implies ≥P 0 has a dense range. Using the same notation as
above, we have:

∑

∑

∑

∑

( ) = ⇒ (− ) =

⇔ (− )

× =

⇔ (− ) =

⇒ (− ) =

⇔ ( ) = ⇔ ( ) =

∗

=

∗ ( − + ) ( + )

=

∗

∗

−
∗

∗

=

∗

∗

−

=

∗( − )

∗

∗ ∗

S δ I S
m
j S CS C

P
I

m
j

U P
X P

U
X

C U C C XC C P U C C P XC C P C
I

m
j

U P
X P

Q C P U C C P XC

m
j A QCA C

δ Q δ CQC

0 1 0

0
0 1 0

0
0
0

0 0 0 0
0

0 0

1 0
0 0 0

0

1 0

0 0.

n
S CSC
m n

j

m
j n m j n j

j

m
j

m j

j

j

m
j

m j j

j

m
j m j j

A CAC
m

CA C A
m

,
0

1 1

1

2 0

1 1

1

1

1 1 1 1 2 1 1 1 1 1 1 2 1 1 1

2

0

1 1

1

1 1 1 1 1 1 2

0

, ,

 



 





















































































































It being evident that ( ) =δ P 0A S, n , ≥P 0 a quasi-affinity, the proof is complete.
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(iii). Arguing as in the proof of Proposition 2.2, it is seen that = ⊕ >P P I 01 2 and >Q 0 are invertible;
furthermore, =CQC Q. Since

( ) ( )∑ ∑(− ) = ⇔ (− ) =

=

∗

=

− ∗ −
m
j A QCA C

m
j Q A Q CQ AQ C1 0 1 0

j

m
j a b

j

m
j a b

0 0

j j
j j1

2
1
2

1
2

1
2  













for all positive integers aj and bj, we have

( ) = ⇔ ( ) = =
−

∗ ∗d I d I B Q AQ0 0; .B CBC
m

CB C B
m

, ,
1
2

1
2

Clearly, =
− −S P Q BQ Pn 1 1

2
1
2 is similar to B. □

3 The polaroid property

If ( ) =IΔ 0T S
m

, for some �∈ ( )S T B, (i.e., if �∈ ( )S B is left m-invertible by �∈ ( ))T B , then ∉ ( )σ S0 a (for if
∈ ( )σ S0 a and �{ } ⊂xn is a sequence of unit vectors such that =

→∞

Sxlim 0
n

n , then

∑∥ ∥ = ∥ ( ) ∥ = (− ) =

→∞ →∞ →∞
=

− −x I x
m
j T S xlim lim Δ lim 1 0

n
n

n
T S
m

n
n j

m
j m j m j

n,
0








is a contradiction). Indeed, if ∈ ( )λ σ Sa , and { } ⊂x Xn is a sequence of unit vectors such that ( − ) =

→∞

S λ xlim 0
n

n ,
then

∑ ∑( ) = (− ) = (− ) ( )

= ( − ) = ⇒ ∈ ( )

→∞ →∞
=

−

→∞
=

−

→∞

I x
m
j T S x

m
j λT x

λT x
λ

σ T

lim Δ lim 1 lim 1

lim 1 0 1 .

n
T S
m

n
n j

m
j m j j

n
n j

m
j m j

n

n
m

n a

,
0 0

  












































A similar argument, using this time the fact that

∑( ) = (− ) =

=

∗( − ) ∗( − )
∗ ∗ I

m
j S TΔ 1 0,S T

m

j

m
j m j m j

,
0








shows that ∈ ( )λ σ Tsu implies ∈ ( )σ Sλ su
1 for all non-zero λ. (Here (⋅)σsu denotes the surjectivity spectrum.)

If we assume S, ( ) =IΔ 0T S
m

, , to be a contraction satisfying �( ) =σ S ¯ , then ( ) = ∅σ Siso and S is
(vacuously) polaroid. If, instead, we assume that S is an invertible contraction with spectrum a subset of
the boundary �∂ of the unit disk � , then S is normaloid (i.e., ∥ ∥ = ( )S r S ) and ( )σ S consists of the peripheral
spectrum (= { | | = ( )}λ λ r S: ) of S. The normaloid property of S implies that ( − ) ≤S λasc 1 and

� �( ( − )( )) >S λdim \ 0 [14, Proposition 54.2]. Thus, if the range �( − ) ( )S λ d is closed for some integer
≥d 1, then �( − )( )S λ is closed [15, Proposition 4.10.4] and ( − ) ≤S λasc 1, i.e., λ is a left pole of S. Since λ

is a boundary point of the spectrum, λ is indeed a pole of S. Conclusion: “A necessary and sufficient
condition for a point ∈ ( )λ σ S to be a pole of S for a given left m-invertible contraction S (i.e., a contraction
S such that ( ) =IΔ 0T S

m
, for some �∈ ( )T B ) with �( ) ⊆ ∂σ S is that �( − )( )S λ is closed.”

The hypothesis that S is a left m-invertible contraction (resp., T is a right m-invertible contraction),
even that S is an invertible contraction (resp., T is an invertible contraction), is not sufficient for S to be
polaroid. For example, the operator = ( + )

−S I Q 1, I the identity operator and Q the Volterra integra-
tion operator, is invertible with ( ) = { }σ S 1 and ∥ ∥ =S 1 [19, solution 190, page 302]. Since ( + ) − =

−I Q I1

− ( + ) = −( + )
− −Q I Q I Q Q1 1 and ∥(( + ) − ) )∥ ≤ ∥( + ) ∥∥ ∥

− −I Q I I Q Qn n1 1n n
1 1

converges to 0 as → ∞n , S is not
polaroid. Again, if we let = ( + )

−T I Q 1 and = +S I Q, then S is not polaroid. A sufficient condition for an
operator S, ( ) =IΔ 0T S

m
, , to be polaroid is that both S T, are power bounded. We recall: �∈ ( )A B is power

bounded if there exists a positive scalar M such that �∥ ∥ <∈ A Msupn
n .
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Theorem 3.1. If �∈ ( )S T B, satisfy ( ) =IΔ 0T S
m

, for some integer ≥m 1, then a sufficient condition for S to be
polaroid is that S T, are power bounded.

Proof. If S T, are power bounded, then there exist scalars M M,1 2 such that

� �

∥ ∥ < ∥ ∥ <

∈ ∈

S M T Msup , sup
n

n

n

n
1 2

(and hence ( ) = ( ) =r S r T 1). This, in view of the fact that ( ∉ ( )σ S0 a and) ≠ ∈ ( ) ⊆ ( )λ σ S σ T: 0λ a a
1








implies
�( ) ⊆ ∂σ Sa . Hence,

� �( ) = ( ) ⊆ ∂σ S S σ S S¯ if is not invertible and if is invertible .

Trivially, S is polaroid in the case in which �( ) =σ S ¯ . Assume hence that S is invertible (so that �( ) ⊆ ∂σ S ).
Since ( ) =IΔ 0T S

m
, implies ( ) =IΔ 0T S

m
,p p for all integers ≥p 1, we have upon defining the operator Cp by

∑= (− ) (− )
+

=

−

( − ) ( − − )C
m
j T S1 1p

m

j

m
j p m j p m j1

0

1
1























that

= ≥C S I p, all integers 1.p
p

Evidently, the operator Sp is left invertible by Cp for all integers ≥p 1, and

{ }( ) ( )( )∥ ∥ ≤ + + ⋯+
−

+
−

< =C m m
m

m
m M M M M M1 1 2 1 2p

m
1 2 1 2

for all integers ≥p 1. Thus, for all �∈x and integers ≥p 1,

∥ ∥ = ∥ ∥ ≤ ∥ ∥ ⇔ ∥ ∥ ≤ ∥ ∥x C S x M S x
M

x S x1 .p
p p p







Since already

∥ ∥ ≤ ∥ ∥∥ ∥ ≤ ∥ ∥S x S x M xp p
1

for all �∈x , it follows that S is similar to an invertible isometry (on an equivalent Banach space). (This is
well known – see, for example, [20].) The proof now follows, since invertible isometries are polaroid and
the polaroid property is preserved by similarities. □

Power bounded m-isometric operators satisfy the property that they are isometric – see [6, Theorem
2.4] and [21, Theorem 2.4]. Hence:

Corollary 3.2. Power bounded m-isometric Banach space operators, i.e. power bounded operators �∈ ( )S B
such that ( ) =∗ IΔ 0S S

m
, , are polaroid.

The Power bounded hypothesis on S may be dropped in the case in which ( ) =∗ IΔ 0S S,
2 (i.e., the

operator S is 2-isometric), for the reason that invertible 2-isometries are isometries: 2-isometric Banach
space operators are polaroid. Corollary 3.2 extends to operators �∈ ( )S B satisfying ( )∗ IΔS CSC

m
, for some

conjugation C (i.e., to ( )m C, -isometries �∈ ( )S B ). Observe that if S is power bounded, then so is CSC and
( ) = ( )σ CSC σ Sa a (= complex conjugate of ( )σ Sa ) for every conjugation C. Hence:

Corollary 3.3. Power bounded ( )m C, -isometries �∈ ( )B are polaroid.

Extension to n-quasi left m-invertible operators. Theorem 3.1 extends to n-quasi left m-invertible
operators �∈ ( )S B ,
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∑( ) = (− ) =
∗ ∗

=

− −S I S S
m
j T S SΔ 1 0,n

T S
m n n

j

m
j m j m j n

,
0
























such that [ ] = − =
∗ ∗ ∗S T ST T S, 0. Letting S and ∗T have the upper triangular representations ( )2 , it is seen

that ( ( ) = ( ) ∪ { }σ S σ S 01 , � �( ) =S Sn n
1 1 , [ ] =

∗S T, 01 1 and)

∑( ) = (− ) =

=

− −I
m
j T SΔ 1 0T S

m

j

m
j m j m j

, 1
0

1 11 1 






(so that S1 is left m-invertible by T1). Recall from the previous section that =S S X
0 0

n
n
1






, where S n

1 is left

m-invertible by T n
1 . Since S and T power bounded imply S n

1 and T n
1 are power bounded, S n

1 (therefore, S1)
is polaroid. Hence:

Theorem 3.4. Power bounded operators �∈ ( )S T B, satisfying ( ) =
∗S I SΔ 0n

T S
m n

, such that [ ] =
∗S T, 0 are

polaroid.

Proof. Since =S S S
S0

1 0

2









, where S1 is polaroid and S2 is n-nilpotent, the proof follows from the inequalities

that ( − ) ≤ ( − ) + ( − )S λ S λ S λasc asc asc1 2 and ( − ) ≤ ( − ) + ( − )S λ S λ S λdsc dsc dsc1 2 for all complex λ
[16, exercise 7, page 293]. □

Remark 3.5. Theorem 3.4 has an n-quasi m-isometric and an n-quasi ( )m C, -isometric analogue, namely:

Power bounded n-quasi m-isometric operators �∈ ( )S B , ( ) =
∗

∗S I SΔ 0n
S S
m n

, , and power bounded n-quasi
( )m C, -isometric operators �∈ ( )S B , ( ) =

∗
∗S I SΔ 0n

S CSC
n

, , such that = ⊕C C C1 2 are polaroid.

In particular, 1-quasi 2-isometries are polaroid [10]: This follows since operators S such that ( ) =
∗

∗S I SΔ 0S S,
2

have a representation S X
0 0

1







, where the operator S1 (satisfying ( ) =∗ IΔ 0S S,

2 11 1
) is polaroid. Observe here that

either �( ) =σ S ¯ or �( ) ⊆ ∂ ∪ { }σ S 0 .
It is easily seen that for an m-symmetric operator �∈ ( )S B , ( ) =∗δ I 0S CSC

m
, , ( ) = ( )σ S σ CSCa a and

∈ ( ) ⇒ ∈ ( ) = ( )
∗λ σ S λ σ CS C σ Sa a su . (Recall: ( )σ Ssu = the surjectivity spectrum of S.) Hence, ( ) = ( ) ∪σ S σ Sa

( ) ⊆ ( ) ⊆ ( )σ S σ S σ Ssu su , i.e., ( ) = ( ) = ( ) = ( )σ S σ CSC σ S σ Sa su . The argument of the proof of Theorem 3.4 implies
that if the left invertible operator �∈ ( )S B is n-quasi m-symmetric, ( ) =

∗
∗S δ I S 0n

S CSC
m n

, , and = ⊕C C C1 2, then

S is power bounded implies that if S n
1 is polaroid, then (Sn, therefore) S is polaroid.

For m-self-adjoint operators �∈ ( )S B , ( ) =∗δ I 0S S
m

, , it is seen that if λ is an eigenvalue of S with an

eigenvector x and μ̄ is an eigenvalue of ∗S with an eigenvector y, then ( − ) =λ μ xy¯ 0. Hence, the
eigenvalues of an m-self-adjoint operator are real. Since λ is a pole of S implies λ is an eigenvalue of S, the
poles of S are all real. Consider now a left invertible n-quasi m-self-adjoint operator �∈ ( )S B ,

( ) =
∗

∗S δ I S 0n
S S
m n

, . Then, follow an argument similar to that above, S is polaroid if the left invertible m-self-
adjoint operator S n

1 is polaroid, and this happens if and only if the isolated points of the intersection of ( )σ S1
with the real line consist of the poles of S1.

Self-adjoint Riesz Idempotents.Restricting ourselves to operator �∈ ( )S T B, for which ( ) =
∗S I SΔ 0n

T S
m n

,
(i.e., n-quasi leftm-invertible operators in �( )B ) for which[ ] =

∗S T, 0, in the followingwe consider conditions
guaranteeing the self-adjointness of the Riesz idempotents Pλ attachedwith the poles ∈ ( )λ σ Siso of S. It is clear
from the above that if a point ≠λ 0 is a pole of S, then S has a matrix representation

=S
λ X Y

S Y
S

0
0 0

1 1

11 2

2














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with respect to the decomposition � �= ( − ) ( ) ⊕ ( − )( ) ⊕ ( )
− ∗−S λ S λ S0 0n

1
1

1 . If = ( ) ∈ ( − ) ( )
−x x x x S λ, , 01 2 3

1 ,
then (necessarily) = =x x 03 2 . Hence ∈ ( − ) ( )

−x S λ 01 if and only if = ( )x x , 0, 01 . Consider now ( − ) ( )
∗−S λ 01 .

Since ( − ) ( ) ⊆ ( − ) ( )
− ∗−S λ S λ0 01 1 if and only if = =

∗ ∗X x Y x01 1 1 1,

( − ) ( ) ⊆ ( − ) ( ) ⇔ ( − ) ( − ) ( ) ⊆ { }
− ∗− ∗ −S λ S λ S λ S λ0 0 0 0 .1 1 1

Evidently, if ( − ) ( − ) ( ) ⊂ { }
∗ −S λ S λ 0 01 , then ( − ) ( ) ⊆ ( − ) ( )

− ∗−S λ S λ0 01 1 . The point λ being a simple pole of
S, if ( − ) ( − ) ( ) ⊆ { }

∗ −S λ S λ 0 01 , then ( �( − )( )S λ is closed and)

� � � �

� � � � �

= ( − ) ( ) ⊕ ( − )( ) = ⊕ ( − ) = ( − ) ( ) ⊕ ( − ) ( )

= ( − ) ( ) ⊕ ( − ) ( ) = ⊕ ⇒ = = ( − )

− ∗− ∗− ⊥

− − ⊥ ⊥ ⊥ −

S λ S λ P I P S λ S λ
S λ S λ P P P P I P

0 0 0
0 0 ,

λ λ

λ λ λ λ λ

1 1 1

1 1 1

i.e., Pλ is self-adjoint.
Consider now the case in which =λ 0 is a pole of S. Then � = ( )

−P S 0λ
n and Sn has a triangulation

�
=

( )
∗−

S S X S
S0 0 0

,n
n n

n
1

















where S1 is invertible (since ∈ ( )σ S0 iso n implies ∉ ( )σ S0 n
1 ). Since = ( ) ∈ ( )

−x x x S, 0n
1 2 if and only if

= (− )
−x S Xx x,n
1 2 2 , ( ) ⊆ ( )

− ∗−S S0 0n n if and only if =Xx 02 , i.e., if and only if ( ( )) = { }
∗−S S 0 0n n (and then

( ) = ( )
− ∗−S S0 0n n ). Arguing as above, it now follows that the projection P0 is self-adjoint if and only if

( ) → { }
∗−S S: 0 0n n . We have proved:

Proposition 3.6. Given an n-quasi left m-invertible operator �∈ ( )S B such that [ ] =
∗S T, 0, the Riesz

projection Pλ corresponding to a pole ≠λ 0 (resp., =λ 0) of S is self-adjoint if and only if ( − )
∗S λ :

( − ) ( ) → { }
−S λ 0 01 (resp., ( ) → { }

∗−S S: 0 0n n ).

Remark 3.7. It is immediate from the above that if �∈ ( )S B is a 1-quasi 2-isometry, then the Riesz
projection Pλ corresponding to a pole ≠λ 0 (resp., =λ 0) is self-adjoint if and only if ( − )

∗S λ :
( − ) ( ) → { }

−S λ 0 01 (resp., ( ) → { }
∗−S S: 0 01 ); cf. [10, Theorems 2.7 and 2.8].

4 Products

Let �∈ ( )S T B,i i , =i 1, 2, be such that [ ] = = [ ]S S T T, 0 ,1 2 1 2 and ( ) =d I 0T S
n
,i i
i . Then

∑= ( − ) = { ( − ) + ( − )} =

=

− − −L L R R I L L R I R L R I
n
j L RΔ Δ ΔT T S S

n
T T S S

n
T T S S T S

n

j

n

T S
n j

T
n j

S
n j

T S
j

,
0

, ,1 2 1 2 1 2 1 2 1 2 2 1 1 1 2 2 1 1 1 1







implies

∑( ) = ( ) ( )

=

− − −I
n
j T I S IΔ Δ ΔT T S S

n

j

n
n j

T S
n j n j

T S
j

,
0

1 , 1 ,1 2 1 2 2 2 1 1







and

∑= ( − ) = { ( − ) + ( − ) } =

=

− −δ L L R R L L R L R R
n
j L δ δ RT T S S

n
T T S S

n
T T S T S S

n

j

n

T
n j

T S
n j

T S
j

S
j

,
0

, ,1 2 1 2 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1







implies

∑( ) = ( ) ( )

=

− −δ I
n
j T δ I δ I S .T T S S

n

j

n
n j

T S
n j

T S
j j

,
0

2 , , 11 2 1 2 1 1 2 2






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Letting = + −n m m 11 2 , since ( ) =d I 0T S
j

,2 2
for all ≥j m2 and ( ) =

+ − −d I 0T S
m m j1
1 1

1 2 for all ≤ −j m 12 (implies
+ − − ≥m m j m11 2 ), we have:

Lemma 4.1. If �∈ ( )S T B,i i , =i 1, 2, are such that [ ] = = [ ]S S T T, 0 ,1 2 1 2 and ( ) =d I 0T S
m
,i i
i , then ( ) =

+ −d I 0T T S S
m m

,
1

1 2 1 2
1 2 .

The following theorem is an ( )n S -quasi [ ]m d, -version of these results. (Recall here that the operators
�∈ ( )S T B,1 1 are ( )n S -quasi [ ]m d, -intertwined for an operator �∈ ( )S B if ( ) =

∗S d I S 0n
T S
m n

,1 1 .)

Theorem 4.2. If ( ) =
∗S d I S 0n

T S
m n
,i i
i , =i 1, 2, for some operators �∈ ( )S S S T T B, , , ,1 2 1 2 such that [ ] = =S S, 0i

[ ]
∗S T, i and [ ] = = [ ]S S T T, 0 ,1 2 1 2 , then ( ) =

∗ + −S d I S 0n
T T S S
m m n

,
1

1 2 1 2
1 2 (i.e., T T1 2 and S S1 2 are ( )n S -quasi [ + − ]m m d1,1 2 -

intertwined).

Proof. The hypotheses imply that the operators S S, i and ∗Ti have the upper triangular matrix represent-
ations

= = = =
∗

∗ ∗

∗
S S S

S
S S S

S
T

T T
T

i
0

,
0

,
0

; 1, 2,i
i i

i
i

i i

i

01 00

02

1 0

2

1 0

2































with respect to the decomposition � �= ( ) ⊕ ( )
∗−S S 0n n of � . The hypothesis ( ) =

∗S d I S 0n
T S
m n

,1 1
1 implies

( ) =d I 0T S
m

, 111 11
1 and the hypothesis ( ) =

∗S d I S 0n
T S
m n

,2 2
2 implies ( ) =d I 0T S

m
, 121 21
2 . Hence, since the hypothesis

[ ] = = [ ]S S T T, 0 ,1 2 1 2 implies [ ] = = [ ]S S T T, 0 ,11 21 11 21 , Lemma 4.1 implies ( ) =
+ −d I 0T T S S

m m
,

1
111 21 11 21

1 2 . Finally, since

∑ (− )

+ −

( ) ( ) =

=

+ −

+ − − + − −
m m

j T T S S Z
Z Z1

1 0

j

m m
j m m j m m j

0

1
1 2

1 2
1

1 2
1 1

2 3

1 2
1 2 1 2





















for some operators Zi ( =i 1, 2, 3), and =S S X
0 0

n
n
01






 for some operator X, with respect to � �= ( ) ⊕Sn

( )
∗−S 0n ,

( ) =
∗ + −S d I S 0,n

T T S S
m m n

,
1

1 2 1 2
1 2

i.e., T T1 2 and S S1 2 are ( )n S -quasi [ + − ]m m d1,1 2 -intertwined. □

Remark 4.3.
(i) Recall that T is a strict left m-inverse of S if ( ) =IΔ 0S T

m
, but ( ) ≠

− IΔ 0S T
m

,
1 [2,3]. Letting =m 11 in

( ) =IΔ 0T S
m

,1 1
1 (so that T1 is a left 1-inverse of S1, i.e., =T S I1 1 ), it follows that T T1 2 is a strict left m2-inverse

of S S1 2 if and only if ( ) ≠
− IΔ 0T S

m
,

1
2 2

2 [3, Theorem 13], i.e., if and only if T2 is a strict left m2-inverse of S2.

Theorem 4.2 does not extend to ( )n S -quasi strict [ + − ]m m d1,1 2 -intertwinings. Thus, given T1 an
( )n S -quasi left 1-inverse of S1 (i.e., ( ) =

∗S I SΔ 0n
T S

n
,1 1 ) andT2 a strict left m-inverse of S2 (i.e., ( ) =IΔ 0T S

m
,2 2

and ( ) ≠
− IΔ 0T S

m
,

1
2 2 ), T T1 2 may not be an ( )n S -quasi strict left m-inverse of S S1 2. To see this, consider

operators Si andTi satisfying the commutativity hypotheses of Theorem 4.2 such thatT11 is left 1-inverse
of S11, T21 is a left ( − )m 1 -inverse of S21 and T22 is a strict left m-inverse of S22. Define Si and Ti by

= ⊕ = ⊕ = ⊕ = ⊕S S I S S S T T I T T T, , and1 11 2 21 22 1 11 2 21 22

(with respect to the decomposition � �= ( ) ⊕ ( )
∗−S S 0n n of � ). Then T1 is an ( )n S -quasi left 1-inverse

of S1, T2 is a strict left m-inverse of S2 and T T1 2 is not an ( )n S -quasi strict left m-inverse of S S1 2.

(ii) Trivially, one may replace ( )n S -quasi by ( )n S Si -quasi, =i 1, 2, in the conclusion of Theorem 4.2.

Given Hilbert spaces � i, =i 1, 2, let �⊗H ¯1 2 denote the completion, endowed with a reasonable
uniform cross-norm, of the algebraic tensor product � �⊗1 2 and, for �∈ ( )A Bi i , =i 1, 2, let

�⊗ ∈ ( ⊗ )A A B H ¯1 2 1 2 denote the tensor product of A1 and A2. Theorem 4.2 applies to tensor products of
n-quasi left m-invertible, m-isometric and ( )m C, -isometric operators. Let A B,i i ( =i 1, 2) and S T, be
operators in �( )B .
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Corollary4.4. If ( ) = = ( )
∗A d I A d I0n

B A
m n

B A
m

1 , 1 ,1 1
1

2 2
2 and[ ] =

∗A B, 01 1 , then( ⊗ ) ( ⊗ )
∗

⊗ ⊗

+ −A A d I In
B B A A
m m

1 2 ,
1

1 2 1 2
1 2

( ⊗ ) =A A 0n
1 2 .

Proof. Define the operators S S, i and Ti, =i 1, 2, by

= = ⊗ = ⊗ = ⊗ = ⊗S S A I T B I S I A T I B, , and .1 1 1 1 2 2 2 2

Then, since [ ] =
∗A B, 01 1 ,

[ ] = = [ ] [ ] = = [ ]
∗S S T T S T S S, 0 , and , 0 ,i i1 2 1 2

( =i 1, 2). Theorem 4.2 applies to prove

( ⊗ ) ( ⊗ )( ⊗ ) =
∗

⊗ ⊗

+ −A I d I I A I 0.n
B B A A
m m n

1 ,
1

11 2 1 2
1 2

Multiplying by ( ⊗ )
∗I B n
1 on the left and by ( ⊗ )I B n

1 on the right, the proof follows. □

Translated to ( )m C, -isometric operators, Theorem 3.1 and Corollary 3.2 imply the following.

Corollary 4.5. Given conjugations C and D, if:

(i) �∈ ( )S T B, are commuting operators such that ( ) = = ( )
∗

∗ ∗S I S IΔ 0 Δn
S CSC
m n

T DTD
m

, ,
1 2 , [ ] = = [ ]S CSC S DTD, 0 ,

and [ ] = = [ ]T CSC DTD CSC, 0 , , then

∑( ) ( )( ) = ( ) (− )

+ −

( ) ( ) ( ) =
∗ + − ∗

=

+ −

∗( + − − ) + − −
∗ ∗ST I ST ST

m m
j ST CSCDTD STΔ 1

1
0.n

S T CSCDTD
m m n n

j

m m
j m m j m m j n

,
1

0

1
1 2 1 11 2

1 2
1 2 1 2



























In particular, if =C D, then

( ) ( )( ) =
∗ + −

∗ ∗ST I STΔ 0n
S T CSTC
m m n

,
11 2

(i.e., ST is n-quasi ( + − )m m C1,1 2 -isometric).

(ii) ( ) = = ( )
∗ ∗

∗ ∗A I A B I BΔ 0 Δn
A CAC
m n n

B DBD
m n

, ,
1 2 and [ ] =A CAC, 0, then

( ⊗ ) ( ⊗ )( ⊗ ) =
∗

⊗ ( ⊗ )

+ −
∗ ∗A B I I A BΔ 0n

A B CAC DBD
m m n

,
11 2

(i.e., ⊗A B is n-quasi ( + − ⊗ )m m C D1,1 2 -isometric).

Proof. (i) If we define Si andTi, =i 1, 2, by =S CSC1 , =S DTD2 , =
∗T S1 and =

∗T T2 , then S S, i andTi ( =i 1, 2)
satisfy the hypotheses of Theorem 4.2. Hence, the proof of (i). The proof of (ii) is evident. □

Corollary 4.4 generalizes [11, Theorem 2.3] (proved for the case =n 0 and =C D), and Corollaries 2.1,
3.5 and Proposition 3.5 (proved for the cases =n 2, 3 of part (ii) of our Corollary 4.4) of [11].

Corollary 4.5 takes the following simpler form for m-isometries.

Corollary 4.6. Given operators �∈ ( )S T B, such that ( ) = = ( )
∗

∗ ∗S I S IΔ 0 Δn
S S
m n

T T
m

, ,
1 2 (i.e., S is n-quasi

m1-isometric and T is m2-isometric):

(i) if [ ] =S T, 0, then ( ) ( )( ) =
∗ + −

∗ ∗ST I STΔ 0n
S T ST
m m n

,
11 2 (i.e., ST is n-quasi ( + − )m m 11 2 -isometric);

(ii) ( ⊗ ) ( ⊗ )( ⊗ ) =
∗

⊗ ⊗

+ −
∗ ∗S T I I S TΔ 0n

S T S T
m m n

,
11 2 (i.e., ⊗S T is n-quasi ( + − )m m 11 2 -isometric).

A version of Corollary 4.6 holds for m-self-adjoint and m-symmetric operators.

Corollary 4.7. Let �∈ ( )S T B, satisfy [ ] =S T, 0 and let C be a conjugation of � . If:

(i) S is n-quasi m1-self-adjoint and T is m2 self-adjoint, then ST is n-quasi ( + − )m m 11 2 -self-adjoint (i.e.,
( ) ) = = ( ) =

∗
∗ ∗S δ I S δ I0 0n

S S
m n

T T
m

, ,
1 2 implies ( ) ( )( ) =

∗ + −
∗ ∗ST δ I ST 0n

S T ST
m m n

,
11 2 );
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(ii) S is n-quasi m1-symmetric with the symmetry implemented by the conjugation C, T is m2-symmetric with
the symmetry implemented by the conjugation C and [ ] =S CSC, 0, then ST is n-quasi + −m m 11 2 -sym-
metric with the symmetry implemented by the conjugation C (i.e., ( ) = = ( ) =

∗
∗ ∗S δ I S δ I0 0n

S CMC
m n

T CTC
m

, ,
1 2

and [ ] =S CSC, 0 implies ( ) ( )( )
∗ + −

∗ ∗ST δ I STn
S T CSTC
m m n

,
11 2 );

(iii) S is n-quasi m1-self-adjoint and T is m2-self-adjoint, then ⊗S T is n-quasi ( + − )m m 11 2 -self-adjoint;

(iv) S is n-quasi m1-symmetric and T is m2-symmetric (with the symmetry implemented by the conjugation C
for S and T), then ⊗S T is n-quasi ( + − )m m 11 2 -symmetric (with the symmetry implemented by the
conjugation C).

5 Perturbation by nilpotents

Gu [3, Theorem 2] proves that if �∈ ( )T B is a left (right)m-inverse of �∈ ( )S B and �∈ ( )N B is an n-nilpotent
which commutes with T, then +T N is a left (resp., right) ( + − )m n 1 -inverse of S. Consequently, If T is a left
m-inverse of S, N1 is an n1-nilpotent which commutes with T and N2 is an n2-nilpotent which commutes with S,
then +T N1 is a left ( + + − )m n n 21 2 -inverse of +S N2. Translated to m-isometric (and ( )m C, -isometric)
operators S, this implies: If �∈ ( )N B is an n-nilpotent operator which commutes with S, then +S N is an
( + − )m n2 2 -isometric [5] (resp., ( + − )m n C2 2, -isometric [9]) operator. A similar result holds for m-self-
adjoint and ( )m C, -symmetric operators [8,7]. In the following, we consider perturbation by commuting
nilpotents of operators �∈ ( )S T B, satisfying ( ) =d I 0T S

m
, , and using an elementary argument we prove:

Theorem 5.1. If ( ) =d I 0T S
m
, and �∈ ( )N B is an n-nilpotent operator satisfying [ ] =S N, 0, then ( ) =

+

+ −d I 0T S N
m n
,

1 .

Proof. We start by proving that

∑

∑

( ) =
−

( )

( ) = (− ) ( )

+

=

−

+

=

−

I
p

p j T I N

δ I
p
j δ I N

Δ Δ and

1 .

T S N
p

j

p
j

T S
p j j

T S N
p

j

p
j

T S
p j j

,
0

,

,
0

,

















The proof is by induction. Both the equalities being true for =p 1, assume their validity for some >k 1.
Then

∑

( ) = ( ( )) + ( )

= ( ) + +

−

+

−

+

−

⋯ + + +

=
+

( )

+

+

+ +

+ −

+ +

=

+

+ −

I I T I N

I k
k

k
k

T N k
k

k
k

T N

k k T N k T N

k
j T I N

Δ Δ Δ Δ

Δ
1

Δ
1 2

Δ

1 0 Δ 0

1 Δ

T S N
k

T S T S N
k

T S N
k

T S
k

T S
k

T S
k

k
T S

k k k

j

k
j

T S
k j j

,
1

, , ,

,
1

,
2

,
1 2

,
1 1

0

1

,
1

      

   

































































and

∑

( ) = ( ( )) − ( )

= ( ) + (− ) − + (− ) − (− )

⋯ + (− ) − (− )

−

− (− )

= (− )
+

( )

+

+

+ +

+ −

− +

=

+

+ −

δ I δ δ I δ I N

δ I k k δ N k k δ N

k
k

k
k

δ N k
k

N

k
j δ I N

1 0 1 1
2

1 1

1 1
1

1

1 1 .

T S N
k

T S T S N
k

T S N
k

T S
k

T S
k

T S
k

k k
T S

k k k

j

k
j

T S
k j j

,
1

, , ,

,
1

,
2

,
1 2

1
,

1

0

1

,
1

    

     
































































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Recall now that ( ) =d I 0T S
m
, implies ( ) =d I 0T S

t
, for all integers ≥t m. Hence, since =N 0j for all ≥j n,

( ) =
+

d I 0T S N
p
, for all p such that − + ≥p n m1 (in particular, if = + −p m n 1). □

Trivially, ( ) =d I 0T S
m
, if and only if ( ) =∗ ∗d I 0S T

m
, (where we have used I to denote the identity of both

�( )B and �( )
∗B ). Hence:

Corollary 5.2. If ( ) =d I 0T S
m
, and �∈ ( )N Bi ( =i 1, 2) are ni-nilpotent operators satisfying [ ] = = [ ]S N T N, 0 ,1 2 ,

then ( ) =
+ +

+ + −d I 0T N S N
m n n

,
2

2 1
1 2 .

For perturbation by commuting nilpotents of n-quasi [ ]m d, -operators (i.e., operators �∈ ( )S T B, such
that ( ) =

∗S d I S 0n
T S
m n
, ), we have the following.

Theorem 5.3. Suppose that ( ) =
∗S d I S 0n

T S
m n
, for some operators �∈ ( )S T B, and integers ≥m n, 1. If

�∈ ( )N Bi , =i 1, 2, are ni-nilpotent operators such that [ ] = = [ ]
∗S N S T, 0 ,1 and [ ] = = [ ]

∗N T N S, 0 ,2 2 , then

( + ) ( )( + ) =
∗ ∗ + −

+ +

+ + − + −S N d I S N 0.n n
T N S N
m n n n n

1
1

,
2

1
11

2 1
1 2 1

Proof. Letting S and ∗T have the upper triangular representations ( )3 of Section 2, it follows from the
hypotheses that N1 and N2 have the upper triangular representations

= =
∗

∗ ∗

∗
N N N

N N
N N

N0 and
01

11 10

12
2

21 20

22





















(with respect to the decomposition � �= ( ) ⊕ ( )
∗−S S 0n n ), where

= = = = [ ] = = [ ]N N N N N S N T0 and , 0 , .n n n n
11 12 21 22 11 1 21 11 1 2 2

The hypothesis ( ) =
∗S d I S 0n

T S
m n
, implies ( ) =d I 0T S

m
, 11 1 . Hence,

( ) =
+ +

+ + −d I 0.T N S N
m n n

,
2

11 21 1 11
1 2

This, since

( + ) =
( + )

+ −

+ −

S N S N Z
0 0

n n
n n

1
1 1 11

1
1

1







(for some operator Z) and

( ) =
+ +

+ + −d I Z
Z Z
0

T N S N
m n n

,
2 1

2 32 1
1 2 









for some operators Zi ( =i 1, 2, 3), implies

( + ) ( )( + ) =
∗ ∗ + −

+ +

+ + − + −S N d I S N 0.n n
T N S N
m n n n n

1
1

,
2

1
11

2 1
1 2 1

This completes the proof. □

More can be said in the case in which =
∗T S (i.e., when S is n-quasi m-isometric [11]).

Corollary 5.4. Given an operator �∈ ( )S B such that ( ) =
∗

∗S I SΔ 0n
S S
m n

, , let �∈ ( )N B be an n1-nilpotent
operator such that [ ] =S N, 0. Then:

(i) ( )( + ) =
∗( + − )

+ +

+ − + −
∗ ∗S I S NΔ 0n n

S N S N
m n n n1

,
2 2 11 1 1 (i.e., ( + )S N is an ( + − )n n 11 -quasi ( + − )m n2 21 -isometric

operator).

(ii) If �= ∣
( )

S S S1 n has a dense range (or, ∗S1 has SVEP at 0), then ( + )
+ −S N n n 11 is similar to the operator

( + ) ⊕
+ −S N 0n n

1 1
11 .
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(iii) There exists a positive operator Q and an operator A similar to + −Sn n 11 such that ( ) =
+ −

∗ QΔ 0A A
m n

,
2 21 (i.e.,

A is ( + − )m n Q2 2,1 -isometric. Furthermore, if S is also left invertible, then + −Sn n 11 is similar to an
( + − )m n2 21 -isometric operator.

Proof. The proof of (i) follows from Theorem 5.3. To prove (ii), we start by observing that if we let

=N N N
N0

1 0

2









 (with respect to the decomposition � �= ( ) ⊕ ( )

∗−S S 0n n ), then ( = =N N 0n n
1 2 and =S 0n

2 in

the corresponding representation ( )3 for S)

( + ) =
( + )

+ −

+ −

S N S N X
0 0

n n
n n

1 1 1
1

1
1








for some operator X. The operators S1 and N1 commute, and S1 is left invertible (since S1 is left m-
invertible). Hence, since ( + ) ⊆ ( ) + ( ) = ( )σ S N σ S σ N σ Sa a a a1 1 1 1 1 , +S N1 1 is left invertible. Define the operator

�∈ ( )E B by =
( + )

+ −

E S N X
0 1

n n
1 1

11





; then (since either of the hypotheses S1 has a dense range and ∗S1 has

SVEP at 0 implies) E is invertible with

=
( + ) − ( + )−

−( + − ) −( + − )

E S N S N X
0 1

.
n n n n

1 1 1
1

1 1
11 1









If we now define �∈ ( )A B by = ( + ) ⊕
+ −A S N 0n n

1 1
11 , then ( + ) =

+ − −S N E AEn n 1 11 . To prove (iii), we start by
observing from the proof of Theorem 5.3 that the current hypotheses imply ( + )S N p

1 1 is ( + − )m n2 21 -
isometric and ( + )S N p is ( + − )n n 11 -quasi ( + − )m n2 21 -isometric for all integers ≥p 1. Choose

= + −p n n 11 and let ( + )
+ −S N n n

1 1
11 have the polar decomposition ( + ) =

+ −S N U Pn n
1 1

1
1 11 (so that U1 is

an isometry and P1 is positive invertible). Let ( + ) =
+ −S N U P X

0 0
n n 1 1 11 






and argue as in the proof of

Proposition 2.2. Then, upon defining ≥Q 0 as in the proof of Proposition 2.2 and letting + − − =m n j t2 21 ,

∑

∑

( + ) (− )

+ −

( + ) ( + ) ( + ) =

⇔ (− )

+ −

=

∗( + − )

=

+ −

∗ ( + − ) ( + − ) + −

=

+ − ∗

∗

S N
m n

j S N S N S N

m n
j

U P
X P

Q P U P X

1
2 2

0

1
2 2 0

0 0 0
0.

n n

j

m n
j t n n t n n n n

j

m n
j

t t

1

0

2 2
1 1 1 1

0

2 2
1 1 1

1

1 1 1

1
1

1 1 1

1






















































Now define the operator A by =A P U P X
0 0
1 1 1







. Then A is ( + − )m n Q2 2,1 -isometric and =

+ − −S P APn n 1 11 ,

where = ⊕P P I1 2. To complete the proof, assume now that S is left invertible. Then P and Q are invertible
positive operators, =

−B Q AQ1
2

1
2 is ( + − )m n2 21 -isometric and =

+ − −S E BEn n 1 11 , =E Q P1
2 . □

The corresponding result for n-quasi ( )m C, -isometries S, ( ) =
∗

∗S I SΔ 0n
S CSC
m n

, , such that = ⊕C C C1 2

(with respect to the decomposition � �= ( ) ⊕ ( )
∗−S S 0n n ) is the following. Define the operator M (as

before) by =M U X
0 0

1







, where the isometry U1 and the operator X are as in the polar decomposition

(above) of + −Sn n 11 .

Corollary 5.5. Let �∈ ( )S B be an n-quasi [ ]m C, -isometry such that = ⊕C C C1 2 with respect to the
decomposition � �= ( ) ⊕ ( )

∗−S S 0n n . If �∈ ( )N B is an n1-nilpotent operator such that [ ] =S N, 0, then:

(i) +S N is ( + − )n n 11 -quasi ( + − )m n C2 1, -isometric.

(ii) ( + )
+ −S N n n 11 is similar to ( + ) ⊕

+ −S N 0n n
1 1

11 , �= |
( )

S S S1 n and �= |
( )

N N S1 n , whenever S1 has a dense range

(or ∗S1 has SVEP at 0).

(iii) If also [ ] =C M, 0, then ( + )
+ −S N n n 11 is similar to an ( + − )m n C2 2,1 -isometry.
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Proof. The hypothesis

( ) = ⇒ ( ) =

⇔ ( ) = ⇒ ( ) =

⇔ ( ) = ⇒ ( ) =

⇔ ( ) =

⇒ ( + ) ( ) =

∗

+

+ −

( + )

+ −

( + ) +

+ −

+ ( + )

+ −

∗( + − )

+ ( + )

+ − + −

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

S I S I

I I

I I

I

S N I S

Δ 0 Δ 0

Δ 0 Δ 0

Δ 0 Δ 0

Δ 0

Δ 0.

n
S CSC
m n

S C S C
m

C S C S
m

C S C S N
m n

C S N C S
m n

C S N C S N
m n

S N C S N C
m n

n n
S N C S N C
m n n n

, , 1

, 1 ,
1

1

,
1 1 ,

2 2
1

,
2 2

1

1
,

2 2 1

1 1 1 1

1 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1
1

1 2 1

This proves (i). The proof of (ii) follows from the proof of Corollary 5.4, and the proof of (iii) follows from
the argument of the proof of Corollary 5.4 and Proposition 2.4 applied to

∑

( + ) ( ) =

⇒ (− )

+ −

=

∗( + − )

+ ( + )

+ − + −

=

+ − ∗

∗

∗

∗ ∗

∗ ∗S N I S

m n
j

U P
X P

I U C XC
X U C U X C XC

C P U C C P XC

Δ 0

1
2 2 0

0 0 0
0,

n n
S N C S N C
m n n n

j

m n
j

t t

1
,

2 2 1

0

2 2
1 1 1

1

1 1 1 2

1 1 1 1 2

1 1 1 1 1 1 2

1 2 1

1



































where = + − −t m n j2 21 . This completes the proof. □

We remark in closing that Corollaries 5.4 and 5.5 have an m-self-adjoint and m-symmetric operator
version. For example, if �∈ ( )S B satisfies ( ) =

∗
∗S δ I S 0n

S S
m n

, and �∈ ( )N B is an n1-nilpotent which

commutes with S, then:

(i) +S N1 1, where �= |
( )

S S S1 n and �= |
( )

N N S1 n , satisfies ( ) =
+ +

+ −
∗ ∗δ I 0S N S N

m n
,

2 2
11 1 1 1

1 ;

(ii) ( + ) ( )( + ) =
∗ ∗ + −

+ +

+ − + −
∗ ∗S N δ I S N 0n n

S N S N
m n n n1

,
2 2 11 1 1 ;

(iii) if S is also left invertible, then ( + )
+ −S N n n 11 is similar to an ( + − )m n2 21 -self-adjoint operator.

We leave the proof of the above, and the formulation of the corresponding result for m-symmetric
operators (for which � �= ⊕ ( ) ⊕ ( ) → ( ) ⊕ ( ))

∗− ∗−C C C S S S S: 0 0n n n n
1 2 ) to the reader.
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