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Abstract: In this manuscript, a numerical approach for the stronger concept of exact controllability (total
controllability) is provided. The proposed control problem is a nonlinear fractional differential equation of
order a € (1, 2] with non-instantaneous impulses in finite-dimensional spaces. Furthermore, the numerical
controllability of an integro-differential equation is briefly discussed. The tool for studying includes the
Laplace transform, the Mittag-Leffler matrix function and the iterative scheme. Finally, a few numerical
illustrations are provided through MATLAB graphs.
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1 Introduction

Sometimes, integer-order differential equation becomes inadequate to model some physical phenomena
such as in anomalous diffusion. Such phenomena give rise to fractional order differential equations. The
main advantage of studying fractional order systems is that they allow greater degrees of freedom in the
model. Differential equations of fractional order appear more often in diverse areas of science and
engineering, such as image processing, signal processing, bio-engineering, viscoelasticity, fluid flow and
control theory [1-6]. For the fundamental understanding of fractional calculus and related numerical
methods, one can refer to [7-11].

On the other hand, some phenomena are characterized by rapid changes. The first kind of changes
takes place over a relatively short time compared to the overall duration of the entire process.
Mathematical models in these cases are developed using impulsive differential equations. In the second
kind, the changes are not negligibly short in duration and these changes begin impulsively at some points
and remain active over certain time intervals. The mathematical model of these situations gives rise to a
differential equation with non-instantaneous impulses.

* Corresponding author: Dimplekumar N. Chalishajar, Department of Applied Mathematics, Mallory Hall, Virginia Military
Institute, Lexington, VA 24450, USA, e-mail: dipul7370@gmail.com

Avadhesh Kumar: Department of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher Learning, Prasanthi
Nilayam (A.P.), 515 134, India, e-mail: soni.iitkgp@gmail.com

Ramesh K. Vats: Department of Mathematics, National Institute of Technology Hamirpur, Hamirpur (H.P.), 177 005, India,
e-mail: ramesh_vats@rediffmail.com

Ankit Kumar: Department of Mathematics, National Institute of Technology Hamirpur, Hamirpur (H.P.), 177 005, India,
e-mail: ankitramkumar620@gmail.com

8 Open Access. © 2020 Avadhesh Kumar et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.


https://doi.org/10.1515/dema-2020-0015
mailto:soni.iitkgp@gmail.com
mailto:ramesh_vats@rediffmail.com
mailto:ankitramkumar620@gmail.com
mailto:dipu17370@gmail.com

194 —— Avadhesh Kumar et al. DE GRUYTER

The study of non-instantaneous impulsive differential equations has significant applications in
different areas, for example, in hemodynamical equilibrium and the theory of rocket combustion. An
excellent application of non-instantaneous impulse is the introduction of insulin into the bloodstream. It
produces an abrupt change in the bloodstream. The consequent absorption is a gradual process that
remains active over a finite time span.

Recently, many researchers have shown their interest in existence, uniqueness of solutions, stability
and controllability of impulsive problems with non-instantaneous impulses [12-16]. Hernandez and Regan
[17] studied mild and classical solutions for the impulsive differential equation with non-instantaneous
impulses. Wang and Feckan [18] have shown existence, uniqueness and stability of solutions of such a
general class of first-order impulsive differential equations. Later, Muslim et al. [12] investigated existence,
uniqueness of solutions and stability of second-order differential equations with non-instantaneous
impulses. However, the controllability of the non-instantaneous impulsive control system is the less
treated topic as compared to the existence and uniqueness of solutions.

In the setting of controllability, the control system is an interconnection of components forming a
system configuration that will result in a desired system response. Controllability is one of the structural
properties of dynamical systems. It provides the ability to move a system around entire configuration
space using only certain feasible manipulations. It deals with whether or not the state of a state-space
dynamic system can be controlled from the input. Many authors dealt with controllability problems that
can be found in many recently published papers [19-22].

Recently, Wang et al. [19] discussed controllability of fractional non-instantaneous impulsive
differential inclusions. However, Wang et al. achieved exact controllability by only applying control in the
last subinterval of time. But, Wang et al. did not propose any computational scheme for the steering
control. In this manuscript, the control is applied for each subinterval of time, due to which the concept of
total controllability arises. Moreover, none of the research papers have so far discussed the numerical
approach for the controllability of the non-instantaneous impulsive differential equation of order a € (1, 2].
Therefore, this manuscript is devoted to the study of numerical controllability for the following fractional
order nonlinear differential equation with non-instantaneous impulses in a space R":

CDf‘u(t) = Au(t) + Bw(t) + g(t, u(t)), te (s;tial, 1=0,1,...,m,
u(t) = i, ut))), te(t,s), i=1,2,...,m,

u'(t) = WAt u(t)), te(t,s), i=1,2,...,m,

u(0) = up, u'(0) = vo,

(1.1)

where a € (1, 2] and u(t) is a state function with time interval 0 = sy = to < ; < S; < by..., by < S < b1 =
T < o0o. Let A be a coefficient matrix of system (1.1). The control function w(-) € L2(J; = [ o[Si, tisa], R™).
Let B be a bounded linear operator from R™ to R". Consider the state function u e C((t;, t;,1], R™),
i=0,1,...,m, and there exist u(t;) and u(t;"), i=1,2,...,m with u(t;) = u(t;). The functions ‘}’}(t, u(ty)) and
‘I’iz(t, u(ty)) represent non-instantaneous impulses during the intervals (¢, s;],1 = 1, 2,..., m. ‘I’}, ‘I’lz and g
are suitable functions. These functions will be explained briefly in the subsequent sections.

The manuscript proceeds as follows. In Sections 1-3, the introduction, notations, results and required
assumptions are given, which will be required for the later sections. In Section 4, controllability of
problem (1.1) is investigated by the iterative scheme. Later, controllability of the integro-differential
equation is briefly mentioned in Section 5. In Section 6, a few numerical examples are given to show the
application of the obtained results.

2 Preliminaries and assumptions

In this section, some useful definitions related to fractional calculus are briefly reviewed. Also, some
necessary properties concerned with the Mittag-Leffler function are discussed.
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Let LI(R*, R™ and CY(R*, R™), R* = (0, co) be the space of all integrable functions and continuously
differentiable functions, respectively. Furthermore, R" be the n-dimensional Euclidean space, wheren € N.

Definition 2.1. [24] The Riemann-Liouville fractional integral of order a > 0 is defined by
t
1
2g(t :—I t — s)*1g(s)ds,
Jig(®) @ (t —s)*'g(s)
0

where g(t) € LI(R*, R") and I'(-) is the gamma function.

Definition 2.2. [24] If g(t) € L}(R*, R"), then the Riemann-Liouville fractional derivative of order a € (1, 2]
is defined by

d2

RLa
Dg(t) = —
- g(t) a2

£ g(t),
where ®Df'g(t) € LI(R*, R™).
Definition 2.3. [24] The Caputo fractional derivative of order a € (1, 2] is defined by
d}
Cnha 2-a
Dlg(t) = —g(t),
 g(t) = J; d tzg( )

where g(t) € L{(R*, R") n CY(R*, R™).

The Laplace transform of the Riemann-Liouville fractional derivatives is defined by

n
L{¥DEg(t)} = 5°G(s) - Y sk1glah(07).
k=1
The Laplace transform of the Caputo fractional derivatives is defined by
n
£{pg(t)} = s°G(s) - Y s*kgk-D(0%),
k=1

In particular, if a € (1, 2], then

£{°Dg(t)} = s%G(s) - g(0*)s ! - g(0%)s52,

2.1 Mittag-Leffler function

The Mittag-Leffler function is a generalization of the exponential function, and it plays an important role
in the solution of the fractional differential equations.

Definition 2.4. [23] A function of the complex variable z defined by

S k

Ef2)= Y —

= T(ak + 1) 2.1)

is called the one-parameter Mittag-Leffler function.

In particular, when a = 1, we obtain

15( ) © Zk © Zk :
@y 2w

k=0 k=0
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i.e., the classical exponential function.
An extension of the one-parameter Mittag-Leffler function is given by the following two-parameter
function.

Definition 2.5. [23] A function of the complex variable z defined by

[ee]

Zk
Eapr)= Y —2—, a,f>0 22
@) kzo Takip) “P° 2-2)

is called the two-parameter Mittag-Leffler function.

For B =1, from (2.2) we obtain (2.1). Moreover, we have the following identities:

Eam) =Y — 2 =Y e
1,1 = = - = )
oo T+ 1) = K
< 1
Eo((z) = zk = ,
0,1(2) k;) -
0 Nk, 2k
Eyi(-2») = ) D7z Cos z,
o T2k + 1)
= (-1Dkz%*  sinz
Ey(-2?) = ¥ CDE
o [k +2) z

Definition 2.6. [23] A function of the matrix A € R™™" defined by

EgA) =Y — 2 48>0
#A) kzo Tk p) “P°

is called the two-parameter Mittag-Leffler matrix function.

Let us consider the following fractional impulsive differential equation of order a € (1, 2] without
control term Bw(t):

“Dlu(t) = Au(t) + g(t), te (sytyl, i=0,1,.,m,
u(t) = Wi, u(t)), tet,sl, i=1,2,..,m,

u'(t) = YAt ut))), tel(t,s), i=1,2,...,m,

u(0) = uo, u'(0) = vo,

(2.3)

where u € R" and A € R™" is a coefficient matrix of system (2.3). Let g: ; —» R", J; = UZo[si, tis1] be a
continuous function. The solution of system (2.3) is obtained by applying the Laplace transform method. It
is given by the following integral equation [23,24]:

u(t) =do(t — s;)WXsi, u(ty)) + Oyt — ;) V2(s;, u(ty))

t
2.4
+ I O(t — s)g(s)ds, Vte [s,t], i=0,1,2,..,m, 24)

si
where

Do(t) = Ef(AL?),  Di(t) = tEg2(AtY), D(t) = t°Eg,alAt?)
and

‘{,11(05 ) = U, \Ijlz(o) ) = Vo.
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3 Controllability for the linear system

We consider the linear impulsive differential equation of order a € (1, 2] with control function u(t) as
follows:

“Dlu(t) = Au(t) + Bw(t), te (sptiq), i=0,1,...,m,
u(t) = Yit, ut))), te(t,s), i=1,2,...,m,

u'(t) = WYXt u(t), tet,s], i=1,2,...,m,

u(0) = up, u'(0) =w,

(3.1)

where u € R™ and control function w(-) € L?(J; = | Jo[si, ti+1], R™). Let B be a bounded linear operator from
R™ to R". The solution of the linear impulsive system (3.1) is given by the following integral equation:
u(t) =t — 5)W(si, u(ty)) + Dot — s)Wilsi, u(ty))

t
3.2
+ I O(t - s)Bw(s)ds, Vte [s,ti], 1=0,1,2,..,m. (3-2)

Si

Definition 3.1. (Exact controllability) [22] System (3.1) is said to be exactly controllable on [0, T}, if for the
initial state u(0) € R" and arbitrary final state us(t,,1) € R", there exists a control w € L%(J;, R™ such that
solution (3.2) satisfies u(ty.1) = us(tm1)-

Definition 3.2. (Total controllability) [22] System (3.1) is said to be totally controllable on [0, T], if for the
initial state u(0) € R" and arbitrary final state us(t;,;) € R" of each sub-interval [s;, ;,1], there exists a
control w € L*(J;, R™) such that solution (3.2) satisfies u(t;+1) = us(t;+1), where i = 0, 1,..., m.

Remark. Total controllability = Exact controllability.

Lemma 3.3. [21,25] The linear system (3.1) is controllable on [0, T] iff the controllability Gramian
tiv1
M= [ @6 - BB - 9)ds

Si

is nonsingular, where s, = 0, t;,;y=T, i=0,1,2,..., m.

In order to prove the controllability for the nonlinear system (1.1), the following assumptions are
taken:

(A1) g: i x R" = R, J; = [o[si, ti11] is @ continuous function and there exist positive constants A; and A,
such that

lg(t, u) — g(t, V) < Allu - v|
and |g(t, u)| < Ay, for every u,v e R, te€J.
(A2) There exist positive constants Cy and Cy2,i=1,2,..., m such that
Cy = max [¥i(t, )|l andCy2 = max [¥}(t, -)|, where [ == [t;, s;].
! tel; ! tel;

(A3) ‘I’Il‘ € C(I; x R",R™ and there are positive constants L\pik, i=1,2,...,m, k=1,2, such that
19X, u) — WK, VIl < Lyl - v, ¥ ¢ € and u,v € R™.

Let # = PC([0, T], R™) be the space of piecewise continuous functions.

PC([0, T],R™ = {u : [0, T] - R": u € C((t, txs1l, R", k=0,1,..., m, and there exist u(t;) and u(ty),
k=1,2,...,m}. It can be easily proved that PC([0, T], R"), for all t € [0, T], is a Banach space endowed
with the supremum norm. For the sake of notational convenience, let us define
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Ko, = sup [[Do(®)l; Ko, = sup [D:(0)];

(Y

te[0,T] te[0,T]
Ko = sup [®®)I; Ky = I(M&) 5 Kg=IBI.
te[0,T]

Lemma 3.4. If all the assumption (A2) is fulfilled, then the control function for problem (3.1) has an estimate
lw)l <6, Vvte s til, i=0,1,2,..,m, where

6 = KgKoKu(lur(ti)ll + Koy Cyt + Ko, Cy2).

Proof. The control function for ¢ € [s;, t;,1], 1= 0,1, 2,...,m, is defined as follows:
W(t)= BrO*(tiar — ) (ME) [up(tier) — oltiar — 5) (Phsir u(t))) — @iltir — 5) (¥, )], B.3)
where ug(t;,) is the arbitrary final state of each sub-interval [s;, £i,4], i=0,1,..., m.

By solution (3.2), the final state at t = t;,1 is

tiv1
Ultivg) = D@oltiv1 — ) (Wi, u(t)))) + Diltinr — i) (Wi, u(t))) + J D(t,1 — s)Bw(s)ds

Si

tiv1
= @o(tis1 — Si) (Pisi, u(t))) + Pultier — 1) (Fi(si, ut)))) + j ®(t;,1 — S)BB*®*(t;,; — t)ds
x {(ME) T Ty (t1) = Doltisr - 5 (Wi, u(6)) = Paltinn = 5 (Yi(si, u(t;)))]}
= Dy(ti,1 — 8) (PXsi, u(t))) + Do(tier — i) (Pa(si, u(ty)))
+ (ME) (ME) T [up (1) — Doltisr — ) (PHSi, u())) = Pultisr — ) (Fosi, ut))]
= uf(ti+1)-

Hence, control function (3.3) is suitable for problem (3.1), for every ¢t € [s;, t;,1] and i = 0, 1, 2,..., m. The
estimate of control function w(t) is given by:

W)l < IB*@*(tis1 — ) ME | lup (Gl + [1Po(tinr — 5 Wisi, uE) + [Pty — s)WHSi, ut))I]
< KgKo Ku(llug(tis )l + Ko, Cyt + Ko, Cy2).

Hence, the required estimate for control (3.3) is obtained. O

4 Controllability for the nonlinear system

Steering of a dynamical control system from an arbitrary initial state to an arbitrary final state on each
sub-interval [ty, t;,1] using the set of admissible controls is called a totally controllable system. In this
section, total controllability of system (1.1) is investigated through the iterative scheme.

Theorem 4.1. If all the assumptions (A1)-(A3) are satisfied and the linear system (3.1) is controllable, then
the nonlinear system (1.1) is totally controllable on [0, T].

Proof. In order to prove the controllability results, we adopt the successive approximation technique.
Let us define the iterative scheme as follows:
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up(t) =1uo

t
Unia(t) = Do(t — 5)Wilsis Un(t)) + Da(t — ) WE(si, un(t)) + .[ O(t - 5)Bwn(s)ds
Si (4.1)

t
+ _[CD(t —8)g(s, up(s))ds, Vte[s;, ], 1=0,1,2,...,m,

Si

where

Wn(t) =B ®*(tiq — £) (MEV) up(tin) — Doltier — 1) Wity un(ty))

4.2)

tiv1

Dyt — S)WIsi Unlt)) — j D(t;,, — 5)8(s, n(s))ds

andn=0,1,2,....
Since the initial vector ug is given, the sequence {u,(t)} can be easily obtained. We will show that the
sequence {u,(t)} is Cauchy in # . Moreover, we observe that

MOl < 1B*D* (b1 — 6) (M) g (G )l + 1o (Ei1 — 51 WilSis un()]

fo (43)
+ 1Dy (t11 = $)Hi(Si, ualt)Il + I D11 = S)IIg(s, ua(s))llds

Si

< KBKq)KM(||uf(ti+1)|| + I<(D0 C\le + I(q;l C‘I’,Z + Aqu) T)

and

Wa(6) = Wa s (B < IB*®*(ti41 = 6) (MG I1@o(tis1 = SDIINE(Sis Un(8)) = Wi(Sis Una (6]

+ [ D1(tis1 — SOINIYAS:, un(t)) = WSty Un-1(E))]
tivy (4.4)
+ _[ D (ti1 = S)NNG(S, un(s)) — g(s, un-1(s))lds
Si
< KpKo KulKo,Ly! + Ko, Ly? + Ko Tllun(t) — un-1(t)l
< Qlun(t) = up-1(OI,

where Q = I(BKq)I(M[Kq)OL\y} + Ko, Ly? + M Ko T). Furthermore, we have

It (6) = un(®)l < IDo(t — SHINIFi(Si, Un(t)) = Wi(Sis Un-1(t)
+ Dyt = sHIIE(Si, un(ti)) = WE(Siy Una(8)]

t
+ I 1Dt = S)IIBIIwn(S) — Wn1(s)llds

st" (4.5)
+ j Dt - s)lllg(s, un(s)) — g(s, un—1(s))llds

Si

< [K(DOL\IJ% + K(DIL\{/,_Z + KBKq)QT + A]Kq) T] ||un(t) - un,1(t)||
< Ollup(t) — up_1 ()|,
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where 6 = [Ko,Ly! + Ko,Ly? + KgKo QT + 41K T]. Moreover, it can be observed that

las(t) = uo(®ll < 1Do(t = sHIIN](sis uo(E))I + IDs(t = sHIIE(Si, uo(t))I + llto

t t
+ I 1D(t - s)IIBlllIwo(s)llds + I Dt - s)lllg(s, uo(s))lds
Si Si (4.6)
< [KooCyt + Ko, Cy2 + luoll + (KpKo QT + Ko T)]

< [KooCyt + Ko, Cy2 + lluoll + (KpKoQ + A Ko) T]
<KT,K > 0.

By using inequality (4.6) and the method of induction, the estimate for inequality (4.5) is as follows:

n+1

T
[uns1(t) — un(O) < KO"

. (4.7)
n!

The right-hand side in the aforementioned estimate (4.7) can be made arbitrarily small by choosing
sufficiently large value of n. This implies that {u,(¢t)} is a Cauchy sequence in #/ . Since #/ is a Banach
space, the sequence {u,(t)} converges uniformly to a continuous function u(t) on [0, T]. It is followed by
taking limit as n — co on both sides of (4.1) and (4.2). Thus, we have

t
ut) =@t — sp)Wilsi, u(ty)) + it — s;)Wilsi, ulty)) + I O(t - s)Bw(s)ds
. S (4.8)
+ I O(t - s)g(s, u(s))ds, Vte [s,t,], i=0,1,2,..,m,

Si

where

w(t) =B (tig — t) (Mstﬁ”){uf(tm) — Do(tis1 — 5) Wilsi, ut))
(4.9)
tiv1
- Oty — ) Wi, u(t)) - I O(tis1 — 5)8(S, u(s))ds |.
Si
Since, the control u(t) steers the system from the initial state u, to final state u(t;,;) at time £;,;, system (1.1)
is said to be totally controllable on [0, T]. |

5 Controllability for an integro-differential equation
In this section, a control system represented by an integro-differential equation in space R" is considered
as follows:

i=0

t
“Dfu(t) = Au(t) + Bw(t) + g(t, u(t)) + If(f = S)h(s, u(s))ds, te G(Si, tisal,
0

u(t) = Wit, u(ty)), te J, sil, (5.1)
i=1

W) = W u), te L)t s,
i=1

u(0) = ug, u'(0) = vy,
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where a € (1, 2] and u(t) is a state function with time interval 0 = sg = to < {1 < S < ey by < S < tms1 =
T < 0o. Let A € R™™ be a coefficient matrix of system (5.1). The control function w(-) € L*(J;, R™ and
B :R™ — R" is a bounded linear operator.

In order to prove the controllability of the integro-differential Eq. (5.1), the following conditions are
required:

(A4) The real-valued function ¢ is piece-wise continuous on [0, T] and there exists a positive constant Y
T
such that Y = .[0 |&(s)|ds.

(A5) h: J; x R" > R", J; = [ Jo[si, ti1] is a continuous function and there exist positive constants A3 and
A4 such that

[h(t, u) = h(t, V)| < Asllu - V|
and ||h(t, u)|| < A4, for every u,v e R", t e J.

Theorem 5.1. If all the assumptions (A1)—(A5) are satisfied and the linear system (3.1) is controllable, then
the nonlinear integro-differential system (5.1) is totally controllable on [0, T].

Proof. Let us define an iterative scheme for the integro-differential system (5.1) as follows:

up(t) =1uo

t
Uns1(8) = Dolt — ) Wi(si, Uun(6))) + D1t — ) Wi(Si, Un(ty)) + _[ @(t - s)Bwy(s)ds

Si

(5.2)
t t S
v [ o= 51805, untsnds + [ (e - 9)] [ &6 - mhor, unn))dn s,
Si Si 0
Vite [Sia ti+l]’ i= Oa 1, 2’-~~)ma
where
Wa(t) =B ®*(tig — ) (MEN) up(tin) — Poltivn — i) WilSi, Un(t)))
tiv1
- O(ti1 — ) WiSi, un(t)) — I D(t;,1 — S)g(S, up(s))ds
Si (5.3)
tiv1 S
- [ @t -9 [ &6 - mhen, ww)an|as
Si 0
andn=0,1,2,....
Furthermore, the proof is similar to Theorem 4.1. Therefore, it is omitted. O

6 Application
In this section, we will consider the forced string problem and apply the results obtained in the previous
section. The Mittag-Leffler matrix function will be evaluated by using Roberto Garrappa’s MATLAB

algorithm.

Example 1. Let us consider the linear fractional order impulsive system without control
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CDt5/4u1(t) = ul(t) + u2(t)r te (0’ 1] U (;’ 2:|’

D us(t) = 2(0) + 3up(t), €€ (0,1 U (3,2];

[ sin(t) 3 (6.1)
u(t)—{3t+2}, te(l f],

wo = %0) e (1]

with initial conditions {ul(O)} = [0} and {ull(o)} = [1}

u(0) 2 u'5(0) 3

Comparing (6.1) with (1.1), we have u(t) = [ul(t)}, ¥ = {sin(t)} LA [cos(t)} B = [0] and A = [1 l}.

w(t) 3t+2 3 0 2 3
w@) | 10 } .
uz(Z)} = [_ 10 (Figure 1).

After introducing the control parameter w(t) in (6.1), we have the impulsive linear control system as
follows (Figure 2):

Let the final state ug(2) = {

DY u(t) = w(t) + w(®) + wib), te (0,10 (3,2,

D uy(t) = 2u(t) + 3up(t), te (0,1 U (% 2}’

[ sin(t) 3 (6.2)
u(t) = {Bt N 2}, te (1, EJ’

u'(t) = {coz(t)} te (1, ﬂ

Here, B = [(1)] The controllability Gramian matrix for system (6.2) is

, _[0.4227 0.1655
3 10.1655 0.0796 |

Trajectory of the System
45 T T T T

—=—ul
—e— u2
—o— impulse ||

State u(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time t

Figure 1: The trajectory of the impulsive linear system (6.1) starts from the initial state [g} and does not reach the final

10
state [_ 10} on [0, 2].
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The Control Trajectories
T T T T

40

—=—ul
—e—u2
—o— impulse ||

30

20

State u(t)

-20+

_30 -

-50 | | | | | | | 1 I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time t

Figure 2: The trajectory of the impulsive linear system (6.2) starts from the initial state [g} and reaches the final state [_1?0}
on [0, 2].

It is clear that Gramian matrix M? is nonsingular. Therefore, system (6.2) is exactly controllable on [0, 2].
2

The control which steers the initial state u(0) = B} of system (6.2) to the arbitrary desired final state

ur(2) = [_1(1)0} during [0, 2] is given by

-1
w(t) = B'®*(2 - t) (M;) [uf(z) - qno[z - %j\y%@ u(1)j - @1(2 - %jwf@ u(l)ﬂ.
2
Example 2. Consider the nonlinear fractional order impulsive system without control
D u(t) = w(®) + w(t) + cosu(®), te (0,1 U (3,2],

D up(t) = 2uy(t) + 3wo(t) + sinux(t), te (0,1 U (g z],

_ | 5 cos(t) 3 (6.3)
u(t) - |: t— 5 :ly t € (11 E:|y
1o | =5 sin(t) 3
u(t)—[ . }, te(l,i]

T " w@O)| 5 uh(0)| _To
with initial conditions Lz(o)} = [_ 5} and L'z(o)} = [J
. . _w(®) 1|5 cos(t)] 2 [-5 sin(t) _ [O]
Comparing (6.3) with (1.1), we have u(t) = Lz(t)} Y = [ ot }, W1 —{ ) }, B = ol
cos uy(t)
sin uy(t)

g(t,u(t)) = { } Let the final state us(2) = {ul(z)} = [(5)} (Figure 3).

u(2)

After introducing the control parameter w(t) in (6.1), we have the impulsive nonlinear control system
as follows (Figure 4):
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DY uy(t) = wy(t) + ux(t) + cos uy(t) + wyt), te (0,1]U (%, 2},

D3 up(t) = 2un(t) + 3ux() + sinwn(t) + wa(t), t e (0,1] U (g z],

6.4
u(e) = [5 tc?ss(t)} ‘e (1’ g} (6.4)

u'(t) = [_5 slin(t)} te (1, ﬂ

Here, B = [ﬂ The controllability Gramian matrix for system (6.4) is

M2 =

2

0.6081 0.9160
0.9160 1.4029 |

It is clear that Gramian matrix M? is nonsingular. Therefore, under assumptions (A1)-(A3), the nonlinear

2
system (6.4) is exactly controllable on [0, 2] (Figure 5).
But, in order to get total controllability of the nonlinear system (6.4), we have the Gramian matrix

Mg, telo,1],
2 3
M;’ te [2,2}

(6.5)

7.2941 15. 6108} and M2 — {0 .6081 0.9160

here M} = _
whete Mo [15 6108 33.8369 2 710.9160 1.4029

nonsingular. Moreover, the nonlinear function g(t, u(t)) and non-instantaneous impulses ‘I’%(t ) and
Wi(t, -) satisfy conditions (A1)-(A3). Hence, by Theorem 4.1, the nonlinear impulsive fractional order
system (6.4) is totally controllable (Figure 6).

} It is clear that both matrices M and M2 are

Trajectory of the System
6 T T T T

ul
4L —e— u2 _
—o— impulse

State u(t)

1.6 1.8 2

Time t

Figure 3: The trajectory of the impulsive linear system (6.3) starts from the initial state [_55} and does not reach the final state

[(5)} on [0, 2].
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7 Conclusion

In this manuscript, the total controllability of fractional order nonlinear differential equations with non-
instantaneous impulses is investigated through the iterative scheme. The total controllability conditions
for the nonlinear system are examined by imposing that the linear system is controllable and the nonlinear
function satisfies some suitable assumptions. The computation of controlled state and steering control for
the linear and nonlinear fractional order impulsive system is proposed by using the Mittag-Leffler matrix

The Control Trajectories

10 T T T T T T
—o—ul
—e— u2
—e— impulse

5

0 -

State u(t)

-15 | | | | | | I I |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time t

Figure 4: The trajectory of the impulsive nonlinear system (6.4) starts from the initial state [_55} and reaches the final
} on [0, 2].

state [_10

10

Total Controlled Trajectories

T T T T

——uf
—6—u2
—e— impulse | -

-6 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Time t

Figure 5: The trajectory of the nonlinear system (6.4) starts from the initial state [_55} and reaches the final states [2} and
[_22} in the intervals [0,1] and {%, 2}, respectively.
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The Steering Control

200 T T T T T
—— steering control on [0,1]
—— steering control on [1.5,2]
150
100 -

State w(t)
(&)
o
T

0 -
_50 -
-100 1 1 1 1 1 1 | 1 |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time t
Figure 6: The trajectory of the nonlinear system (6.4) steers the initial state [_55} to the final states [2} and [_22} in the

intervals [0, 1] and {%, 2}, respectively.

function and the Gramian matrix. In the future, for a better understanding of controllability, the
computational scheme can be applied to the nonlinear control problems in finite dimensional spaces.
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