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Abstract: In this work, we introduce two new inertial-type algorithms for solving variational inequality
problems (VIPs) with monotone and Lipschitz continuous mappings in real Hilbert spaces. The first
algorithm requires the computation of only one projection onto the feasible set per iteration while the
second algorithm needs the computation of only one projection onto a half-space, and prior knowledge of
the Lipschitz constant of the monotone mapping is not required in proving the strong convergence
theorems for the two algorithms. Under some mild assumptions, we prove strong convergence results for
the proposed algorithms to a solution of a VIP. Finally, we provide some numerical experiments to
illustrate the efficiency and advantages of the proposed algorithms.
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1 Introduction

Let H be a real Hilbert space with the inner product {:,-) and the induced norm |[-|.. Let C be a nonempty,
closed, and convex subset in H. In this article, we consider the classical variational inequality problem
(VIP), which is to find a point x" € C such that

<AXT’y - XT> 2 0’ Vy € C’ (l)

where A : H — H is a given operator. The solution set of VIP (1) is denoted by VI(C, A).

Variational inequality theory is an important tool in economics, engineering, mathematical
programming, transportation, and in other fields (see, for example, [1-8]). Many numerical methods
have been constructed for solving variational inequalities and related optimization problems, see [9-27]
and references therein.

One of the most popular methods for solving the problem (VIP) is the extragradient method (EGM).
This method was introduced by Korpelevich [28] in 1976 as follows:

Xo € C,
yn = PC(XH - AAXn)y (2)
Xne1 = Pe(xy — AAy,), n =0,
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where A € [0, %} and P; denotes the metric projection from H onto C. The EGM was first introduced for

solving saddle point problems, after which the method was further extended to VIPs in both the Euclidean
spaces and Hilbert spaces. The convergence of the EGM only requires that the operator A is monotone and
L-Lipschitz continuous. If the solution set VI(C, A) is nonempty, then the sequence {x,} generated by
algorithm (2) converges weakly to an element in VI(C, A).

In recent years, the EGM (2) has received great attention by many authors, who improved it in various
ways (see, for instance, [9,17,29-32] and references therein). In order to obtain the strong convergence of
the EGM in real Hilbert spaces, Maingé [33] proposed a modified version of the algorithm as follows:

Xo € H,

Yo = Peltn = AnAxy),
tn = Pc(xn — A, AY,),
Xny1 =ty — anFtn,

where A : H— H is monotone on C and L-Lipschitz continuous on H and F: H — H is Lipschitz
continuous and strongly monotone on C such that VI(C, A) #+ &. Maingé proved that if the parameters

1

satisfy the conditions: A, € [a, b] C (O, ZJ’ ay € [0, 1), lim,_, o, = 0, and Y7/ &, = co, then the sequence

{x,} converges strongly to x' € VI(C, A), where x' is the solution of the following VIP
(Ax',y - x"y 20, Vy e VI(C,F).

One of the drawbacks of the EGM and its modified version above is that in each iteration in the
algorithm, two projections are made onto the closed convex set C. However, projections onto a general
closed and convex set are not easily executed, a fact that might affect the efficiency and applicability of the
method.

In order to overcome the aforementioned drawback, Censor et al. [9] presented the subgradient
extragradient method, in which the second projection onto C is replaced by a projection onto a specific
constructible half-space which can be easily calculated. Their algorithm is of the form:

Yo = Pe(xn — AAXy),
Tn:{WEH|<Xn_AAXn_yn’W_yn> <0}, (4)
Xni1 = Pr,(xq — Ady,), Vn=0,
where A € (O, %J
Tseng in [32] proposed another method for solving the VIP (1), which uses only one projection in each
iteration. This method is known as the Tseng extragradient method (TEGM) and is presented as follows:

Xo € H,
Yo = PC(Xn - MXn), (5)
Xni1 = Yo — MAy, — AXn), VYn =0,

where A € [O, i]

Another shortcoming of algorithms (2), (3), (4), and (5) is the choice of stepsize. The stepsize plays an
essential role in the convergence properties of iterative methods. In the aforementioned algorithms, the
stepsizes are defined to be dependent on the Lipschitz constant L of the monotone operator. In this case, a
prior knowledge or estimate of the Lipschitz constant is required. However, in many cases, this parameter
is unknown or difficult to estimate. Moreover, the stepsize defined by the constant is often very small and
slows down the convergence rate of iterative methods. In practice, a larger stepsize can often be used and
yields better numerical results.
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Yang and Liu [34] inspired by the TEGM and the viscosity method with a simple step size proposed the
following algorithm for solving VIP (1):

Algorithm 1.1.
Step 0. Take Ay > 0,xp € H, u € (0, 1).
Step 1. Given the current iterate x,, compute

Yo = Pe(xn - AnF(Xn))-

If x, = y,, then stop: x, is a solution. Otherwise, go to Step 2.
Step 2. Compute

Xn+1 = anf(xn) + (1 - an)zn

and

. Mlxa = ¥l .
min{ —————, Ay, if FOq) - F(y,) # 0,
/ln+1 = {"F(Xn) - F(yn)”

Ans otherwise,

where z, =y, + Ay(F(xn) — F(y,)). Set n == n + 1 and return to Step 1,

where F: H — H is monotone and Lipschitz continuous with constant L >0, f: H — H is a strict
contraction mapping with constant p € [0, 1), and {a,,} c (0, 1). They proved the strong convergence of the
algorithm without any prior knowledge of the Lipschitz constant of the mapping.

Very recently, Thong et al. [35] introduced a new algorithm which was a combination of the modified
TEGM and the viscosity method with inertial technique. The proposed algorithm is presented as follows.

Algorithm 1.2.

Initialization: Let xo, ; € H be arbitrary.
Iterative steps: Calculate x,,; as follows:
Step 1. Set w,, = x,, + an(X, — Xp—1) and compute

W= PC(Wn - MWn)-

If y,, = wy, then stop and y, is a solution of the VIP. Otherwise, go to Step 2.
Step 2. Compute

Xn+1 = Bof 06) + (1 = B)zn,
where z, =y, — A(Ay, — Awy). Set n:=n + 1 and go to Step 1,

where A : H — H is monotone and Lipschitz continuous with constant L > 0, f: H — H is a contraction
mapping with contraction parameter, A € (0, i}, {an} € [0, a) for some a > 0 and {8,} c (0, 1) satisfying

lim, B, = 0, X", B, = co. Under certain mild assumptions, they proved that the proposed algorithm
converges strongly to a solution of the VIP (1).

In this work, we propose iterative schemes to remedy the drawbacks highlighted above. Motivated by
the works of Yang et al. [34] and Thong et al. [35] and the current research interest in this direction, we
propose two new inertial-type algorithms for solving the VIP (1) based on the TEGM and Moudafi’s
viscosity scheme which does not require a prior knowledge of the Lipschitz constant of the monotone
operator. The inertial term a,(x, — x,_1) introduced can be regarded as a procedure for speeding up the
convergence properties (see, for example, [22,23,33,36—-39]). The first algorithm requires the computation



DE GRUYTER Two modifications of the inertial Tseng extragradient method =— 211

of only one projection onto the feasible set per iteration while the second algorithm needs the computation
of only one projection onto a half-space, which is easy to compute. Under some mild conditions, we prove
strong convergence theorems for the algorithms without any prior knowledge of the Lipschitz constant of
the monotone operator. Finally, we provide some numerical experiments to show the efficiency and
advantages of the proposed algorithms. The numerical illustrations show that our proposed algorithms
with inertial effects converge faster than the original algorithms without inertial effects.

2 Preliminaries

Let H be a real Hilbert, for a nonempty, closed, and convex subset C of H, the metric projection P : H — C
is defined, for each x € H, as the unique element Pcx € C such that

Ix — Pcx|| = inf{]x — z|| : z € C}.

It is known that P; is nonexpansive. We denote the weak and strong convergence of a sequence {x,} to a
point x € H by x, — x and x, — x, respectively.

Definition 2.1. A function f: H — R is said to be weakly lower semicontinuous (w-1sc) at x € H, if

f(x) < lim inf f(x,)
n—oo
holds for an arbitrary sequence {x,};2, in H satisfying x, — x.

Lemma 2.2. [40,41] Let 6 € (0, 1), for x,y € H, we have the following statements:

@ 1<%, y> 1< lxllliylls
@ I +yI? < IxIP + 2¢y, x + y);

B) Ix +yIP = Ix? + 206, y) + IyIPs
(4) 16x + (1 = O)ylI* = 8lIxI* + A - &) lyl* - 601 - &) lIx - yI*.

Lemma 2.3. [42] Let C be a nonempty closed convex subset of a real Hilbert space H. For any x € H and
z € C, we have

z=Pxoe {X-2z,z-yy=0 for all yeC.

Lemma 2.4. [42] Let C be a closed convex subset in a real Hilbert space H, and x € H. Then,
(1) IPcx = PeylP < (Pcx = Pcy,x —yy for all y € C;
@) IPcx = ylI> < Ix = yI? = Ix = Pex|? for all y € C.

Lemma 2.5. [43] Let {a,} be a sequence of nonnegative real numbers, {a,} be a sequence in (0, 1) with
Z;’il a, = 00, and {b,} be a sequence of real numbers. Assume that

an < (1 - ap)a, + apb,, for all n>1,
if lim supx_cobn, < 0 for every subsequence {a,} of {a,} satisfying lim infi_(an,,, — an) = 0, then
lim,_, ,a, = 0.
Lemma 2.6. [44] If A : C — H is a continuous and monotone mapping, then x* is a solution of (1) if and only
if x* is a solution of the following problem:

find x* € C such that {Ay, y —x*) 20, VyeC.
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3 Main results

In this work, we consider the VIP (1) under the following assumptions:
(A1) The solution set of (1) denoted by VI(C, A) is nonempty.
(A2) The mapping A is monotone, i.e.,

{(Ax - Ay, x-y)=>0, Vx,yeH. (6)
(A3) The mapping A is Lipschitz-continuous with constant L > O, i.e., there exists L > 0 such that
[Ax — Ayl < Lllx -yl Vx, ye€H. (7)
We take f: H— H to be a strict contraction mapping with contraction parameter k € [0, 1). Let
{ay} c [0, a) for some a > 0 and {B,} c (0, 1) satisfy the following conditions:
o a
limB, =0, ) B, =oco and lim —|x, - X1 = 0. (8)
n—oo n=1 n—oo n
Now, the first algorithm is presented as follows.
Algorithm 3.1.

Step 0. Take xq, ; € H arbitrarily, Ag > 0, u € (0, 1).
Step 1. Set w,, = x,, + a(x, — X,_1) and compute

Vo= PC(Wn - AnAWn)-

If y, = wy, then stop and y, is the solution of the VIP (1). Otherwise, go to Step 2.
Step 2. Compute

Xn+1 = an(xn) + (1 - ﬁn)zn

and

| ulwe = Yl .
min{ ———— A}, if Aw, — Ay, # O,
Must = {qun —ay " T

Ans otherwise,

where z, =y, + Ay(Aw, — Ay,). Set n == n + 1 and return to Step 1.

Lemma 3.2. The sequence {A,} generated by Algorithm 3.1 is monotonically decreasing with lower bound

min{%,/\o}.
Proof. Repeating the proof as in [34] and replacing {x,,} by {w,}, we obtain the desired result. O

Remark 3.3. It is clear that the limit of {A,} exists, and we denote A =lim,_A,. It then follows
that A > 0.

Now, we prove the boundedness of the sequence {x,} generated by Algorithm 3.1.
Lemma 3.4. Let {x,,} be a sequence generated by Algorithm 3.1. Then, {x,} is bounded.

Proof. Suppose p € VI(C, A). Then, by the definition of {z,} and using Lemma 2.2, we obtain

1y, — An(Ay, — Awy) — plP
Iy, = PI? + AZ1Ay, — AW P — 2A,<Ay, — AWy, ¥, — D)

_ nli2
lz» - pl ©)
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= [y, = Wal? + IWa = PI? + 2{¥, = W W — P + AZ1IAY, — AW, |? — 2A,(Ay, — AW, ¥, — D)
Wn = DI + 11y, = WalP? = 2€¥, = Was Y = W) + 2(¥, = Whs ¥y — D) + A7 Ay, — Awy |2
=200 (AY, = AWy, Y, — D)

IWn = DI? = 1%, = Wal? + 2{¥, = Was ¥, — DY + Az Ay, — AWl — 24,(Ay, — AWy, ¥, — D).

Recalling that y, = Pc(w, — A,Awy), by Lemma 2.3, we obtain

<yn - W+ AnAWm yn - p> < 0’
which is equivalent to
O = Wy Yy = P) < —An(AW, ¥, — D). (10)

Combining (9) and (10), we have

A

Izn = DI < Iwa = PI? = 1Y, — Wal? = 24,(AW,, ¥, — DY + AZ1IAY, — AWnl? - 2A,(Ay, — AWn, ¥, — D)
IWn = PIP = 11y, = WalP + AZ 1Ay, — AWal? = 24,4y, — P, Ay,

IA

= DI = Iy, — wal? + A2y = walP = 200y, — p, Ay,

"A2
n;rl (11)
= wa = PI? = Iy, — Wal?® + AﬁATllyn - Wal? = 2.y, — D, Ay, — Ap) — 24y, — p, Ap)
n+1
2 2 W 2
< [wn - pll —[l—/\ Jlly,. Wall.
An+1
Now, consider the limit
U2
lim [l—)lz ] 1-pu?>0. (12)
n—00 An+1

Hence, there exists N > 0 such that V n > N, we have that 1 — A A“ > 0. Thus, it follows that V n > N,
n+1
we have

lzn = pll < llwy - pl. (13)

From the definition of {w,}, we obtain

[Wa =PI = X0 + &n(Xn = Xn-1) = Pl < X0 = PIl + @nlXn = Xn-1ll = 1%, = Pl + ﬁ e = X1l (14)
n

From the condition %le,, - Xn-1ll — 0, it follows that there exists a constant M; > 0 such that

a
B—"len ~Xpall <My, VYnzl (15)
n

Hence, combining (13), (14) and (15), we have
Izn = pll < Wy - pll < Ix; = Pl + B, M. (16)
From the definition of {x,,}, we have

IXn1 = Pl = 1B, f(Xa) + (1 = By)zn — P

1B, (f(xn) = p) + (1 = B,)(zn = D)

Ballf %) = pll + (1 = B)lzn — P a7
Ballf ) = fF®OI + B,If () — pll + 1 = B llzn — P

Baklxn = pll + B,If () = pll + 1 = B llzn - pI.

IN AN

IN
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Substituting (16) into (17), we obtain

X1 =PIl < 1= (A = K)B)Ixa = pll + B, My + B, If () - pll

= (1-1-BYIx - pl + (- k)ﬁnw
< max 1, - p, 210 =01}

1-k
< maX{leN - pl, W}

This implies that the sequence {x,} is bounded. It also follows that {z,}, {f(x,)}, {wy}, and {y,} are bounded. O

Lemma 3.5. Assume that {w,} and {y,} are sequences generated by Algorithm (3.1) such that
limy,_,oollWn — ¥, Il = O. If {wy,} converges weakly to some z, € H, then zo € VI(C, A).

Proof. By the hypotheses of the lemma, we have that y, — zo and z, € C. Since A is monotone, then by
the definition of y, and by applying Lemma 2.3, we obtain

e = Wiy + A AWy 2 = Y > 20, VzeC.

This implies that

0 < (ynk - Wy, Z — ynk) + A AWy, Z — ynk>
= Ve = Wi Z = Vo) + AnlBWps Z = W) + Ay (AW Woy = Vi)
< <ynk - Wnk’ zZ - ynk> + Ank<AZ’ z - Wnk> + /\nk<Aerk’ Wnk - ynk>'

Letting k — oo, applying the facts that limy_ ), — Wa, |l = 0, {);,} is bounded and limy_, oAy, = A > O, we
have

{Az, z—-25) 20, VzeC.
Applying Lemma 2.6, we have that zo € VI(C, A). O

Lemma 3.6. Let {x,,}, {w}, {y,}, {Aa}, {B,}, and u be as defined in Algorithm 3.1 and M, > O be some constant.
Then, the following inequality holds:

2
a- Bn)[l - Ay Auz ]IIy,. = Wl < I = X2 = IXns1 = X2 + B, M, (18)
n+1

where x* € VI(C, A).

Proof. Let x* € VI(C, A), then by the definition of {x,} and using Lemma 2.2, we have

Xne1 = X*I2 = 1B, f(xa) + (1 = B)zn — X*|?
= BulfCe) = x*I? + A = B lzn — x*I? = B,(1 = BIIf(n) — znl?
< Bulf ) = x* 12 + (1 = B llzn — x*I7
< B (If 06) = FON + IfF () = x* ) + A = B) Iz — x|
< B(kllxn = x| + If ) = x* ) + A = B)llzn — x*IP
< Bl = x + If () = x*1)? + A = B,) zn — x|
= By = X2 + B2lxn — x*I-If () = x| + If(x*) = x*I7) + (A = B) |z — x*|?
< Bolxg = X2 + (1 = B llzn — x*I? + B, M,

(19)

for some M, > 0. Substituting (11) into (19), we get
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Xne1 = X*IP < Bylxn = x*IP + (1 = B IIwy — x*I> = (1 - B )(1 - Az Jlly,, - Wol? + B, M. (20)

An+1
From (16), we obtain
Iwn = x*I2 < (Ixn = X7 + B M1)? = Xy — X*I? + B, My 1xXn — X7l + B, M) < Xy — X*I? + B, M5, (21)

for some M; > 0. Combining (20) and (21), we obtain
2
1 = X1 < Blxn = X1 + (1 = Blxa = x*IP + B, Mz — (1 - B, )(l L "0 ]Ilyn - Wl + B, M,
n+1

= x — x*I* + B, M5 - (1 - ﬁ,,)[l - A7 Ap Jllyn - Wol? + B, M,.
n+1

Hence, we have that
a-B, )(1 -5 jllyn Wal? < X0 = X*IP = IXns1 = X*IP + B, Ma,
An+1
where M, = M, + Ms. O
Now, we prove the convergence of Algorithm 3.1.

Theorem 3.7. Assume that (A1), (A2), and (A3) hold and the sequence {a,} is chosen such that it satisfies (8).
Then, the sequence {x,} generated by Algorithm 3.1 converges strongly to an element x* € VI(C, A), where
xX* = Pyyc,a) ° f(x).

Proof. Let x* € VI(C, A), then using (13) and Lemma 2.2, we obtain

IB.f(xa) + (1 = B)zn — X*I?

= 1B, (fO) = f(x*) + (1 = B)(zn — x*) + B, (f(xX*) = x)I?

< 1B (fOt) = f(x) + (1 = B) (zn = X + 2B, f(X*) = X*, Xny1 — X*)

Bll(fO) = FONP + (1 = BNz = X = B0 = BI(f ) = FX*)) = (20 = x|

||Xn+1 - X*Hz

A

(22)
+ 2B, {f(X*) = X*, Xpy1 — X*)
< Bl(fO) = FONIP + A = B)IIzn — xHIP + 2B,{f(X*) = X*, Xns1 — X*)
< Buklxn = x*IP + (1 = B l(zn = X + 2B, {f(X*) = X*, Xna1 = X
< Boklxn = X7 + (1 = BIWn = x9)I? + 2B,{f(X*) = X*, Xps1 — X*).
By the definition of {w;;} and using Lemma 2.2, we have
”Wn - X*”z = ”Xn + an(xn - Xn—l) - X*HZ
= |xn = X*IP + 20,00 — X*, X = Xno1) + Q21X — X1 [P (23)
< lxn = X*”Z + 201X = X*||- Xy = Xp-all + 0(,% lIx, - Xn—luz-
Combining (22) and (23), we obtain
et = X7 < (1 = (1 = KB Ixn — X*IP + 2aplIx, — X*II-len = Xno1ll + a7 X — X1 P + 2B, {f(X*) = X*, Xng1 — X*)
=1-QAQ-k)B) I - x> + (1 - k)ﬁ <f(X*) = X%, Xpa1 — X
+ X0 — X1 | QIX = X + anllx, - Xn—l”) (24)

SU-A-BB)Ix — x> + (1 - k), f (fFOX) = X*, X1 — X + 3Mag|x, — Xn1 |l

=(1-QA-B)Ix - xIP +(1- k)ﬁn{mU(X*) = X%, Xg1 — XP) + 13ka ;" lIx, — Xn—l"}’

where M := suppenillx, — X*II, @nllX; — Xp1ll} > O.
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Next, we claim that the sequence {||x, — x*|} converges to zero. In order to establish this, by Lemma
2.5, it suffices to show that lim Supi_.co{ f(X*) — X*, Xns1 — X*) < O for every subsequence {|x,, — x|} of
{llx, — x*|1} satisfying

lim inf(xy+1 = X = IXg, = x*I) = O.
k— o0

Now, suppose that {||x,, — x*|I} is a subsequence of {|lx, — x*[|} such that

lim inf(lxp 1 = x*| = Xy, — x*[) > 0.
k— oo
Then, it follows that
lim inf(lxp1 = X*I? = X, = X*I?) = im inf{([xp 1 = X = X, = X1 (X1 = X*1 + 10, = x* D} > 0.
k—o0 k—oo

Then from Lemma 3.6, and using the facts that limkﬁoo(l A2 E ’ J =1-u>>0and limk—>ooﬁnk =0, we

ny Ar%
. je+1
obtain

kllglo ¥, = Wl = O. (25)

From (25), we get

1z = Wl = 1Y, + A (AW, = Ay,) = Wil
< e = Wl + A AW, — Ay, |l
< e = Wil + Ay X ~E— 1w = 33,1 (26)
Ank+1
= [l + A, X LJllynk - Wy, |l — 0.
ni+1
Also, we have that
||Xnk+1 - an” = ”ﬁnkf(xnk) + (1 - ﬂnk)znk - Zpy ” = Bnk”f(xnk) - an” -0 (27)
and
a
DX = Wl = Xy = DX + @ Xy, = X )1 = @ Xy, = X1l = Bnk-ﬁ—"kllxnk ~ Xl > 0. (28)
N
Applying (26), (27), and (28), we obtain
"Xnk+1 - Xnk” < ||Xnk+1 - an ” + "an - Wnk” + "Wnk - Xnk ” — 0. (29)

Since {xn,} is bounded, there exists a subsequence {Xnk,.} that converges weakly to some z, € H, such that

lim sup<f(x*) = X%, Xp, = x7) = Hm (f() = X%, Xy = X7 = (fX7) = X7, 20 = X7). (30)

k—o0 j— oo

By Lemma 3.5, and (25) and (28), we have z, € VI(C, A). Since the solution set VI(C, A) is a closed, convex
subset and f is a strict contraction, the mapping Py 4) ° f is a contraction mapping. Hence, by the
Banach contraction mapping principle, there exists a unique element x* e VI(C,A) such that
X* = PVI(C,A) o f(X*) By Lemma 2.3, we have

{fx*) —x*, z-x*» <0, VzeVIC,A). (31)
Hence, it follows from (31) that

lim sup{f(x*) — x*, xp, — x*) = {f(x*) - x*, zo — x*) <O0. (32)

k—o0
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Combining (29) and (32), we have

IN

lim sup{f(x*) = x*, Xpe1 — X*) < limsup{f(x*) — X*, Xp1 = Xp) + im sup{f(x*) - x*, X - x*) )
k—co k—oo k— oo

F(x*) = x*, zp — x*) < 0.

Thus, by (33), lim,,_,oo%llx,, — Xp-1ll = 0, (24) and Lemma 2.5, we have lim,,_,[[x, — x*|| = 0 as required. O

We next propose our second algorithm. Suppose C is a nonempty convex set which satisfies the
following conditions:
(B1) The set C is given by

C={xeH:hx)<0},

where h : H — R is a convex and subdifferentiable function on C.
(B2) h is weakly lower semicontinuous.
(B3) Forany x € H, at least one subgradient ¢ € oh(x) can be calculated, where oh(x) is defined as follows:

oh(x) ={z € H: h(u) > h(x) + {u - x,z), Yu € H}.

In addition, oh(x) is bounded on bounded sets.
(B4) Define the set C, by the following half-space:

Co={xeH:hw) + <, x —w,) <0},
where & € oh(w). By the definition of the subgradient, it is clear that C ¢ C,.

We now present the following algorithm using the half-space defined above.
Let f: H — H be a strict contraction mapping with contraction parameter k € [0, 1). Let {a,,} c [0, a)
for some a > 0 and {,} c (0, 1) satisfying the following conditions:

()
limB, =0, 3 B,=oo and lim Zjx, - x,1 = 0.
n—oo n-1 n—oo ﬁn
Let {x,} be a sequence generated by the following iterative process.

Algorithm 3.8.

Step 0. Take xg, 5y € H arbitrarily, Ag > 0, u € (0, 1).
Step 1. Set w,, = X, + a,(x,, — X,—1) and compute

V= PC,,(Wn - AnAWn)~

If y,, = wp, then stop and y, is the solution of the VIP (1). Otherwise, go to Step 2.
Step 2. Compute

Xne1 = B fO) + (1 = B,)zn

and

| Hlwe =yl .
min{ ——"— A,, if Aw, - Ay #0,
At = {nAwn “ayl O

An, otherwise,

where z, =y, + Aq(Aw, — Ay,). Set n == n + 1 and return to Step 1.
It is easy to extend Lemmas 3.2, 3.4, and 3.6 for Algorithms 3.1-3.8.

Lemma 3.9. The sequence {A,} generated by Algorithm 3.8 is monotonically decreasing with lower bound

min{%, /10}.



218 —— Timilehin Opeyemi Alakoya et al. DE GRUYTER

Lemma 3.10. Let {x,,} be a sequence generated by Algorithm 3.8. Then, the sequence {x,} is bounded.

Lemma 3.11. Let {x,}, {Wa}, {¥,)}, {An}, {B,,}, and p be as defined in Algorithm 3.8 and Ms > O be some constant.
Then, the following inequality holds:

2
a- Bn)(l - A AHTJ Iy, = Wal? < I = X*I? = X1 = X*I* + B, Ms, (34)
n+1

where x* € VI(C, A).

Lemma 3.12. Assume that {w,} and {y,} are sequences generated by Algorithm (3.8) such that
limy, o lWn = ¥, |l = O. If {wy} converges weakly to some X € H as j — oo, then x € VI(C, A).

Proof. Since wy, — X, it follows that Yoy = X as j — oo. Since Yy € Cy;» by the definition of C,, we get

h(an) + <'{n].! yn]- - an> <0.

Since {x,} is bounded by Lemma 3.10, then {w;,} and {y,} are also bounded, and by condition (B3) there
exists a constant M > O such that ||£n],|| <M forall j=>0.So h(wy,) < Mlwy — )’n,-" — 0 as j — oo, and
this in turn implies that lim inf;_,h(wy) < 0. Using condition (B2), we have h(X) < lim infj_,h(wy) < O.
This means that X € C. From Lemma 2.3, we obtain

Oy = Wy + Ay AWy, 2 = Y, > 20, Vz € CCCy
Since A is monotone, we have
0 < (o = Wiy 2= ) + A (A, 2= )
= <yn,- - Wn,', zZ = ynl.> + /\nj<Aany zZ - an> + Ani<Aan’ W"i — ynj>

< gy = W 2= V) + An€AZ, 2 = Wy) + A (AW, Wy — Y.
Letting j — oo, and since limjﬁmllyn]_ — Wy || = 0, we have
(Az, z-X) >0, VzeC.
Applying Lemma 2.6, we have that X € VI(C, A). O
Now, we prove the convergence theorem for Algorithm 3.8.
Theorem 3.13. Assume that (A1), (A2), (A3), (B1), and (B2) hold. Let the sequence {a,} be chosen such that
it satisfies (8). Then, the sequence {x,} generated by Algorithm 3.8 converges strongly to an element

X € VI(C, A), where X = PVI(C,A) o f()?)

Proof. From (24), we have

s = T < (1= (1= KBl — TP + (1 - k)ﬁ,,{ﬁmc*) X Xt = XD+ ff”k-%uxn - xn_lu}, (35)

where M := suppen{liXn — X*|I, @I, — X111} > O.

We claim that the sequence {||x, — x*||} converges to zero. In order to establish this, by Lemma 2.5, it suffices to
show that lim sup_{f(x*) — x*, Xp,+1 — X*) < 0 for every subsequence {|lx,, — x*[I} of {|lx, — x*||} satisfying

lim inf(xp+1 = X = IXg, = x*II) = O.
k— o0

Suppose that {|lx,, — x*|I} is a subsequence of {||x, — x*||} such that

lim inf(xn+1 = X*Il =[x, — x*) > 0.
k— oo
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By applying Lemma 3.11 and following similar argument as in Theorem 3.7 we have

lim ||Ynk - Wnk” = O’ lim ”an - Wy " = 0’ lim "Xnk - Wy, || = 0’ lim ||Xnk+1 = Xny " =0. (36)
k—o0 k—o00 k—o0 k—o0

Since {xy,} is bounded, there exists a subsequence {Xnk,-} that converges weakly to some z, € H, such that

lim sup{f(x*) = X", X, = X% = Hm (fFX7) = X%, Xy = X7 = {fX) = X7, 20 = X7). 37)
k—oo ]— 00
By Lemma 3.12 and (36), we have z; € VI(C, A). Since the solution set VI(C, A) is a closed, convex subset
and fis a strict contraction, the mapping Pyy,4) ° f is a contraction mapping. By the Banach contraction
mapping principle, there exists a unique element x* € VI(C, A) such that x* = Pyyc,a) o f(x*). Applying
Lemma 2.3, we have

fx*) —x*, z-x*»<0, VzeVIC,A). (38)
Therefore, we have that
lim sup{f(x*) — x*, xp, — x*) = {f(x*) —x*, zo —x*) <O0. (39)
k—o00
From (36) and (39), we have
lim sup{f(x*) = x*, Xpe1 — X* < limsup{f(x*) - X*, Xp1 — Xp» + lim sup{f(x*) — x*, X — x*)

k—o00 k—o0 k—o0 (40)
fx*) = x*, zo —x*) < 0.

Hence, by (40), limnﬁm%llxn — X1l = 0, (35), and applying Lemma 2.5, we have lim,_,|x, - x*|| = O,
which is the required result. O

4 Numerical experiments

In this section, we present some numerical examples to demonstrate the efficiency of our algorithms in
comparison with Algorithms 1.1 and 1.2 in the literature. All numerical computations were carried out
using Matlab 2016(b) on an HP personal computer, 8-Gb RAM.

We choose Ay = 0.9, B, = ﬁ, fx) = %, and u = 0.6 and use % < € as a stopping criterion to
- A
terminate the algorithm in each example. The projection onto the feasible set C is computed using the

function “fmincon” in the optimization tool box. We take 8 = 0.6 and choose the sequence {a,} such that

B2
min{@ 7"} if X # X1

’
n— "Xn - Xn—l"

0 otherwise.

Problem 1.
The first test (also considered in [34]) is a classical example for which the usual gradient method does not
converge. The feasible set is C = R™ and A(x) = Mx, where M is a square m x m matrix given by

-1, ifj=m+1-iandj>i
aj =41 ifj=m+1-iandj<l1,
0, otherwise.

For even m, the zero vector x* = (0, ..., 0) is the solution of Problem 1. In this example, we take (Case I:)
m = 4, (Case II:) m = 20, and (Case III:) m = 100 and & = 107%. The initial points are generated randomly
using xo = rand(m, 1) and x = 10 x rand(m, 1). The numerical results are summarized in Table 1 and
Figure 1.
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Problem 2.
Suppose that H = L*([0, 1]) with the inner product

1

X, y)y = I x(t)yt)dt, Vx,yeH

0

and the induced norm
1
Il = Jlx(t) Pdt|, vxeH.
0

Let C := {x € H : ||x|| < 1} be the unit ball and define the operator A : C — H by
(Ax)(t) = max {0, x(t)}.

It can be easily verified that A is 1-Lipschitz continuous and monotone on C. With these given C and A, the
solution set of the VIP (1) is given by

VI(C, A) = {0} + @.

It is known that

if Ixl2 > 1,
Pe(x) =4 Ixll2

e if x|z < 1.

Table 1: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 1

Dimension Algorithm 3.1 Algorithm 1.1 Algorithm 1.2
Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)
m=4 23 6.0523 59 16.5546 29 7.6139
m =20 22 7.4086 58 18.7391 29 8.7219
m =100 24 15.9526 63 35.6063 31 18.4151
12 T T T 6 12

T T T T T T T T T T T T T

| —%— Algorithm 3.1 —%— Algorithm 3.1 —%—Algorithm 3.1

! —%—Algorithm 1.1 —%— Algorithm 1.1 —%—Algorithm 1.1
—%—Algorithm 1.2 —%—Algorithm 1.2 —%—Algorithm 1.2

101

X,
x|l

2
x|l

[
I

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 70

Iteration number (n) Iteration number (n) Iteration number (n)

Figure 1: Problem 1, left: m = 4; middle: m = 20; and right: m = 100.
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We test the algorithms for three different starting points and use € = 10 as a stopping criterion. The
numerical results are summarized in Table 2 and Figure 2.

Case I: xq = t%, X =1t +5t2-1;
Case II: xq = exp(-5t), x; = (2t2 — 1)5;
Case III: xg = 5sin(27t), x; = cos(2t)4.

Problem 3.

Next, we consider the Kojima-Shindo nonlinear complementarity problem, where n = 4 and the mapping
A is defined by

32+ 26 + X2 + X5+ 3%, — 6
22+ + X3+ 10X + 2, — 2
AQa, X, X3, X4) = ) ) .
3X1 +X1X2+2X2 +26+9x, -9
Xt + 3% + 26+ 3x4 - 3

It is known that A is Lipschitz continuous [45]. The feasible set is C = {x € Rﬁ | x4 + % + X3 + X4 = 4}. We choose
the starting points: Case I: xo = (1,2,0,1)’; x = (1,1,1,1)’ and Case II: xo = (2,0,0,2)'; x=(1,0,1,2)".
For all the starting points, we have two tests: with € = 1073 and £ = 1076, The results are summarized in
Tables 3—-4 and Figures 3—-4.

Table 2: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 2

Algorithm 3.1 Algorithm 1.1 Algorithm 1.2

Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)
Case | 7 1.7756 6 1.9701 11 5.6289
Case Il 7 5.0223 7 5.2426 11 7.0342
Case lll 8 3.1035 8 3.1066 11 8.0202

T T T T T T T T T
—#— Algorithm 3.1 —#— Algorithm 3.1 —*— Algorithm 3.1
—#— Algorithm 1.1 —#— Algorithm 1.1 —%— Algorithm 1.1

Algorithm 1.2 14 Algorithm 1.2 | Algorithm 1.2

0.8F

2
x|l

0.6

1P
4y %4l

041

0.2F

L " ! —— "
2 4 6 8 10 2 4 6 8 1 2 4 6 8 10
Iteration number (n) Iteration number (n) Iteration number (n)

Figure 2: Problem 1, left: Case I; middle: Case Il; and right: Case Ill.
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Table 3: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 3, € = 103

DE GRUYTER

Algorithm 3.1

Algorithm 1.1

Algorithm 1.2

Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)
Case | 15 4.4316 35 9.5863 18 4.8669
Case Il 18 5.5598 36 10.1659 23 6.3572
Table 4: Comparison between Algorithms 3.1, 1.1, and 1.2 for Problem 3, £ = 107°

Algorithm 3.1 Algorithm 1.1 Algorithm 1.2

Iter. CPU time (s) Iter. CPU time (s) Iter. CPU time (s)
Case | 31 9.5930 75 22.0722 41 10.6315
Case Il 31 9.5526 75 21.7023 41 11.5232

1.4 : : . : : : : :
—#*— Algorithm 3.1 —#— Algorithm 3.1
—¥— Algorithm 1.1 —¥— Algorithm 1.1
—#%— Algorithm 1.2 —— i 1.2
121 4
b
1k ]
~_ 08} 1
e e
x % J
T T
><= )(=
= o6 {4 =
0.4} .
0.2} - i
0
0 5 10 15 20 25 30 35 0 10 20 30 40

Iteration number (n)

Figure 3: Problem 1, left: Case I; right: Case Il.
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Figure 4: Problem 1, left: Case I; right: Case Il.
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5 Conclusion

In this article, we introduce two modifications of the inertial TEGM with self-adaptive step size for solving
monotone VIPs. The algorithms were constructed in such a way that only one projection onto the feasible
set C was made in each iteration. The results obtained improve many known results in this direction in the
literature.
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