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Abstract: The purpose of this article is to study the method of approximation for zeros of the sum of a finite
family of maximally monotone mappings and prove strong convergence of the proposed approximation
method under suitable conditions. The method of proof is of independent interest. In addition, we give
some applications to the minimization problems and provide a numerical example which supports our
main result. Our theorems improve and unify most of the results that have been proved for this important
class of nonlinear mappings.

Keywords: firmly nonexpansive, Hilbert spaces, maximally monotone mapping, strong convergence, zero
points

MSC 2010: 47H04, 47H05, 47H10, 47J25

1 Introduction

Let H be a real Hilbert space with inner product 〈 〉.,. and induced norm ∥⋅∥. Recall that for a mapping
→A H: 2H , the domain of A, ( )ADom , is given by ( ) = { ∈ ≠ ∅}A x H AxDom : , the graph of A, ( )AGph , is given

by ( ) = {( ) ∈ × ∈ }A x y H H y AxGph , : and the range of A, ( )Aran , is given by ( ) = { ∈ ( )}A Ax x Aran : Dom .
The mapping A is called monotone if

〈 − − 〉 ≥ ∀( ) ( ) ∈ ( )u v x y x u y v A, 0, , , , Gph , (1)

and it is called maximally monotone if it is monotone and the graph of A is not properly contained in the
graph of any other monotone mapping. The resolvent of A with parameter >λ 0 is = ( + )−J I λAλA

1, where I is
the identity mapping on H, and it enjoys firmly nonexpansive property, that is, for any ∈ ( + )x y I λA, ran , we
have

∥ − ∥ ≤ 〈 − − 〉J x J y x y J x J y, .λA λA λA λA
2 (2)

A monotone mapping →A H H: is called α-inverse strongly monotone if there exists a positive real
number α such that for any ∈x y H, we have

〈 − − 〉 ≥ ∥ − ∥Ax Ay x y α Ax Ay, .2 (3)
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Let → = …A H k m: 2 , 1, 2, ,k
H , be maximally monotone mappings. Consider the inclusion problem of

finding ∈z H such that

∈ + + ⋯ +A z A z A z0 ,m1 2 (4)

where ≥m 2. We denote the solution set of (4) by ( + + ⋯ + ) = ( + +⋯ + ) ( )−zero A A A A A A 0m m1 2 1 2
1 . This

problem, which includes variational inequality problems, equilibrium problems, complementary problems,
minimization problems, nonlinear evolution equations, fixed point problems as special cases, is quite
general. In fact, a number of problems arising in applied areas such as image recovery, machine learning
and signal processing can be mathematically modeled as (4), see [1,2] and references therein. To be more
precise, a stationary solution to the initial value problem of the evolution equation

∈ ( ) +
∂

∂
( ) =F t x

t
x x0 , 0 0 (5)

can be formulated as (4) when the governing maximal monotone F is of the form ≔ + + ⋯ +F A A Am1 2
(see, e.g., [3]). Furthermore, optimization problems often need (see, e.g., [4]) to solve a minimization
problem of the form

{ ( ) + ( ) + ⋯ + ( )}
∈

g x g x g xmin ,
x H m1 2 (6)

where = …g i m, 1, 2, ,i are proper lower semicontinuous convex functions from H to the extended real line
≔ (−∞ ∞]R̄ , . If in (6), we assume that ≔ ∂A g ,i i for = …i m1, 2, , , where ∂ of gi is the subdifferential

operator of gi in the sense of convex analysis, then (6) is equivalent to (4). Consequently, considerable
research efforts have been devoted to methods of finding approximate solutions (when they exist) of
inclusions of the form (4) for a sum of a finite number of monotone mappings (see, e.g., [3,5]).

For the case where =m 2, the inclusion problem (4) reduces to the problem of finding ∈z H such that

∈ +Az Bz0 , (7)

where A and B are monotone mappings. For solving problem (7), several authors have studied different
iterative schemes (see, e.g., [6–16] and references therein). The most attractive methods for solving the
inclusion problem (7) are the Peaceman-Rachford and Douglas-Rachford iterative methods.

The nonlinear Peaceman-Rachford and Douglas-Rachford, splitting iterative methods, introduced by
Lions and Mercier [3], are given by

= ( − )( − )   ≥  +x J I J I x n2 2 , 1,n λA λB n1 (8)

and

= ( − ) + ( − )   ≥  +x J J I x I J x n2 , 1,n λA λB n λB n1 (9)

respectively, where >λ 0 is a fixed scalar. The nonlinear Peaceman-Rachford algorithm (8) fails, in
general, to converge (even in the weak topology in the infinite-dimensional setting). This is due to the fact
that the generating mapping ( − )( − )J I J I2 2λA λB is merely nonexpansive. The nonlinear Douglas-Rachford
algorithm (9) was initially proposed in [3] for finding a zero of the sum of two maximally monotone
mappings and has been studied by many authors (see, e.g., [1,3,11,17,18] and references therein). This
method always converges in the weak topology to a solution of (7), since the generating operator

( − ) + ( − )J J I I J2λA λB λB for this algorithm is firmly nonexpansive (see, e.g., [11]).
In 1979, Passty [11] studied the forward-backward splitting method which is given by

= ( + ) ( − )   ≥  +
−x I λ B I λ A x n, 1,n n n n1

1 (10)

where { }λn is a sequence of positive scalars, A and B are maximal monotone mappings. He proved that the
sequence in (10) converges weakly to the solution of problem (7). Different authors have used algorithm
(10), for the inclusion problem (7), when A is a single-valued α-inversely strong monotone (or α-strongly
monotone) mapping and B is a maximal monotone mapping defined in real Hilbert spaces (see,
e.g., [18,19]).
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We remark that the aforementioned results provide weak convergence. But we also indicate that
several authors have studied different iterative methods (see, e.g., [21–24] and references therein) and
proved strong convergent results to approximate zeros of the sum of monotone mappings A and B, where

→A H H: is an α-inverse strongly monotone mapping and →B H: 2H is a maximally monotone mapping
under certain conditions (see, e.g., [19,25–27]).

In 2012, Takahashi et al. [19] studied the following Halpern-type iteration in a Hilbert space setting: for
any ∈x H0 ,

= + ( − )( + ( − ) ( − )) ∀ ≥+x β x β α u α J x r Ax n1 1 , 0,n n n n n n r B n n n1 n (11)

where ∈u H is a fixed vector and A is an α-inverse strongly monotone and single-valued mapping on H,
and B is a maximally monotone mapping on H. They proved that the sequence { }xn generated by (11)
converges strongly to a point ∈ ( + ) ( )−x A B 01 provided that the control sequences { }βn , { }αn and { }rn satisfy
appropriate conditions.

Recently, Bot et al. [25] studied the following classical Douglas-Rachford method:

= ( )

= ( − )

= + ( − ) ≥+

y J β x
z J y β x
x β x λ z y n

;
2 ;

, 1,

n γB n n

n γA n n n

n n n n n n1









(12)

where →A H: 2H and →B H: 2H are maximally monotone mappings and { }λn and { }βn are real sequences
satisfying certain conditions and showed that { }xn converges strongly to = )( )(x P¯ 0F R RγA γB , as → ∞n , where

= −R J I2γA γA while { }yn and { }zn converge strongly to ( ) ∈ ( + )J x A B¯ zerγB , as → ∞n .
More recently, Wega and Zegeye [15] constructed an algorithm that converges strongly to a solution of

the sum of two maximally monotone mappings using a different technique.

Question 1. A natural question arises whether we can obtain a strong convergence result for approximating
zeros of the sum of a finite family of maximally monotone mappings via the extended solution set of the sum
of maximally monotone mappings?

In 2009, Svaiter [28] constructed a new approach for splitting algorithms, which starts by reformulating
(4) as the problem of locating a point in a certain extended solution set ( … )S A A A, , ,e m1 2 subset of ×H H m,
which is defined by:

( … ) = {( … ) ∈ ∈ ∈ ( ) = … }S A A z w w V z H w A z k m, , , , , : , , 1, 2, , ,e m m k k1 1

where

= {( … ) ∈ × + ⋯ + = }V z w w H H w w, , , : 0 .m
m

m1 1

He proved weak convergence results provided that H has a finite dimension or + + ⋯ +A A Am1 2 is
maximal monotone.

We remark that the extended solution set is associated with the common fixed points of a countable family
of nonexpansive mappings and so the methods of approximating fixed points are used to approximate the
solution of problem (4).

Motivated and inspired by the above results, our purpose in this article is to construct a viscosity-type
algorithm for finding zeros of the sum of a finite family of maximally monotone mappings via the extended
solution set ( … )S A A A, , ,e m1 2 and discuss its strong convergence. The viscosity method introduced by
Moudafi [30] involves a contraction mapping f in the procedure and it can be regarded as a regularization
process for the solution of problem (4), which is supposed to induce the convergence in norm of the
iterates. Another advantage of this method is that it allows one to select a particular solution point of (4),
which satisfies some variational inequality. The assumption that one of the mappings is α-inverse strongly
monotone is dispensed with. Our results provide an affirmative answer to our question. Our method of
proof is of independent interest. Our results improve and generalize several results in the literature.
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2 Preliminaries

In this section, we recall some definitions and known results that will be used in the sequel.
Let C be a nonempty, closed and convex subset of a real Hilbert space H. A mapping →T C C: is said

to be a contraction if there exists ∈ [ )α 0, 1 such that ∥ − ∥ ≤ ∥ − ∥  ∀ ∈Tx Ty α x y x y C, , and it is said to be
nonexpansive if =α 1. The set of fixed points of T is defined by ( ) ≔ { ∈ = }F T x C Tx x: .

Lemma 2.1. [29] Let C be a closed and convex subset of a real Hilbert space H, and →T C C: be a
nonexpansive mapping. Let { } ⊆x Cn and ∈x C such that ⇀x xn and − →x Tx 0n n as → ∞n . Then, ∈ ( )x F T .

The following lemmas shall be used in the later section.

Lemma 2.2. [28] Finding a point in ( … )S A A, ,e m1 is equivalent to solving (4) in the sense that

∈ ( ) + ⋯ + ( ) ⇔ ∃ … ∈ ( … ) ∈ ( … )A z A z w w H z w w S A A0 , , : , , , , , .m m m e m1 1 1 1

Lemma 2.3. [28] If the monotone operators …A A, , m1 are maximally monotone, the corresponding extended
solution set ( … )S A A, ,e m1 is closed and convex in +H m 1.

Lemma 2.4. [28] Given ( ) ∈ ( ) = …x y Gph A k m, , 1, ,k k k , define �→φ V: via

∑( … ) = 〈 − − 〉
=

φ z w w z x y w, , , , .m
k

m

k k k1
1

(13)

Then, for any ( … ) ∈ ( … )z w w S A A, , , , ,m e m1 1 , one has ( … ) ≤φ z w w, , , 0m1 , that is,

( … ) ⊆ {( … ) ∈ ( … ) ≤ }S A A z w w V φ z w w, , , , , : , , , 0 .e m m m1 1 1

In addition, φ is affine on V, with

∑ ∑∇ = − − … − =
= =

φ y x x x x x x where x
m

x, ¯, ¯, , ¯ , ¯ 1

k

m

k m
k

m

k
1

1 2
1









 (14)

and

∇ = ⇔ ( … ) ∈ ( … ) = =⋯=

⇔ ( … ) =  ∀( … ) ∈

φ x y y S A A x x x
φ z w w z w w V

0 , , , , , ,
, , , 0, , , , .

m e m m

m m

1 1 1 1 2

1 1
(15)

The function φ in Lemma 2.4 is called decomposable separators.

Lemma 2.5. [31] Let { }an be a sequence of nonnegative real numbers satisfying the following relation:

≤ ( − ) + ≥+a α a α δ n n1 , ,n n n n n1 0

where { } ⊂ ( )α 0,1n and �{ } ⊂δn satisfying the following conditions: ∑ = ∞
=

∞ αn n1 , and ≤
→∞

δlim sup 0
n

n or

∑ | | < ∞
=

∞ α δn n n1 . Then, =
→∞

alim 0
n

n .

Lemma 2.6. [32] Let ∈x y H, . If H is a real Hilbert space, then the following inequality holds:

∥ + ∥ ≤ ∥ ∥ + 〈 + 〉x y x y x y2 , .2 2

Lemma 2.7. [33] Let C be a closed and convex subset of a real Hilbert space H and ∈x H be given. The
metric projection of H onto C, PC, is characterized by the following:
(i) ∈ 〈 − − 〉 ≥P x C x P x P x z, , 0C C C , for all ∈z C;
(ii) PC is firmly nonexpansive and hence nonexpansive.
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3 Main results

In this section, we introduce an algorithm for finding a point in ( … )S A A, ,e m1 , which will lead us to a
solution of the sum of a finite family of maximally monotone mappings in a Hilbert H space and discuss its
strong convergence.

In what follows, let H be a real Hilbert space and → = …A H k m: 2 , 1, ,k
H , where ≥m 2, be a family

of maximal monotone mappings satisfying ( … ) ≠ ∅S A A, ,e m1 . Let { } ⊂ ( )α 0, 1n such that =
→∞

αlim 0
n

n ,

∑ = ∞
=

∞ αn n1 and ∑ | − | < ∞
=

∞
−α αn n n1 1 , and let { }βn be a decreasing sequence in ( ]0, 1 with =β 10 .

We now propose the following algorithm which basically uses Algorithm 3 of [28].

Algorithm 3.1.
Step 0: Select initial guess = ( … ) ∈u z w w V, , , m0 0 1,0 ,0 .
Step 1: Given nth iterates ( ≥n 0), compute xk n, and yk n, satisfying:

= ( + ) ( + ) = …

= +
−

= …

−x I λ A z λ w k m

y w
z x

λ
k m

, 1, 2, , ,

, 1, 2, , ,

k n k n k n k n k n

k n k n
n k n

k n

, ,
1

, ,

, ,
,

,

where the real sequence >λ 0k n, , for each = …k m1, 2, , and ≥n 0.
Step 2: Define �→φ V:i by

∑( … ) = 〈 − − 〉
=

φ z w w z x y w, , , , ,i m
k

m

k i k i k1
1

, , (16)

and compute

= ( … ) −
( … )

∥∇ ∥
∇T u z w w

φ z w w
φ

φ, , , max 0,
, , ,

,i n n n m n
i n n m n

i
i1, ,

1, ,
2









(17)

where ∇ = ( ∑ − − … − )
=

φ y x x x x x x, , , ,i k
m

k i i i i i m i i1 , 1, 2, , and ||∇ || = ∑ ∥ − ∥ + ∑
= =

φ x x yi k
m

k i i k
m

k i
2

1 ,
2

1 ,
2 with

= ∑
=

x xi m k
m

k i
1

1 , , which is the projection of = ( … )u z w w, , ,n n n m n1, , onto the half space

= {( … ) ∈ ( … ) ≤ }H z w w V φ z w w, , , : , , , 0 .i m i m1 1

Step 3: Compute

∑= + ( − )

= ( ) + ( − ) ∀ ≥

= −

+

v β u β β T u
u α f u α v n

,

1 , 0,
n n n i

n
i i i n

n n n n n

1 1

1









(18)

where →f V V: is a contraction mapping with constant α. Set ≔ +n n 1 and go to step 1.

Remark 3.1. The following points indicate that Algorithm 3.1 is well defined.
(i) By maximality of Ak the resolvent mapping ( + )−I λ Ak n k,

1 is single-valued and everywhere defined for
each = …k m1, 2, , (see, e.g., [34]). By rearranging the equation in step 1, one has the following
equation:

+ = + ∀ ≥x λ y z λ w n, 0,k n k n k n n k n k n, , , , , (19)

where for each = …k m1, 2, , and ≥n 0, >λ 0k n, and ∈ ( )y A xk n k k n, , . Hence, for each = …k m1, 2, , ,
( ) ∈ ( )x y A, Gphk n k n k, , exists and is unique. Thus, the decomposable separator function φ in Lemma 2.4

is well defined.
(ii) Since �→φ V:i is affine on V (see Lemma 2.4) and the half space Hi is closed and convex subspace of

V for all ≥i 1, the projection of un onto Hi given by (17) exists and is firmly nonexpansive (see,
e.g., [20,28]).
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Lemma 3.2. The sequence { }un generated by Algorithm 3.1 is bounded.

Proof. Let = ( … ) ∈ ( … )∗ ∗ ∗ ∗ ∗u z w w w S A A, , , , , ,m e m1 2 1 , then by Lemma 2.4 we have ∈∗u Hi for all ≥i 0, which
implies that �( … ) ⊂ ⋂ ( ) = ≠ ∅=

∞S A A F T, , .e m i i1 1 Now, the fact that Ti is nonexpansive and (18) yields

∑

∑ ∑ ∑

∑

∑

|| − || = + ( − ) −

= + ( − ) − ( − ) + ( − ) −

= ( − ) + ( − )( − )

≤ ∥ − ∥ + ( − )∥ − ∥ = ∥ − ∥

∗

=

−
∗

=

−

=

−
∗

=

−
∗ ∗

∗

=

−
∗

∗

=

−
∗ ∗

v u β u β β T u u

β u β β T u β β u β β u u

β u u β β T u u

β u u β β u u u u .

n n n
i

n

i i i n

n n
i

n

i i i n
i

n

i i
i

n

i i

n n
i

n

i i i n

n n
i

n

i i n n

1
1

1
1

1
1

1
1

1
1

1
1

(20)

Thus, it follows that

∥ − ∥ = ∥ ( ) + ( − ) − ∥

≤ ∥ ( ) − ∥ + ( − )∥ − ∥

≤ ∥ ( ) − ( )∥ + ∥ ( ) − ∥ + ( − )∥ − ∥

≤ ( − ( − ))∥ − ∥ + ∥ ( ) − ∥

≤ ∥ − ∥
∥ ( ) − ∥

−

+
∗ ∗

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗
∗ ∗

u u α f u α v u
α f u u α v u
α f u f u α f u u α v u

α α u u α f u u

u u f u u
α

1
1

1
1 1

max ,
1

.

n n n n n

n n n n

n n n n n

n n n

n

1









Then, we have

∥ − ∥ ≤ ∥ − ∥
∥ ( ) − ∥

−
∗ ∗

∗ ∗

u u u u f u u
α

max ,
1

,n 0








which implies that { }un is bounded. Hence, we can obtain that { }T ui n , { }vn and { ( )}f un are bounded. □

Lemma 3.3. The sequence { }un generated by Algorithm 3.1 converges strongly to = ( …∗ ∗ ∗u z w, , ,1 ) ∈∗wm
� = ⋂ ( )=

∞ F Ti i1 .

Proof. We proceed with the following steps.
Step 1. First we show that ∥ − ∥ =

→∞
+u ulim 0

n
n n1 .

From (18), we have

∑ ∑

∑

∑

∥ − ∥ = + ( − ) − − ( − )

≤ ∥ − ∥ + | − |∥ ∥ + ( − )∥ − ∥ + | − |∥ ∥

≤ ∥ − ∥ + | − |∥ ∥ + ( − )∥ − ∥ + | − |∥ ∥

≤ ∥ − ∥ + | − |

−

=

− − −

=

−

− −

− − −

=

− − − −

− − −

=

− − − −

− −

v v β u β β T u β u β β T u

β u u β β u β β T u T u β β T u

β u u β β u β β u u β β T u

u u β β M,

n n n n
i

n

i i i n n n
i

n

i i i n

n n n n n n
i

n

i i i n i n n n i n

n n n n n n
i

n

i i n n n n i n

n n n n

1
1

1 1 1
1

1

1 1

1 1 1
1

1 1 1 1

1 1 1
1

1 1 1 1

1 1

(21)

for some >M 0 as the sequences { }un and { }−T ui n 1 are bounded. Thus, the inequalities in (18) and (21) imply that

∥ − ∥ = ∥ ( ) + ( − ) − ( ) − ( − ) ∥

≤ ∥ ( ) − ( )∥ + | − |∥ ( )∥ + ( − )∥ − ∥ + | − |∥ ∥

≤ ∥ − ∥ + | − |(∥ ( )∥ + ∥ ∥) + ( − )(∥ − ∥ + | − | )

= ( − ( − ))∥ − ∥ + | − |(∥ ( )∥ + ∥ ∥) + ( − )( − )

+ − − − −

− − − − − −

− − − − − −

− − − − −

u u α f u α v α f u α v
α f u f u α α f u α v v α α v
αα u u α α f u v α u u β β M

α α u u α α f u v α β β M

1 1
1

1
1 1 1 .

n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

(22)
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Since { }βn is strictly decreasing, it implies that ∑ ( − ) < ∞
=

∞
−β βn n n1 1 . Hence, from (22), conditions of { }αn

and Lemma 2.5, we immediately obtain that

|| − || → →  ∞+u u n0 as .n n1 (23)

Step 2. We show that || − || →T u u 0i n n as → ∞n . Take �= ( ( ))∗ ∗u P f u . Note that

∥ − ∥ ≥ ∥ − ∥

= ∥ − + − ∥

= ∥ − ∥ + ∥ − ∥ + 〈 − − 〉

∗ ∗

∗

∗ ∗

u u T u T u
T u u u T u
T u u u u T u u u u2 , ,

n i n i

i n n n i

i n n n i n n n

2 2

2

2 2
(24)

which yields

∥ − ∥ ≤ 〈 − − 〉∗T u u u T u u u1
2

, .i n n n i n n
2 (25)

Furthermore, from (18) and (25), we immediately obtain

∑ ∑

∑

( − )∥ − ∥ ≤ ( − )〈 − − 〉

= 〈( − ) − ( − ) − 〉

= 〈( − ) − + − 〉

= 〈 − − 〉

= 〈 − − 〉 + 〈 − − 〉

=

−

=

−
∗

=

−
∗

∗

∗

+
∗

+
∗

β β T u u β β u T u u u

β u β β T u u u

β u v β u u u
u v u u
u u u u u v u u

1
2

,

1 ,

1 ,
,

, , ,

i

n

i i i n n
i

n

i i n i n n

n n
i

n

i i i n n

n n n n n n

n n n

n n n n n n

1
1

2

1
1

1
1

1 1

(26)

and from (18) and (26), we have

∑ ( − )|| − || ≤ 〈 − − 〉 + 〈 ( ) + ( − ) − − 〉

≤ ∥ − ∥∥ − ∥ + 〈 ( ) − − 〉

≤ ∥ − ∥∥ − ∥ + ∥ ( ) − ∥∥ − ∥

=

− +
∗ ∗

+
∗ ∗

+
∗ ∗

β β T u u u u u u α f u α v v u u

u u u u α f u α v u u
u u u u α f u v u u

1
2

, 1 ,

,
.

i

n

i i i n n n n n n n n n n n

n n n n n n n n

n n n n n n n

1
1

2
1

1

1

(27)

Thus, from Lemma 3.2, (23), (27) and the condition on { }αn , we conclude that

∑ ( − )∥ − ∥ =
→∞

=

−β β T u ulim 0.
n i

n

i i i n n
1

1
2 (28)

Since { }βn is strictly decreasing, for every �∈i , equality (28) yields

∥ − ∥ = ∥ − ∥ =
→∞ →∞

T u u T u ulim 0 and lim 0.
n

i n n
n

n n n (29)

Step 3. We show that 〈 ( ) − − 〉 ≤
→∞

∗ ∗ ∗f u u u ulim sup , 0
n

n .

Since { }un is bounded, there exist ∈ ×u H H m and a subsequence { }unk of { }un such that

〈 ( ) − − 〉 = 〈 ( ) − − 〉
→∞

∗ ∗ ∗

→∞

∗ ∗ ∗f u u u u f u u u ulim sup , lim ,
n

n
k

nk

and ⇀u unk . From (29) and Lemma 2.1, we obtain that ∈ ( )u F Ti for each ≥i 1 and hence �∈u . Since

�= ( ( ))∗ ∗u P f u , by Lemma 2.7, we have

〈 ( ) − − 〉 = 〈 ( ) − − 〉

= 〈 ( ) − − 〉 ≤

→∞

∗ ∗ ∗

→∞

∗ ∗ ∗

∗ ∗ ∗

f u u u u f u u u u

f u u u u

lim sup , lim ,

, 0, as required.
n

n
k

nk
(30)

Step 4. Finally, we show that → ∗u un as → ∞n . From Lemma 2.6, (18) and (20), we have
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∥ − ∥ = ∥ ( ) + ( − ) − ∥

≤ ( ∥ − ∥ + ( − )∥ − ∥) + 〈 ( ) − − 〉

≤ ( − ( − ) )|| − || + 〈 ( ) − − 〉

≤ ( − ( − ) )∥ − ∥ + 〈 ( ) − − 〉 + ∥ ( ) − ∥∥ − ∥

+
∗ ∗

∗ ∗ ∗ ∗
+

∗

∗ ∗ ∗
+

∗

∗ ∗ ∗ ∗ ∗ ∗
+

u u α f u α v u
αα u u α u u α f u u u u

α α u u α f u u u u
α α u u α f u u u u α f u u u u

1
1 2 ,

1 1 2 ,
1 1 2 , 2 .

n n n n n

n n n n n n

n n n n

n n n n n n n

1
2 2

2
1

2
1

2
1

(31)

Therefore, from (30), (31) and Lemma 2.5, we conclude that → ∗u un as → ∞n . □

Lemma 3.4. If in Algorithm 3.1, there exist > >λ λ
̲

̲ 0 such that the sequence { } ⊂ [ ]λ λ λ̲ ,
̲

k n, , for each
= …k m1, 2, , and ≥n 0, then there exists >η 0 such that

( ) ≥ ∥∇ ( )∥   ∀  ≥φ u η φ u n 0,n n n n
2 (32)

where ∇ ( ) = (∑ − − … − )
=

φ u y x x x x x x, , , ,n n k
m

k n n n n n m n n1 , 1, 2, , and ∥∇ ( )∥ =φ un n
2 ∑ ∥ − ∥ + ∑

= =
x x yk

m
k n n k

m
k n1 ,

2
1 ,

2

with = ∑
=

x xn m k
m

k n
1

1 , .

Proof. From Eq. (19), we have

−
= −

z x
λ

y w .n k n

k n
k n k n

,

,
, , (33)

From (16), (33) and condition of λk n, , we get

∑ ∑

∑ ∑

( ) = 〈 − − 〉 = −
−

= ∥ − ∥ ≥ ∥ − ∥

= =

= =

φ u z x y w z x
z x

λ

λ
z x

λ
z x

, ,

1 1 .

n n
k

m

n k n k n k n
k

m

n k n
n k n

k n

k

m

k n
n k n

k

m

n k n

1
, , ,

1
,

,

,

1 ,
,

2

1
,

2

(34)

By rearranging equation (33), we can also get

=
−

+y
z x

λ
w ,k n

n k n

k n
k n,

,

,
, (35)

which implies that

∑ ∑ ∑ ∑=
−

+ =
−

= = = =

y
z x

λ
w

z x
λ

,
k

m

k n
k

m
n k n

k n k

m

k n
k

m
n k n

k n1
,

1

,

, 1
,

1

,

,
(36)

and hence

∑ ∑ ∑=
−

≤ −

= ∥ ( − )∥ = ∥ − ∥

= = =

y
z x

λ λ
z x

λ
m z x m

λ
z x

1

1 ,

k

m

k n
k

m
n k n

k n k

m

n k n

n n n n

1
,

2

1

,

,

2

2
1

,

2

2
2

2

2
2

(37)

which is equivalent to

∑ ≤ ∥ − ∥
=

λ
m

y m z x .
k

m

k n n n
2

1
,

2
2 (38)

In addition, from the properties of inner product, we have
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∑ ∑

∑

∑ ∑ ∑

∑

∑

∑

∥ − ∥ = ∥ − + − ∥

= ∥( − ) − ( − )∥

= ∥ − ∥ − ( − ) − + ∥ − ∥

= ∥ − ∥ − 〈 − − 〉 + ∥ − ∥

= ∥ − ∥ − ∥ − ∥ + ∥ − ∥

= ∥ − ∥ − ∥ − ∥

= =

=

= = =

=

=

=

x x x z z x

x z x z

x z x z x z x z

x z m x z x z m x z

x z m x z m x z

x z m x z

2 ,

2 ,

2

,

k

m

k n n
k

m

k n n n n

k

m

k n n n n

k

m

k n n
k

m

k n n n n
k

m

n n

k

m

k n n n n n n n n

k

m

k n n n n n n

k

m

k n n n n

1
,

2

1
,

2

1
,

2

1
,

2

1
,

1

2

1
,

2 2

1
,

2 2 2

1
,

2 2

(39)

which implies that

∑ ∑∥ − ∥ + ∥ − ∥ = ∥ − ∥
= =

x x m x z x z .
k

m

k n n n n
k

m

k n n
1

,
2 2

1
,

2 (40)

From (38) and (40), we get

∑ ∑ ∑∥ − ∥ + ≤ ∥ − ∥
= = =

x x λ
m

y x z
k

m

k n n
k

m

k n
k

m

k n n
1

,
2

2

1
,

2

1
,

2 (41)

and hence

∑ ∑ ∑∥ − ∥ + ≤ ∥ − ∥
= = =

λ
x x λ

m
y

λ
x z1 ̲ 1 ̲ .

k

m

k n n
k

m

k n
k

m

k n n
1

,
2

2

1
,

2

1
,

2












(42)

Thus, from (42), (34) and setting =η min ,
λ

λ
mλ

1 ̲ ̲
2







, we get

∑ ∑∥ − ∥ + = ∥∇ ( )∥ ≤ ( )
= =

η x x y η φ u φ u .
k

m

k n n
k

m

k n n n n n
1

,
2

1
,

2
2













(43)

□

Next, we state and prove our main theorem.

Theorem 3.5. Let H be a real Hilbert space and let →A H: 2k
H , for ∈ { … }k m1, 2, , and ≥m 2, be

maximally monotone mappings satisfying ≔ { ∈ ∈ + + ⋯ + } ≠ ∅Ω z H A z A z A z: 0 m1 2 . Let →f V V: be a
contraction mapping with constant α. Let the real sequence { } ⊂ [ ]λ λ λ,

̲
k n, for some > >λ λ

̲
0 and for each

= …k m1, 2, , and ≥n 0. Then, the sequence { }un generated by Algorithm 3.1 converges strongly to an
element = ( … ) ∈ ( … )∗ ∗ ∗ ∗u z w w S A A A, , , , , ,m e m1 1 2 , satisfying the variational inequality

〈( − ) − 〉 ≥ ∀ ∈ ( … )∗ ∗f I u u x x S A A A, 0, , , , ,e m1 2 (44)

where ∈∗z Ω.

Proof. By Lemma 3.4, there exists >η 0 such that

( ) ≥ ∥∇ ∥  ∀ ≥φ u η φ n 0.n n n
2 (45)

This implies that ( )φ un n is always nonnegative, and from (17), we obtain

− = −
( )

∥∇ ∥
∇T u u

φ u
φ

φ ,n n n
n n

n
n2









 (46)
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which implies

∥ − ∥ = −
( )

∥∇ ∥
∇ =

( )

∥∇ ∥
T u u

φ u
φ

φ
φ u

φ
,n n n

n n

n
n

n n

n
2









 (47)

for all n such that ∇ ≠φ 0n . Thus, dividing both sides of inequality (45) by ∥∇ ∥φn , we obtain

∥ − ∥ ≥ ∥∇ ∥T u u η φ ,n n n n (48)

which is also true for n having ∇ =φ 0n . From (29), we have ∥ − ∥ →T u u 0n n n as → ∞n , so (48) implies
∇ →φ 0n as → ∞n . Thus, it follows from (47) that

( ) =
→∞

φ ulim 0.
n n n (49)

From the expression for ∇φn, we have ∑ →
=

y 0k
m

k n1 , and − →x x 0k n n, for = …k m1, 2, , as → ∞n .

Moreover, subtracting +x λ wk n k n k n, , , from both sides of Eq. (19), we obtain

− = ( − )z x λ y w .n k n k n k n k n, , , , (50)

This and the definition of φn imply that

∑ ∑ ∑( ) = 〈 − − 〉 = 〈 ( − ) − 〉 = ∥ − ∥
= = =

φ u z x y w λ y w y w λ y w, , .n n
k

m

n k n k n k n
k

m

k n k n k n k n k n
k

m

k n k n k n
1

, , ,
1

, , , , ,
1

, , ,
2 (51)

Hence, from (49), (51) and the fact that >λ λk n, , we have

∥ − ∥ = = …
→∞

y w k mlim 0, for all 1, 2, , ,
n k n k n, , (52)

and from (50) and (52), we obtain

∥ − ∥ = = …
→∞

z x k mlim 0, for all 1, 2, , .
n

n k n, (53)

Moreover, from Lemma 3.3 the sequence { } = {( … )}u z w w, , ,n n n m n1, , converges strongly to a point
�= ( … ) ∈ = ⋂ ( )∗ ∗ ∗ ∗

=
∞u z w w F T, , , m i i1 1 . In addition, Eqs. (52) and (53) imply that → ∗y wk n k, and → ∗x zk n, , for

each = …k m1, 2, , . Since ( )AGph k is closed and ( ) ∈ ( )x y A, Gphk n k n k, , for all = …k m1, 2, , and ≥n 0, we
get ∈ ( )∗ ∗w A zk k . Furthermore, since { } ⊂u Vn and V is a closed subspace, we also have ∈∗u V and hence

= ( … ) ∈ ( … )∗ ∗ ∗ ∗u z w w S A A A, , , , , ,m e m1 1 2 and by Lemma 2.2 we obtain ∈ ( + +⋯ + ) ( )∗ −z A A A 0m1 2
1 . More-

over, since �= ( ( ))∗ ∗u P f u by Lemma 2.7, we obtain the variational inequality

〈( − ) − 〉 ≥ ∀ ∈ ( … )∗ ∗f I u u x x S A A A, 0, , , , ,e m1 2 (54)

as �( … ) ⊂S A A A, , ,e m1 2 . The proof is complete. □

Remark 3.6. We observe that Algorithm 3.1 is equivalent to the following scheme:

= ( … ) ∈

= ( + ) ( + ) = …

= +
−

= …

= ( … ) + ( − )( … ) ≥

−

+

u z w w V
x I λ A z λ w k m

y w
z x

λ
k m

u α f z w w α c d d n

, , , chosen arbitrarly,
, 1, 2, , ,

, 1, 2, , ,

, , , 1 , , , , 0,

m

k n k n k n k n k n

k n k n
n k n

k n

n n n n m n n n n m n

0 0 1,0 ,0

, ,
1

, ,

, ,
,

,

1 1, , 1, ,














(55)

where →f V V: is a contraction mapping with constant α, >λ 0k n, for = …k m1, 2, , , and ≥n 0, and

∑= + ( − )
=

−c β z β β ĉ ,n n n
i

m

i i i
1

1

∑= + ( − )
=

−d β w β β d̂ ,k n n k n
i

m

i i k i, ,
1

1 ,
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∑
=

( ) ≤  

− ( )  >  
=

c

z φ u

z δ y φ u
ˆ

, if 0,

, if 0,i

n i n

n i
k

m

k i i n
1

,



















=
( )  ≤  

− ( − ) ( )  >  
d

w φ u
w δ x x φ u

ˆ , if 0,
, if 0,k i

k n i n

k n i k i i i n
,

,

, ,









with

=
∑ 〈 − − 〉

∑ + ∑ ∥ − ∥

=

= =

δ
z x y w

y x x
,

,i
k
m

n k i k i k n

k
m

k i k
m

k i i

1 , , ,

1 ,
2

1 ,
2

for = ∑
=

x xi m k
m

k i
1

1 , .

Remark 3.7. At this point, we know that �( … ) ⊂S A A A, , ,e m1 2 and one can show that � ⊂ ( … )S A A A, , ,e m1 2
and hence �( … ) =S A A A, , ,e m1 2 .

If in (55) we assume = >λ λ 0k n, , for = …k m1, 2, , and ≥n 0, then we get the following corollary for
the sum of a finite family of maximally monotone mappings in Hilbert spaces.

Corollary 3.8. Let H be a real Hilbert space and let →A H: 2k
H , for ∈ { … }k m1, 2, , and ≥m 2, be

maximally monotone mappings satisfying ≔ { ∈ ∈ + + ⋯ + } ≠ ∅Ω z H A z A z A z: 0 m1 2 . Let →f V V: be a
contraction mapping with constant α. For arbitrary = ( … ) ∈u z w w V, , , m0 0 1,0 ,0 define an iterative algorithm
by

= ( + ) ( + ) = …

= +
−

= …

= ( … ) + ( − )( … ) ≥

−

+

x I λA z λw k m

y w
z x

λ
k m

u α f z w w α c d d n

, 1, 2, , ,

, 1, 2, , ,

, , , 1 , , , , 0,

k n k n k n

k n n k
n k n

n n n n m n n n n m n

,
1

,

, ,
,

1 1, , 1, ,










(56)

where { }cn and { }dk n, are as in (55) and >λ 0. Then, { }un converges strongly to an element = ( … )∗ ∗ ∗ ∗u z w w, , , m1
of ( … )S A A A, , ,e m1 2 , where ∈∗z Ω.

If in Theorem 3.5 we replace the contraction mapping f by constant ∈u V , then we get the following
corollary for the sum of a finite family of maximally monotone mappings in Hilbert spaces.

Corollary 3.9. Let H be a real Hilbert space and let →A H: 2k
H , for ∈ { … }k m1, 2, , and ≥m 2, be

maximally monotone mappings satisfying ≔ { ∈ ∈ + + ⋯ + } ≠ ∅Ω z H A z A z A z: 0 m1 2 . For arbitrary
= ( … ) ∈u z w w V, , , m0 0 1,0 ,0 define an iterative algorithm by

= ( + ) ( + ) = …

= +
−

= …

= + ( − )( … ) ≥

−

+

x I λ A z λ w k m

y w
z x

λ
k m

u α u α c d d n

, 1, 2, , ,

, 1, 2, , ,

1 , , , , 0,

k n k n k n k n k n

k n k n
n k n

k n

n n n n n m n

, ,
1

, ,

, ,
,

,

1 1, ,










(57)

where { }cn and { }dk n, are as in (55), { } ⊂ [ ]λ λ λ,
̲

k n, for some > >λ λ
̲

0 and for each = …k m1, 2, , and ≥n 0,
and = ( … ) ∈ ⊂ +u z w w V H, , , m

m
1

1. Then, { }un converges strongly to an element = ( … )∗ ∗ ∗ ∗u z w w, , , m1 of
( … )S A A A, , ,e m1 2 , where ∈∗z Ω.

We note that if in Corollary 3.9 we assume that = ( … ) ∈u V0, 0, , 0 and we get the following theorem
for approximating the minimum-norm point of the extended solution set of the sum of a finite family of
maximally monotone mappings in Hilbert spaces.
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Theorem 3.10. Let H be a real Hilbert space and let →A H: 2k
H , for ∈ { … }k m1, 2, , and ≥m 2, be

maximally monotone mappings satisfying ≔ { ∈ ∈ + + ⋯ + } ≠ ∅Ω z H A z A z A z: 0 m1 2 . For arbitrary
= ( … ) ∈u z w w V, , , m0 0 0,1 0, define an iterative algorithm by

= ( + ) ( + ) = …

= +
−

= …

= ( − )( … ) ≥

−

+

x I λ A z λ w k m

y w
z x

λ
k m

u α c d d n

, 1, 2, , ,

, 1, 2, , ,

1 , , , , 0,

k n k n k n k n k n

k n k n
n k n

k n

n n n n m n

, ,
1

, ,

, ,
,

,

1 1, ,










(58)

where { }cn and { }dk n, are as in (55) and { } ⊂ [ ]λ λ λ,
̲

k n, for some > >λ λ
̲

0 and for each = …k m1, 2, , and
≥n 0. Then, { }un converges strongly to the minimum-norm point = ( … )∗ ∗ ∗ ∗u z w w, , , m1 of ( … )S A A A, , ,e m1 2 ,

where ∈∗z Ω.

Proof. We note that since �= ( … ) = ( )∗ ∗ ∗ ∗u z w w P, , , 0m1 , where �∈ ( … ) ⊂∗u S A A A, , ,e m1 2 , we obtain that ∗u
is the minimum-norm point of ( … )S A A A, , ,e m1 2 . □

4 Application to convex minimization problem

In this section, we apply Theorem 3.5 to study the convex minimization problem.
Let �→g H:k , = …k m1, 2, , , where ≥m 2, be a finite family of convex and lower semicontinuous

functions. We consider the problem of finding ∈∗z H such that

( ) + ( ) + ⋯ + ( ) = { ( ) + ( ) + ⋯ + ( )}∗ ∗ ∗

∈
g z g z g z g z g z g zmin .m z H m1 2 1 2 (59)

We note that problem (59) is equivalent, by Fermat’s rule, to the problem of finding ∈∗z H such that

∈ ∂ ( ) + ∂ ( ) + ⋯ + ∂ ( )∗ ∗ ∗g z g z g z0 ,m1 2 (60)

where ∂g is a subdifferential of g, which is maximally monotone (see, e.g., [35]). So, we obtain the
following theorem from Theorem 3.5.

Theorem 4.1. Let H be a real Hilbert space. Let �→g H:k , for each = …k m1, 2, 3, , and ≥m 2, be a
convex and lower semicontinuous function such that = { ( ) + ( ) + ⋯ + ( )} ≠ ∅∈Ω g z g z g zminz H m1 2 . Let

→f V V: be a contraction mapping with constant α. For arbitrary = ( … ) ∈u z w w V, , , m0 0 0,1 0, define an
iterative algorithm by

= ( + ∂ ) ( + ) = …

= +
−

= …

= ( … ) + ( − )( … ) ≥

−

+

x I λ g z λ w k m

y w
z x

λ
k m

u α f z w w α c d d n

, 1, 2, , ,

, 1, 2, , ,

, , , 1 , , , , 0,

k n k n k n k n k n

k n k n
n k n

k n

n n n n m n n n n m n

, ,
1

, ,

, ,
,

,

1 1, , 1, ,










(61)

where for each = …k m1, 2, , and ≥n 0, { } ⊂ [ ]λ λ λ,
̲

k n, for some > >λ λ
̲

0,

∑= + ( − )
=

−c β z β β ĉ ,n n n
i

n

i i i
1

1

∑= + ( − )
=

−d β w β β d̂ ,k n n k n
i

n

i i k i, ,
1

1 ,

∑
=

( ) ≤  

− ( )  >  
=

c

z if φ u

z δ y if φ u
ˆ

, 0,

, 0,i

n i n

n i
k

m

k i i n
1

,


















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=
( )  ≤  

− ( − ) ( )  >  
d

w if φ u
w δ x x if φ u

ˆ , 0,
, 0,k i

k n i n

k n i k i i i n
,

,

, ,









with

=
∑ 〈 − − 〉

∑ + ∑ ∥ − ∥

=

= =

δ
z x y w

y x x
,

,i
k
m

n k i k i k n

k
m

k i k
m

k i i

1 , , ,

1 ,
2

1 ,
2

for = ∑
=

x xi m k
m

k i
1

1 , . Then, { }un converges strongly to an element = ( … )∗ ∗ ∗ ∗u z w w, , , m1 of (∂ ∂ … ∂ )S g g g, , ,e m1 2 ,

where ∈∗z Ω.

Proof. Set = ∂A gk k, for = …k m1, 2, , . Then, we have that Ak, = …k m1, 2, , , is maximally monotone with
≔ { ∈ ∈ + + + } ≠ ∅Ω z H A z A z A z:0 ... m1 2 . Hence, the conclusion follows from Theorem 3.5. □

5 Numerical example

In this section, we present some numerical experiment results to explain the conclusion of our result. The
following numerical example verifies the conclusion of Corollary 3.8.

Example 5.1. Let =H l2, where l2 is the space of sequences. Let →A A A l l, , :1 2 3 2 2 be defined by = +A x x1
( …)1, 2, 3, 0, 0, , = + ( …)A x x2 3, 4, 5, 0, 0,2 and = − ( …)A x x3 2, 2, 2, 0, 0,3 , where = ( …) ∈x x x l, ,1 2 2.
We see that A1, A2 and A3 are maximally monotone with ( + ) = ( + ) = ( + ) =R I λA R I λA R I λA l1 2 3 2 for each

>λ 0. Now, by direct calculation we get that
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for some >λ 0. Thus, if we assume =λ 1, =
( + )

αn n
1

100 100 , =βn n
1 , for all ≥n 1 and ( ) =f x x

1000 then
Algorithm (56) reduces to the following:

=
( + )

( ) + −
( + )

( )+u
n

z w w w
n

c d d d1
10 10

, , , 1 1
10 10

, , , ,n n n n n n n n n1 5 2 1, 2, 3, 2 2 1, 2, 3,








 (62)

where { }cn and { }dk n, , for =k 1, 2, 3, are as in (55).
Now, if we take initial point = ( )u z w w w, , ,1 1 1,1 2,1 3,1 , where = ( − − …)z 2, 1, 2, 0, 0,1 , = (w 1, 1,1,1 …)1, 0, 0, ,
= ( …)w 0, 0, 0, 0, 0,2,1 and = (− − − …)w 1, 1, 1, 0, 0,3,1 , then the numerical experiment results using

MATLAB provide that the first component { }zn of { } = {( )}u z w w w, , ,n n n n n1, 2, 3, generated by (62) converges
strongly to the solution ( )= − − − … ∈ ( + + ) ( )∗ −z A A A, , 1, 0, 0, 01

3
2
3 1 2 3

1 (Table 1).

6 Conclusion

In this article, we constructed and studied algorithms which start by reformulating (4) as the problem of
locating a point in a certain extended solution set ( … ) ⊂ ×S A A A H H, , ,e m

m
1 2 , which converges strongly to a

zero of the sum of a finite family of maximally monotone mappings in Hilbert spaces. The assumption that
one of the mappings is single-valued, α-inverse strongly monotone or α-strongly monotone is dispensed
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with. In addition, we applied our main results to study the convex minimization problem. Finally, we
provided a numerical example to support our results. Our results extend the results of [28] in the sense that
our theorems provide strong convergence in arbitrary Hilbert spaces. In particular, Theorem 3.5 extends
Proposition 7 of Svaiter [28] from weak to strong convergence. Moreover, our theorems improve and unify
most of the results that have been proved for this important class of nonlinear mappings.
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