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Abstract: The purpose of this article is to study the method of approximation for zeros of the sum of a finite
family of maximally monotone mappings and prove strong convergence of the proposed approximation
method under suitable conditions. The method of proof is of independent interest. In addition, we give
some applications to the minimization problems and provide a numerical example which supports our
main result. Our theorems improve and unify most of the results that have been proved for this important
class of nonlinear mappings.
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1 Introduction

Let H be a real Hilbert space with inner product {.,.) and induced norm |-|. Recall that for a mapping
A : H — 28 the domain of A, Dom(A), is given by Dom(A) = {x € H : Ax # &}, the graph of 4, Gph(4), is given
by Gph(4) = {(x,y) € Hx H: y € Ax} and the range of A, ran(4), is given by ran(A4) = {Ax : x € Dom(A)}.
The mapping A is called monotone if

<u -V, X - Y> 2 Os V(Xa u), (y’ V) € Gph(A)’ (1)

and it is called maximally monotone if it is monotone and the graph of A is not properly contained in the
graph of any other monotone mapping. The resolvent of A with parameter A > 0 is Jo = (I + AA)™!, where I'is
the identity mapping on H, and it enjoys firmly nonexpansive property, that is, for any x, y € ran(I + AA), we
have

Wrax = Juyl? < <x =y, Jax = Juy)- )

A monotone mapping A : H —» H is called a-inverse strongly monotone if there exists a positive real
number a such that for any x, y € H we have

(Ax — Ay, x - y) = al|Ax - Ay|?. 3)
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Let Ay : H— 2 k=1,2,...,m, be maximally monotone mappings. Consider the inclusion problem of
finding z € H such that

0chz+Az+ -+ Anz, (4)

where m > 2. We denote the solution set of (4) by zero(4; + Ay, +---+ Ap) = (4 + A +---+ A,)71(0). This
problem, which includes variational inequality problems, equilibrium problems, complementary problems,
minimization problems, nonlinear evolution equations, fixed point problems as special cases, is quite
general. In fact, a number of problems arising in applied areas such as image recovery, machine learning
and signal processing can be mathematically modeled as (4), see [1,2] and references therein. To be more
precise, a stationary solution to the initial value problem of the evolution equation

0¢F(t) + %,X(O) = Xo (5)

can be formulated as (4) when the governing maximal monotone F is of the form F = A; + A, +---+ Ap,
(see, e.g., [3]). Furthermore, optimization problems often need (see, e.g., [4]) to solve a minimization
problem of the form

f{l:il_}‘l{gl(x) + &)+ + g0}, (6)

where g;, i = 1, 2,..., m are proper lower semicontinuous convex functions from H to the extended real line
R = (-00, o0]. If in (6), we assume that 4; := og;, fori=1,2,..., m, where 9 of g is the subdifferential
operator of g; in the sense of convex analysis, then (6) is equivalent to (4). Consequently, considerable
research efforts have been devoted to methods of finding approximate solutions (when they exist) of
inclusions of the form (4) for a sum of a finite number of monotone mappings (see, e.g., [3,5]).

For the case where m = 2, the inclusion problem (4) reduces to the problem of finding z € H such that

0 € Az + Bz, (7)

where A and B are monotone mappings. For solving problem (7), several authors have studied different
iterative schemes (see, e.g., [6-16] and references therein). The most attractive methods for solving the
inclusion problem (7) are the Peaceman-Rachford and Douglas-Rachford iterative methods.

The nonlinear Peaceman-Rachford and Douglas-Rachford, splitting iterative methods, introduced by
Lions and Mercier [3], are given by

Xne1= Qa - D@ - Dxp, n 21, (8)
and
Xne1 = Ja@hg — DXy + I = ag)Xn, n =1, )

respectively, where A > 0 is a fixed scalar. The nonlinear Peaceman-Rachford algorithm (8) fails, in
general, to converge (even in the weak topology in the infinite-dimensional setting). This is due to the fact
that the generating mapping (2/ia — I)(2Jyg — I) is merely nonexpansive. The nonlinear Douglas-Rachford
algorithm (9) was initially proposed in [3] for finding a zero of the sum of two maximally monotone
mappings and has been studied by many authors (see, e.g., [1,3,11,17,18] and references therein). This
method always converges in the weak topology to a solution of (7), since the generating operator
JaQ@hs - I) + (I - Jyg) for this algorithm is firmly nonexpansive (see, e.g., [11]).
In 1979, Passty [11] studied the forward-backward splitting method which is given by

Xni1= T+ AnB)_l(I - AnA)Xm n =1, (10)

where {A,} is a sequence of positive scalars, A and B are maximal monotone mappings. He proved that the
sequence in (10) converges weakly to the solution of problem (7). Different authors have used algorithm
(10), for the inclusion problem (7), when A is a single-valued a-inversely strong monotone (or a-strongly
monotone) mapping and B is a maximal monotone mapping defined in real Hilbert spaces (see,
e.g., [18,19]).
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We remark that the aforementioned results provide weak convergence. But we also indicate that
several authors have studied different iterative methods (see, e.g., [21-24] and references therein) and
proved strong convergent results to approximate zeros of the sum of monotone mappings A and B, where
A : H — H is an a-inverse strongly monotone mapping and B : H — 2¥ is a maximally monotone mapping
under certain conditions (see, e.g., [19,25-27]).

In 2012, Takahashi et al. [19] studied the following Halpern-type iteration in a Hilbert space setting: for
any xo € H,

Xn+1 = ann + (1 - Bn) (anu + (1 - an)]r,,B(Xn - rnAXn))y vn = 0, (11)

where u € H is a fixed vector and A is an a-inverse strongly monotone and single-valued mapping on H,
and B is a maximally monotone mapping on H. They proved that the sequence {x,} generated by (11)
converges strongly to a point x € (A + B)™'(0) provided that the control sequences {8}, {an} and {r} satisfy
appropriate conditions.

Recently, Bot et al. [25] studied the following classical Douglas-Rachford method:

Yo = ]yB(ﬁan);
Zn = Jya( 2, = BypXn); (12)
Xn+1 = ann + Ap(zn - ,Vn)’ nx1,

where A : H — 2% and B : H — 2% are maximally monotone mappings and {A,} and {8,} are real sequences
satisfying certain conditions and showed that {x,} converges strongly to x = PF(RyARyB) (0), asn — oo, where
Rya = 2J,4 — I while {y,} and {z,} converge strongly to J,p(X) € zer(A + B), as n — co.

More recently, Wega and Zegeye [15] constructed an algorithm that converges strongly to a solution of
the sum of two maximally monotone mappings using a different technique.

Question 1. A natural question arises whether we can obtain a strong convergence result for approximating
zeros of the sum of a finite family of maximally monotone mappings via the extended solution set of the sum
of maximally monotone mappings?

In 2009, Svaiter [28] constructed a new approach for splitting algorithms, which starts by reformulating
(4) as the problem of locating a point in a certain extended solution set Sy(4,, 4,, ..., Ap) subset of H x H™,
which is defined by:

Se(Ay,..., Ap) ={z, Wy, ..., W) € Vize Hw e A(2),k=1,2,...,m},
where
V=Az,wy,...., W) e Hx H™ : w; +---+ Wy, = O}.

He proved weak convergence results provided that H has a finite dimension or A; + A, +---+ Ap, is
maximal monotone.

We remark that the extended solution set is associated with the common fixed points of a countable family
of nonexpansive mappings and so the methods of approximating fixed points are used to approximate the
solution of problem (4).

Motivated and inspired by the above results, our purpose in this article is to construct a viscosity-type
algorithm for finding zeros of the sum of a finite family of maximally monotone mappings via the extended
solution set S,(4i, A,,..., Ap) and discuss its strong convergence. The viscosity method introduced by
Moudafi [30] involves a contraction mapping f in the procedure and it can be regarded as a regularization
process for the solution of problem (4), which is supposed to induce the convergence in norm of the
iterates. Another advantage of this method is that it allows one to select a particular solution point of (4),
which satisfies some variational inequality. The assumption that one of the mappings is a-inverse strongly
monotone is dispensed with. Our results provide an affirmative answer to our question. Our method of
proof is of independent interest. Our results improve and generalize several results in the literature.
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2 Preliminaries

In this section, we recall some definitions and known results that will be used in the sequel.

Let C be a nonempty, closed and convex subset of a real Hilbert space H. A mapping T : C — C is said
to be a contraction if there exists a € [0, 1) such that [|[Tx — Ty|| < allx — y|, Vx,y € C and it is said to be
nonexpansive if a = 1. The set of fixed points of T is defined by F(T) = {x € C : Tx = x}.

Lemma 2.1. [29] Let C be a closed and convex subset of a real Hilbert space H, and T : C — C be a
nonexpansive mapping. Let {x,} ¢ C and x € C such that x, — x and x, — Tx, — 0 asn — oo. Then, x € F(T).

The following lemmas shall be used in the later section.

Lemma 2.2. [28] Finding a point in Sy(4,, ..., An) is equivalent to solving (4) in the sense that

0@+ +Auiz) © Iwy, ..., Wn€ H: (2, Wy,..., W) € Se(4y,..., Ap).

Lemma 2.3. [28] If the monotone operators Ay, ..., A, are maximally monotone, the corresponding extended
solution set S.(4, ..., Ap) is closed and convex in H™*1,

Lemma 2.4. [28] Given (x, y;) € Gph(Ay), k =1,..., m, define ¢ : V — R via

m
P2, Wi, .oy W) = D (2 = Xk Y = Wic)- (13)
k=1
Then, for any (z, Wy, ..., W) € Se(4y, ..., An), one has @o(z, wy, ..., Wy) < 0, that is,

Se(A1s ...y Am) Sz, Wiy .oy W) € Vi (2, wy, ..., W) < 0.

In addition, ¢ is affine on V, with

m m
V(P:[z )’k,)ﬁ—)?,xz—)?,--dx'"_)z]’ where X:i Zxk (14)
k=1 m =
and
Vo =0 & 4,0V € Se(Ai,...;Am), X=X ==Xp

15
S Pz, W,...,Wy) =0,  V(z,Wy,...,Wp) € V. (15)

The function ¢ in Lemma 2.4 is called decomposable separators.

Lemma 2.5. [31] Let {a,} be a sequence of nonnegative real numbers satisfying the following relation:
an1 < (1 = ap)an + a6y, n = no,

where {ay} € (0,1) and {§,} C R satisfying the following conditions: Y’ a = oo, and limsups, <0 or

n—oo

2321 |an5n| < 0Q. Then, lim a, = 0.

n—oo
Lemma 2.6. [32] Let x,y € H. If H is a real Hilbert space, then the following inequality holds:
I+ yIP < IxI* + 2¢y, x + ).

Lemma 2.7. [33] Let C be a closed and convex subset of a real Hilbert space H and x € H be given. The
metric projection of H onto C, P, is characterized by the following:

(i) Pexe C,{x - Pcx,Pcx—-2z) =0, forall z€ C;

(ii) P is firmly nonexpansive and hence nonexpansive.
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3 Main results

In this section, we introduce an algorithm for finding a point in S.(4i,..., A;), which will lead us to a
solution of the sum of a finite family of maximally monotone mappings in a Hilbert H space and discuss its
strong convergence.

In what follows, let H be a real Hilbert space and Ay : H — 2H, k = 1,..., m, where m > 2, be a family
of maximal monotone mappings satisfying S.(4i,..., Am) + &. Let {a,} c (0,1) such that lima, =0,

n—oo

Yooy @q =00 and Y ° |ay, — ay_1| < 0o, and let {8,} be a decreasing sequence in (0, 1] with 8, = 1.
We now propose the following algorithm which basically uses Algorithm 3 of [28].

Algorithm 3.1.
Step 0: Select initial guess ugp = (2o, W1,0, ..., Wm,0) € V.
Step 1: Given nth iterates (n > 0), compute x; , and y, , satisfying:

Xign =T+ AnAi) 2 + AgnWign), k=1,2,...,m,
Zn — Xk,n

, k=1,2,....m,
Ak,n

yk,n = Wk,n +

where the real sequence Ay, > 0, for each k=1,2,...,mand n > 0.
Step 2: Define ¢, : V. — R by

m
(pl‘(Z’ Wiy .uny Wm) = Z <Z - Xk,ia yk,i - Wk>’ (16)
k=1

and compute

17)

<P-(Zn, Wi,n, ~~;Wm,n)
Tty = (Zns Wipns ---s Winn) — max{o, ! L

1V, I

_ _ _ _ 2 .
where Vo, = (X1, Vi X0 = Xi» X, = Xis oo Ximi — %) and [V |2 = Y00, X — KIP+HIX, Vi I with
X; = %Zk’”:l Xk,i» which is the projection of u, = (z,, Wy p, ..., Win,n) Onto the half space

Hi={(z, m,..., Wn) € V: @z, wy,..., W) < O}

Step 3: Compute

(18)
Upy1 = anf(un) +(1-a)v,, Vn=0,

{vn =Bt + 30 By~ B) Ttk

where f: V — V is a contraction mapping with constant a. Set n := n + 1 and go to step 1.

Remark 3.1. The following points indicate that Algorithm 3.1 is well defined.

(i) By maximality of A the resolvent mapping (I + Ay ,Ay)™! is single-valued and everywhere defined for
each k=1,2,..., m (see, e.g., [34]). By rearranging the equation in step 1, one has the following
equation:

Xin + AnYin = Zn + AknWins VY 2 0, (19)

where for each k=1,2,...,mand n > 0, A, > O and Yin € Ay (xx,n). Hence, for each k=1, 2,..., m,
(Xk,ns Vi) € GPh(Ay) exists and is unique. Thus, the decomposable separator function ¢ in Lemma 2.4
is well defined.

(ii) Since @, : V — R is affine on V (see Lemma 2.4) and the half space H; is closed and convex subspace of
V for all i > 1, the projection of u, onto H; given by (17) exists and is firmly nonexpansive (see,
e.g., [20,28]).
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Lemma 3.2. The sequence {u,} generated by Algorithm 3.1 is bounded.

Proof. Let u* = (z*, w{', w3, ..., W) € Se(4y,..., Ap), then by Lemma 2.4 we have u* € H; for all i > 0, which
implies that Se(4;, ..., An) C (2 F(T) = F + &. Now, the fact that T; is nonexpansive and (18) yields

Butin + Y. (Bi_y — B) Tiun — u*

i=1

= || Buun + Z By = B) Tiun — Z By - Bu* + z By - Bu —w

i=1 i=1 i=1

[lvn — u||

(20)
= || B, (un — u*) + z (Bt = B) (Tiun — u)

i=1

n
<Balun = wll + D" By = Bty — 'l = lluy — w.

i=1

Thus, it follows that

”un+l - u*” = ”anf(un) + (1 - an)Vn - u*”
< anllf () — 'l + (1 = an) v — ||
< anllf () = FWHI + anllf @) — 'l + (1 = an) vy — v
<1 - ay(1 = @) llun — Wl + anlf () - uw

If () — vl }

< maxy lu, - w,
1-a

Then, we have

lup — w*|l < maX{lluo - u,

If (ur) — u*II}

1-a

which implies that {u,} is bounded. Hence, we can obtain that {T;u,}, {v,} and {f(u,)} are bounded. O

Lemma 3.3. The sequence {u,} generated by Algorithm 3.1 converges strongly to u* = (z*, wy,..., W) €
F =N F(D).

Proof. We proceed with the following steps.
Step 1. First we show that lim [u,,; — u,|l = O.

n—oo
From (18), we have
n n-1
”Vn - Vn—l” = H ﬁnun + z (ﬁi—l - ﬁi)Eun - ﬁn—]un—l - z (ﬁi_1 - ﬂi)Tiun—l
i=1 i=1

n
< Bollun = tnotll + 1By = By llunall + Y. (Biy = BTt — Tittnall + 1B, — By I Tt |

i=1

21

n
Sﬁn "un - un—l" + |ﬁn - Bn_1|”un—1" + z (Bi_l - Bl) ”un - un—l” + |Bn - ﬁn-1|||7§un71||

i=1

< uyg = unall + 18, = By 1M,
for some M > 0 as the sequences {u,} and {T;u,,_,} are bounded. Thus, the inequalities in (18) and (21) imply that

[Uns1 = unll = llonf Un) + (1 = @)V = tn1f Un-1) = (1 = Q1) Vil
S aullf un) = fn-Dll + lan = an-allIf @n- DIl + (1 = &) Vi = Vaall + |&tn = anallIVaall
< atpllun = Un-all + |&q = Anoq [ @Dl + [Vacal) + (4 = an) (It — Unall + |Bn - anllM)
=1 = an(1 = @)llun = un-1ll + |t = A1 [(If Wn-DIl + Vaal) + A = an) (B, = BIM.

(22)
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Since {B,} is strictly decreasing, it implies that Zﬁzl (B,_; — B,) < oo. Hence, from (22), conditions of {a,}
and Lemma 2.5, we immediately obtain that

[lun+1 = unll > 0 asn — co. 23)
Step 2. We show that ||Tu, — u,|| — 0 as n — oo. Take u* = P#(f(u*)). Note that

lun — wl* > Tu, — Tu*|l?
= Tun — up + uy — Tur|? (24)
= Tun — uplP? + lun — WP + 2{Tiup — Up, uy — u*),

which yields
1
E”Eun = UplP? < (U — Titty, Uy — u*). (25)

Furthermore, from (18) and (25), we immediately obtain

Biy — B Tiuy, - upl? < Z Bi_y — B) {un — Tup, u, — u*)

1 i=1
=<1 - ﬂn)un - ; (ﬁ171 - ﬁi)Tium Uy — U*) (26)

={(1 = B)un — Vo + B un, Uy — U*)
= Uy — Vp, Uy — U
= <un = Un+1s Un — u*> + <un+l = Vny Up — u*>:

n

N | =

1

and from (18) and (26), we have

1 n
E z (181'—1 - ﬁi)“EMH - un||2 < <un — Up+1, Un — Ll*> + <anf(un) + (1 - an)Vn = Vn, Un — u*>
i=1 (27)
< lun = unsalllun — Wil + <anf (Un) — QnVi, Un — U*)
< lun = unsalllun — Wl + anllf (Un) = valllun — u'll.
Thus, from Lemma 3.2, (23), (27) and the condition on {ay,}, we conclude that
n
lim Y (B, ~ BTty — sl = O. (28)
n—-oo l=1
Since {B,} is strictly decreasing, for every i € N, equality (28) yields
lim | Tu, — uy]l = 0 and lim || T,u, — u,|| = O. (29)
n—oo n—oo

Step 3. We show that lim sup{f(u*) — u*, u, — u*) < 0.

n—oo

Since {u,} is bounded, there exist u € H x H™ and a subsequence {uy,} of {u,} such that

lim sup {f(u*) — u*, u, — u)y* = klim ) — v, up, — u*)

n—oo

and u,, — u. From (29) and Lemma 2.1, we obtain that u € F(T;) for each i > 1 and hence u € #. Since
u* = Pr(f(u*)), by Lemma 2.7, we have
lim sup{fu*) - u*, u, — u*) = lim (f(u*) — u*, up, — u*)
n—oo k—o00 (30)
={f(u*) - u*,u—-u*) <0, as required.

Step 4. Finally, we show that u, — u* as n — co. From Lemma 2.6, (18) and (20), we have
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ltner = wl? = llanf(un) + (1 = @)y — u*|?
< (@t lluy — wl + 1 = ) luy — wl)? + 20, f(U*) - U*, Upyy — U*)
<1 -1 -a)a)luy — u P + 20, fW) = U, Upyq — U™
<(1- Q- a)ay)lup — wiP + 22, fW) = u*, up — U + 20, [If (W) — ulltins1 — unll.

Therefore, from (30), (31) and Lemma 2.5, we conclude that u,, —» u* as n — oco.

— 159

(€Y

O

Lemma 3.4. If in Algorithm 3.1, there exist A > A > O such that the sequence Ak} [A, A], for each

k=1,2,...,mandn = 0, then there exists n > 0 such that

®,(up) > nlVe,(w)l>?  vn >0,

m —_— —_— —_— m — m
where V@, (un) = (XL Vi Xin = Xas Xon = Xas oo s Xmn — Xn) and [V@,un)l? =Y, 1Xn — Xl + 1252, Vion

. J— 1 m
with X, = ;21(:1 Xie.n-

Proof. From Eq. (19), we have

Zn = Xk,n — o —w
Ak,n on "
From (16), (33) and condition of Ay ,, we get
il Zn — Xk
%(un) = Z <Zn Xk,ns Yk n - W, n> = Z <Zn = Xk,n» u>
k=1 k=1 Ak,n
m 1 m
= Zn — Xknl? = = Zn — Xen .
& /\k,n” n k,n" 1 g ” n k,n"

By rearranging equation (33), we can also get

Zn — Xk,n
yk n + Wk, ns
/\k,n
which implies that
m m m
- Xk.n Zn — Xi,n
Zyk"_z A +ZW’<’":Z A ’
k=1 k,n k=1 k=1 k,n
and hence
2 2
& Zn — Xi,n 1 &
= Z 1 = F Z Zn — Xi,n
k=1 k,n £ k=1
2
m _
A2 Im (z, )Izzﬁ lzn = X712,
which is equivalent to
A _
po- Zykn <m||zn—xn||2.

In addition, from the properties of inner product, we have

(32

2
I

33)

(34)

35

36)

37

38)
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m m
Z ”Xk,n - E”z = Z ”Xk,n —Zn+2Zn— E”z
k=1 l< 1

Z 1(Gen = 20) = 0 = 20) I2

m

m
”Xk,n - Zrl”2 - 2< Z (Xk,n - Zn)» E - Zn> + z ”E = Zp ||2
k=1

1l
ME H

kn=11 k=1 (39)
= Y Xin = 2al? = 2m Xy = 2, X — Zn) + M X — 2z
k=1
m
= Y Wien = zal? = 2m X% = zal? + m X — 2|2
k=1
m
= Z ”Xk,n - Zrl”2 - mllﬁ - Zp ||27
k=1
which implies that
m m
D Min = X2 + m % = zal? = ). IXen — Zal?. (40)
k=1
From (38) and (40), we get
m 2 m
Y Ixien — Xl < Y Ien - zal? (41)
k=1 k=1
and hence
m
Z ”Xk n— Xn = Z ”Xk,n - Zn||2- (42)
1 ! )l o1
Thus, from (42), (34) and setting n = min {}1{ AA} we get
m m
N Y Ixn - %P + Z Yin || | = 11V, < @, (un). (43)
k=1 k=1
O

Next, we state and prove our main theorem.

Theorem 3.5. Let H be a real Hilbert space and let Ay : H — 2H, for k€ {1,2,...,m} and m = 2, be
maximally monotone mappings satisfying Q ={z€ H: 0 € Aiz+ Az +-+ Apz} + B. Let f: V> V be a
contraction mapping with constant a. Let the real sequence {Ax n} C [A, A1 for some A > A > 0 and for each
k=1,2,...,m and n > 0. Then, the sequence {u,} generated by Algorithm 3.1 converges strongly to an
element u* = (z*, W/,..., Wy) € Se(41, Ay, ..., Ap), satisfying the variational inequality

(f-Dur,u* —x) 20, Vxe€SdA, A,..., An), (44)
where z* € Q.
Proof. By Lemma 3.4, there exists n > 0 such that
@,(u) > Ve, > Vn > 0. (45)

This implies that ¢, (uy) is always nonnegative, and from (17), we obtain

@, (uy)
Ty — Up = — Ve, (46)
(uw}nnJ ?
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which implies

@, (un) ®,(uy)
Thttn — unll = || - \ = , (47)
S H [nw’nuJ "1 Vel
for all n such that Vg, # 0. Thus, dividing both sides of inequality (45) by [[V¢, |, we obtain
Thun — unll = 1V, I, (48)

which is also true for n having V¢, = 0. From (29), we have | T,u, — uy|l - 0 as n — co, so (48) implies
V@, — 0 as n — co. Thus, it follows from (47) that

nlim @,(uy) = 0. (49)

From the expression for V¢, we have ZZ; Yen — O and xx, - X, - 0fork=1,2,..., masn — co.
Moreover, subtracting Xy , + AxnWk,n from both sides of Eq. (19), we obtain

Zp — Xiyn = Ak,n()/k,n - Wk,n)- (50)

This and the definition of ¢, imply that

m m m
Qon(un) = Z <Zn — Xk,n» Yk,n - Wk,n> = Z <Ak,n(yk,n - Wk,n)a yk,n - Wk,n> = Z Ak,n”)’k,n - Wk,n”z- (51)
k=1 k=1 k=1

Hence, from (49), (51) and the fact that Ay, > A, we have

lim [y, , - Wil =0, for all k=1,2,...,m, (52)
n—oo

and from (50) and (52), we obtain
lim ||z, — x¢nll =0, for all k=1,2,...,m. (53)

n—oo
Moreover, from Lemma 3.3 the sequence {u,} = {(z4, Wi,n, ..., Wm,n)} converges strongly to a point
U = (25, Wy,..., W) € F = (2 F(T). In addition, Egs. (52) and (53) imply that y; , — wg and x; , — z*, for
each k =1, 2,..., m. Since Gph(4y) is closed and (Xin, V) € Gph(4y) for all k = 1, 2,..., m and n > 0, we
get wi € Ax(z*). Furthermore, since {u,} ¢ V and V is a closed subspace, we also have u* € V and hence

u = (25, Wy,..., W) € Se(41, Ay, ..., Ap) and by Lemma 2.2 we obtain z* € (4; + A, +-+-+ Ap)"(0). More-
ovet, since u* = P(f(u*)) by Lemma 2.7, we obtain the variational inequality

(f-Du',u* -—x) 20, VxeSA,4A,..., An), (54)
as Se(A1, 4y, ..., Ap) C F. The proof is complete. O

Remark 3.6. We observe that Algorithm 3.1 is equivalent to the following scheme:

Uo = (20, W1,0,...,Wm,0) € V chosen arbitrarly,

Xik,n = I+ Ak,nAk)il(Zn + Ak,an,n)s k=1,2,...,m,
Zn — X
Vien = Win + 200 k=1,2,...,m, (55)
’ Ak,n

Uns1 = Onf (Zn, Winy ..oy Winyn) + (1 = @) (Cny dijny ..., Amyn), N 20,

where f: V — V is a contraction mapping with constant a, Ay, > 0 for k =1,2,..., m, and n > 0, and

Cn = ann + z (Bi_l - ﬁi)ei,

i=1

dk,n = ,Ban,n + z (ﬁ,'_l - ﬂi)ak,i,

i=1
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Zn, if p,(uy) < 0O,
= oY
Zn = 6| Y Vii | if @) > 0,
k=1
5 Wkn if ¢,(u,) < O,
ST Wion — 8i000i - X0, if @) > O,

with

m
a1 $Zn = Xiis Vi — Wion)

= m 2 m —
12 Vi 17+ Xy I = X2

— 1 m
for x; = ;Zkzl Xk, i

Remark 3.7. At this point, we know that S,(4;, A, ..., A,) € ¥ and one can show that ¥ c S,(A;, Ay, ..., An)
and hence S.(4;, A,,..., An) = F.

If in (55) we assume Ay, =1 > 0, fork =1, 2,..., mand n > O, then we get the following corollary for
the sum of a finite family of maximally monotone mappings in Hilbert spaces.

Corollary 3.8. Let H be a real Hilbert space and let Ay : H— 2H, for k€ {1,2,...,m} and m > 2, be
maximally monotone mappings satisfying Q ={ze H: 0 € Az + Az +--+ Apz} # D. Let f: V> V be a
contraction mapping with constant a. For arbitrary ug = (29, W1,0, ..., Wim,0) € V define an iterative algorithm
by

Xen = (I + A ) Nzy + AW ), k=1,2,...,m,
Zn — Xi,n

—/l s
Upi1 = anf(zm Wl,mn-,Wm,n) + (1 - an) (Cm dl,m-u:dm,n)’ nx=0,

Yien = Wnk + k=1,2,...,m, (56)

where {c,} and {dk,n} are as in (55) and A > O. Then, {u,} converges strongly to an element u* = (z*, wy, ..., W)
of Se(A1, Ay, ..., Ap), where z* € Q.

If in Theorem 3.5 we replace the contraction mapping f by constant u € V, then we get the following
corollary for the sum of a finite family of maximally monotone mappings in Hilbert spaces.

Corollary 3.9. Let H be a real Hilbert space and let Ay : H — 28, for k € {1,2,...,m} and m > 2, be
maximally monotone mappings satisfying Q={ze€ H:0 € Az + Az +---+ Apnz} #+ &. For arbitrary
Uy = (2o, W1,05--., Wim,0) € V define an iterative algorithm by

Xgn = (I + /lk,nAkT1 (zn + Ak,an,n), k=1,2,...,m,
Zn — X,
Yin= Win + u; k=1,2,...,m, (57)
/‘k,n

Upi1 = dpll + (1 — ap) (Cp, dl,m-nydm,n), nx=0,

where {c,} and {dy ,} are as in (55), {Ax.n} € [A, A] for some A > A > O and for eachk =1,2,...,mandn > 0,
and u = (z, Wy, ..., Wy) € V.c H™1, Then, {u,} converges strongly to an element u* = (z*, wy,..., W) of
Se(A1, Ay, ..., Ap), Wwhere z* € Q.

We note that if in Corollary 3.9 we assume that u = (0, 0, ..., 0) € V and we get the following theorem
for approximating the minimum-norm point of the extended solution set of the sum of a finite family of
maximally monotone mappings in Hilbert spaces.
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Theorem 3.10. Let H be a real Hilbert space and let A, : H — 28, for k€ {1,2,...,m} and m > 2, be
maximally monotone mappings satisfying Q:={ze€ H:0 € Az + Ayz +---+ Anz} #+ &. For arbitrary
Uo = (29, Wo,1,--.» Wo,m) € V define an iterative algorithm by

Xie,n = (I + Ak,nAk)il(Zn + Ak,nwk,n)a k= 1,2,..,m,

Zn — Xk,
Vien = Win + 22 k=1,2,...,m, (58)
Ak,n
Uni1 = (1 = &) (Cny diyny -y dmn), N 20,

where {c,} and {dy n} are as in (55) and {Ay..} ¢ [A, A] for some A > A > 0 and for each k = 1, 2,..., m and
n > 0. Then, {u,} converges strongly to the minimum-norm point u* = (z*, wy,..., Wy,) of Se(Ai1, Az, ..., An)s
where z* € Q.

Proof. We note that since u* = (z*, wy,..., w;;,) = P#(0), where u* € S,(4;, A;,..., An) C F, we obtain that u*
is the minimum-norm point of Sy(4;, 4y,..., An). O

4 Application to convex minimization problem

In this section, we apply Theorem 3.5 to study the convex minimization problem.
Let g : H—-> R, k=1,2,...,m, where m > 2, be a finite family of convex and lower semicontinuous
functions. We consider the problem of finding z* € H such that

§Z) + &)+ + 8u(@) = Mn(g() + )+ + 8(2)). (59)

We note that problem (59) is equivalent, by Fermat’s rule, to the problem of finding z* € H such that
0 € 0gy(z*) + 0gy(2*) +--- + 0g,(z*), (60)

where dg is a subdifferential of g, which is maximally monotone (see, e.g., [35]). So, we obtain the
following theorem from Theorem 3.5.

Theorem 4.1. Let H be a real Hilbert space. Let g, : H— R, for each k=1,2,3,...,mand m = 2, be a
convex and lower semicontinuous function such that Q = min,.pyig(z) + &) +---+ g,(2)} #+ &. Let
f:V — V be a contraction mapping with constant a. For arbitrary uo = (2o, Wo 1, ..., Wo,m) € V define an
iterative algorithm by

Xic,n = (I + /\k,,,agk)*l(z,, + /lk,nwk,n), k = 1,2,...,m,
Zn — Xi,n
Ak,n
Up+1 = anf(zm Wl,m-“’Wm,n) + (1 - an)(cm dl,mno’dm,n)x n=o0,

Yien = Win + s k=1,2,...,m, (61)

where for eachk = 1,2,...,m and n > 0, {A.,} ¢ [A, A] for some A > A > 0,

Cn = ﬁnzn + z (Bi_l - ﬁi)éi,

i=1
din = ByWin + . By — B)dkis
i=1

Zn, if @uy) < 0,
Ci =

A m
Zn_5i(z Yk,i} if ouy) > 0,

k=1
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- {Wk,n’ lf Qoi(un) <0,
dyi =

" Wi - 800 - %), if @) > O,
with

Yo $Zn = Xii> Viei — Wion)

i= 2 —n°’
ke Vies I+ 2l I = XIP

for x; = %Z?:l Xk,i- Then, {u,} converges strongly to an element u* = (z*, wy, ..., Wy,) of S.(08;, 08, ..., 08,,,),
where z* € Q.

Proof. Set Ay = dg;, for k = 1, 2,..., m. Then, we have that Ay, k = 1, 2,..., m, is maximally monotone with
Q:={z¢€ HO € Az + Az + ... +Anz} + D. Hence, the conclusion follows from Theorem 3.5. O

5 Numerical example

In this section, we present some numerical experiment results to explain the conclusion of our result. The
following numerical example verifies the conclusion of Corollary 3.8.

Example 5.1. Let H = L, where [, is the space of sequences. Let A;, 4>, A3 : L — L, be defined by Ajx = x +
1,2,3,0,0,...), AHx=2x+(3,4,50,0,...) and A3x=3x-(2,2,2,0,0, ...), where x = (4, %, ...) € bL.
We see that A;, A, and Az are maximally monotone with R(I + A4;) = R(I + A4;) = R(I + A43) = L, for each
A > 0. Now, by direct calculation we get that

gy P A= A0,2,3,0,0,0) kMt (12,3,0,0, )
’ 1+1 on 1+1 ’

gy Pt A =AG,45,0,0,0) 2t Mo+ 3,4,5,0,0, )
’ 1+21 " 1+21

= P AR 220,000 g 3 3 = 2,2,2,0,0,.)
’ 1+3A i 1+3A

1
100(n + 100)° ﬁ"

for some A > 0. Thus, if we assume A =1, a, =
Algorithm (56) reduces to the following:

1 X
= for all n>1 and f(x) = 1000 then

1
105(n + 10%)

1

Upy = (Zm Wi,n, W2,n, W3,n) + (1 - W

" mj“’“ s dans ), (62)

where {c,} and {dy n}, for k = 1, 2, 3, are as in (55).

Now, if we take initial point u; = (z1, wy,1, W1, Ws,1), Where z; = (2, -1, -2,0, 0, ...),w;; = (1,1,1, 0,0, ...),
wy1=(0,0,0,0,0,...) and ws;=(-1,-1,-1,0,0,...), then the numerical experiment results using
MATLAB provide that the first component {z,,} of {u,} = {(zn, Wi,n, Wa,n, W3,n)} generated by (62) converges

strongly to the solution z* = (—l 2,-1,0,0, ) € (4 + 4, + A3)(0) (Table 1).

3073

6 Conclusion

In this article, we constructed and studied algorithms which start by reformulating (4) as the problem of
locating a point in a certain extended solution set Se(4;, A,, ..., Ap,) ¢ H x H™, which converges strongly to a
zero of the sum of a finite family of maximally monotone mappings in Hilbert spaces. The assumption that
one of the mappings is single-valued, a-inverse strongly monotone or a-strongly monotone is dispensed
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Table 1: Convergence of the first component {z,} of {u,} generated by (62)

N Zy [zns1 = Zalli
1 (2.0000, -1.0000, -2.0000, 0, 0, ...)
2 (2.1662, -1.3413, -2.5015, 0, O, ...) 0.690
3 (1.3286, —1.4059, -2.3823, 0, 0, ...) 0.8485
4 (0.7003, -1.3819, -2.2615, 0, 0, ... 0.6403
5 (0.4264, -1.3101, -2.1714, 0, 0, ...) 0.2971
10 (0.0554, -1.0218, -1.7395, 0, 0, ...) 0.0999
100 (-0.3081, -0.5944, -0.9294, 0, 0, ...) 9.4868 x 107*
200 (-0.2977, -0.6367, -0.9519, 0, 0, ...) 3.6056 x 1074
300 (-0.3064, -0.6500, -0.9776, 0, 0, ...) 2.4495 x 1074
400 (-0.3141, -0.6539, -0.9969, 0, 0, ...) 1.4142 x 107
500 (-0.3196, -0.6549, -0.9969, 0, 0, ...) 1.4142 x 107*
1,000 (-0.3300 - 0.6554, -1.0006, 0, O, ...) 0
2,000 (-0.3324, -0.6597, -0.9987, 0, 0, ...) 0
3,000 (-0.3330, -0.6635, -1.0001, 0, 0, ...) 0
! !
(-3.-%-1,0,0,..) 0

with. In addition, we applied our main results to study the convex minimization problem. Finally, we
provided a numerical example to support our results. Our results extend the results of [28] in the sense that
our theorems provide strong convergence in arbitrary Hilbert spaces. In particular, Theorem 3.5 extends
Proposition 7 of Svaiter [28] from weak to strong convergence. Moreover, our theorems improve and unify
most of the results that have been proved for this important class of nonlinear mappings.
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