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Abstract: In this article, we study the generalized parabolic parametric Marcinkiewicz integral operators
Mg?h,(p, ) related to polynomial compound curves. Under some weak conditions on the kernels, we
establish appropriate estimates of these operators. By the virtue of the obtained estimates along with an
extrapolation argument, we give the boundedness of the aforementioned operators from Triebel-Lizorkin
spaces to L? spaces under weaker conditions on Q and h. Our results represent significant improvements
and natural extensions of what was known previously.
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1 Introduction

Throughout this article, let R" (n > 2) be the n-dimensional Euclidean space and S$" ' be the unit sphere in
R" equipped with the normalized Lebesgue surface measure do = do(-). Let a;, a,...,a, be fixed real
numbers in the interval [1, o). Define the function H: R x R* — R by H(x,p) =Y, ;; with x =
(X1, X2,...,Xn) € R™. Then, for each fixed x € R", the function H(x, p) is a strictly decreasing function in p > 0.
We denote the unique solution of the equation H(x, p) = 1 by p = p(x). Fabes and Riviére showed in ref. [1]
that (R", p) is a metric space, which is known by the mixed homogeneity space related to {a;};.

For p > 0, let A, be the diagonal n x n matrix:

The change of variables related to the space (R", p) is given by the transformation

X = p%cos ;- cos Y, ,cos 9, g,

X% = p%cos Y- cos 9y, sin J,_y,
Xpo1 = p%-1cos Y sin 95,

X, = p* sin 9;.
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Hence, dx = p* J(x’)dpda(x’), where p®*J(x’) is the Jacobian of the above transforms,

@, and J(X')=) a2

i=1

U

I
=N

x' eSSl a=

1

The authors of ref. [1] showed that J(x) is a C*°(S"!) function, and there exists a constant L, such that
1<Jx) < L.

For a suitable mapping @: R" — R", we define the generalized parabolic parametric Marcinkiewicz
integral operators M}Qh,@, )» initially for C° functions on R", by

r 1/7’

" Il ) QWhpE) , | dt
My o1 (50 ! . (j) e
pws<t

wherer > 1; A = 1 + 0i (1, 0 € R with T > 0); h: R* — C is a measurable function; and Q is a real valued
function on R”, integrable on S™! and satisfies the conditions.

QAx)=02x), Vp>0, (1.1
J QO] ()do (x') = 0. @2
sn—l
We point out if ; = -+ = a,, = 1, then we have a = n, p(x) = |x| and (R",p) = (R",|-]). In this case, MEth,(p,A is

denoted by ng n.o.)- Also, when @) = u, h =1, and r = 2, then the operator Mg;;f@, 1» denote by M g 3, reduces
to the classical parametric Marcinkiewicz integral operator. Historically, the operator M, was introduced by
Stein [2] and proved the I” (1 < p < 2) boundedness of Mg provided that Q € Lip,(S*") with 0 < a < 1.
Subsequently, this result was investigated and improved by many researchers (see, for example, refs. [3-6]). The
study of the boundedness of the operator M 4 was performed by Hérmander [7]. As a matter of fact, he showed
that if A > 0 and Q € Lip,(S™") with a > 0, then I’(R") (1 < p < o) boundedness of M g, is satisfied. Later on, the
study of the operator Mg;ng , under very various conditions on the kernels has been considered by many
authors. For more information about the importance and the recent advances on the study of such operators, we
refer the readers to refs. [8-15], as well as ref. [16], and the references therein.

Conversely, there has been a considerable amount of mathematicians with respect to the study of the
boundedness of the generalized parametric Marcinkiewicz integrals M5, \. This operator was first
introduced by Chen et al. [17] and showed that whenever ®(u) = u, h = 1, and Q € LYS8" ") for some g > 1,
then a positive constant C exists such that

”M((S’jl?q),/\f”LP(R") < C||f||F£,(R") (1.3)

holds for all 1 < p, r < oo, where f belongs to the homogeneous Triebel-Lizorkin space Fg,, (R"). Afterward,
Le [18] improved the aforementioned result. Precisely, he established the inequality (1.3) for all p, r € (1,00)
under the conditions that @u) = u, Q € L(log L)(S™ ") and h € Ampax .2y (R). For the significance and recent
advances on the study of such operators, readers may refer to [16,19-22,23].

Although many problems concerning the boundedness of the operator Mnggd,’ ) remain open, the
investigation to verify the boundedness of the parametric Marcinkiewicz operators with mixed
homogeneity has been started.

Again when @(u) = u, A = h = 1, and r = 2, then the operator Mg?h,@, ) recovers the classical parabolic
Marcinkiewicz integral operator, denoted by pq, which was introduced by Ding et al. [24]. In particular, Ding et al.
[24] proved that the parabolic Littlewood-Paley operator ug is of type (p,p) for all p € (1,00) provided that
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Q € LYS™™) for g > 1. Subsequently, the study of the I” boundedness of M D, ,, , under various conditions on the
kernel functions has been carried out by many researchers (see, for example, refs. [25-30]).

Let us recall the definition of the Triebel-Lizorkin spaces. For 1 < p, r < o and a € R, the homogeneous
Triebel-Lizorkin space F;,,(R”) is defined by

Fp RY = 1f € S'RY: Iflze gry =

< 00 p,

1/r
[Z Qkar | Ay x f|r]

keZ

LP (RY)

where S’ denotes the tempered distributions class on R", 71; & =TQ*)forkeZ and '€ CR" is a
radial function satisfying the following conditions:
io<r<i;

|
(i) T >c>0 if
(iv) %;ep T 2798) =1 (£ # 0),

The following properties of the Triebel-Lizorkin space are well known (for more details, see ref. [31]).
(@) S(R" is dense in F, , (R);
(b) E,,(R") = LP(R") for 1< p < 0o
© E,, RY cEy (RY if 1 < 13

(d) (Fp, RD) = E," (R,

Let A,(R") (for y > 1) denote the collection of all measurable functions h:[0,ec) — C, satisfying

1/y

R
! j h()dp| < co.
0]

Ihlla, ) = sup| —
R>0 R

Also, let NY(R*) denote the set of all measurable functions h: R* — C that satisfy the condition

(o)

N, (h) = ) 25dy (h) < oo,
k=1

where dj (h) = sup 27|E (j, k)| with E(j,1) = {p € (2,2*"]:|h(p)| < 2} and E(,k) = {p € (2,2"1]:2"" < |h(p)| < 2}
jezZ

for k > 2.

It is clear that 4,(R*) = L*°(R*) c 4, (R") c 4, (R") for 1<y,<y <oco and 4,(R") cNERY for
any 8>0 and 1<y < co.

In this study, the class § denoted the set of all positive, increasing C! functions ¢:(0,00) — R*
satisfying the following conditions:
() tg’(t) = Cyp(t) for all t > 0; and
(i) P(2t) < cpp(t) for all t > O,where Cy, ¢y are independent of ¢. There are many model examples for the
class § such as ¢? with d > 0, #(In(1 + t)) with ¢, k > 0, real-valued polynomials P on R with positive
coefficients and P(0) = 0, and so on.

Let us recall some useful spaces related to our work. For k > 0, the space L(log L)*(S"™) is denoted to
the set of all measurable functions Q that satisfies

QN g L 57 = j Q@) log + 12@))do () < co.
(s™h

The block space that was introduced in ref. [32] is denoted by B,go"’) (81 (forv > -1 and g > 1).
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The main results of this paper are formulated as follows:

Theorem 1.1. Let ¢ € §, and let @ (w) = (P (¢ (p (w)))uy, Py (¢ (0 (W), -+, B () (p (w)))uy) with P; being real
valued polynomials on R satisfying P;(0) = 0 for j =1, 2,..., n. Suppose that Q satisfies the conditions (1.1) and
(1.2), Q € LI(S™ ") forsome 1< g<2andh ¢ A,(R") for some 1 <y < 2. Then, for any f € F;),, (R™), there exists
a constant C > 0, such that

IME o2 )l ey < €@ = D70 = 17l @) 19 s Wl o (1.4)

forl<p<r; and

IMEn ol gy < €@ =Dy = D™ g, @) 190z 51 Wl g2 gy (1.5)
forr<p < oo,

Theorem 1.2. @ and Q be given as in Theorem 1.1. Assume that h € Ay(R*) for some y > 2. Then, there is a
positive constant C, such that

IMEh oo gey < €@ = D7 Ihlla, @) 19025 Wl g2, gy (1.6)
fori<p<rifr<y and2 <y < oo; and
4 4
IME o) gy < €@ = D7 Ihla, @) 1205050 Iz e (17)

foryy <p<eoif2<y<ocoandy <r.

By the conclusions from Theorems 1.1 and 1.2 and following the same extrapolation arguments used in
refs. [9,20,29,33,34], we have the following:

Theorem 1.3. Suppose that Q satisfies (1.1) and (1.2), @ is given as in Theorem 1.1 and h € NY/"(RY).
; (04-1) g1
(i) IfQ e By (8"1) for some g > 1, then

(r
MG 00 ) ey < 6[1 #1011 (SMJO + Ny (M) Iflg0. gy

forr < p < oo; and
(ii) If Q € L(log L)"(S™Y), then

IME o)l gy < €1+ 12l aog ryirsr ) (1 + Nagr ) If 0 e

forr<p < oo.
Theorem 1.4. Let Q, @ be given as in Theorem 1.3, and let h € N1(R*).
(i) If @ € B®? (8"!) for some g > 1, then
IMEn 0Pl gy < €1+ 121500 g ) (1 + Ny DI gy
for1<p<r; and

(i) If Q € L(og L)(S"™), then

IMEn 0Dy gy < € (14 12200615 (1 + NI
fori<p<r.
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Theorem 1.5. Let Q satisfies (1.1) and (1.2), h € A,(R") for some y > 2 and @ be given as in Theorem 1.1.

0,1-1)

MIfQ e B,S (81 for some g > 1, then

() + .
IME o Pl gy < c(l + 1000} (Snl)juhnAy(R Wz gy

forl<p<rifr<yand2<y<oo;andfory <p<ooify <rand2<y < oo,
(i) If Q € L(log L)/"(S™™Y), then

M@0 gy < €A+ 190 0g 1 51y ) 1hla, ) IF10 ey

forli<p<rifr<yand2<y<oo;andfory <p<ooify <rand2<y < oo,
The constant C = C,,,;l,p,(p,max deg(p) N Theorems 1.1-1.5 is independent of Q, h, y, g, and the coefficients of
Pifor1<j<n. o

It is worth mentioning to the following remark related to our results and their optimality.

Remark 1.6. (1) Al-Qassem and Al-Salman [6] found that Mg ; is bounded on LP(R™) for 1 < p < oo under
the condition Q € B "/? (§"!) with g > 1. Moreover, they established the optimality of the condition
Q € B2 (8""1) in the sense that the exponent -1/2 in B{>""/? (§""!) cannot be replaced by any smaller
number -1 < & < -1/2 for the L? boundedness of M 0,1 to hold.

(2) Walsh [4] proved that Mg is bounded on L*(R") whenever Q ¢ L(log L)/*S™™"). Furthermore, he
showed that the condition Q € L(log L)l/ 28" is optimal in the sense that the operator M 0,1 may lose the
L? boundedness if Q is assumed to be in the space Q € L(log L)¥(S™™) for some 0 < € < 1/2.

(3) If @(u) = u, then, Al-Qassem et al. [20] established the boundedness of the parametric Marcinkiewicz
integral operator M5, , under the same our conditions on £, h, and r.

(4) The I” boundedness of the parametric Marcinkiewicz operators with mixed homogeneity M), ,, , was
satisfied [29] only when h € NV2(R*), Q € L(log L)/*S™™"), and @ is given as in Theorem 1.1.

Here and henceforth, the letter C denotes a positive constant that may be different at different
occurrences and independent of the essential variables.

2 Some notations and lemmas

In this section, we give some lemmas, which we shall need in the proof of the main results. Let N = max deg(P).

1<j<n
For 1<s<Nand1<!l<mn let @) =3, cutl and PO (t) = (P (¢t),....PY (). Set POt) = 0,

Pi(t) = Y, ¢t with 1< 1< nand @) = (P (¢ (0 w))uy, P (d (0 () ug,....PE (¢ (p (w)))uy).

Let 0 > 2. For a suitable measurable function h: R* — C, a suitable function ¢: R* — R, and Q: "' > R,
we define the family of measures {07 45 =05 t € R, 1<s <N} and the corresponding maximal
operators oy, ; and My g on R" by

ths,\t(‘f) =t j e’if“ps(u)%)du;

t/2<p )<t

Ons () (x) = supllog | x f ()]s
teR*

and
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ek+1

dt
M0, (f)(x) = sup ||0p ¢ x lf(x)l?
keZ
gk

where
QW) = Y Eu PO (Ppw)) = Y Li)u)d W),

1=1 i=1

Li: R" — R"is given by Li(é) = (C;,181,+.,Ci,nén), and |0}, | is defined in the same way as oj; ;, but with replacing
h by |h| and Q by |Q|. We write |0y || for the total variation of gj; ;.

We shall need the following lemma from ref. [29].

Lemma 2.1. Let Q € LYS™ ") for some 1 < q < 2 satisfying (1.1) and (1.2), h € A,(R") for some 1 <y <2, and
6 = 297, Suppose that ¢ € §. Then, for 0 < s < N and any 1 < p < oo, the following inequalities

IMy,0.s Ol gy < C(g = D7y = D7 Alla, @y 12012 ) If e gy (2.1)

o, s Pllpp gy < Cq - Dy = DA, &) 192059 s I lze gy s (2.2)
hold, where the positive constant C = Cy, p, o is independent of h, Q, y, q, and the coefficients of P; for 1<j <n.
By using Lemma 2.2 from [29], we directly obtain the following lemma.

Lemma 2.2. Let Q, ¢ be given as in Lemma 2.1, and let h € Ay(R*) for some y > 1. Then, for any 1 < s < N,
t > 0 and & € R", there exists a constant C > 0, such that

max {[o5, I, o5, (€)1, 105, [ (€)1} < Cllhla, &) 12271 23)
max{|a3,, (¢) — 105 @)1, 1107, [ ()] = o8 1)1} < CIQla g Ihlla, ) (D FILs (€) owaw,  (2.4)

max{|og ()1, 1107, [©)1} < CIQla g Ihlla, wey ( (E)F|Ls (€) o3, (2.5)

y ifl<y<?2,

1 ifys2 . The constant C is independent of Q, h, y, and g, but depends on ¢.

where A(y) = {

To prove Theorem 1.1, we employ the next lemmas with arguments similar to those in refs. [20] and [29].

Lemma 2.3. Let h € A/R") for some 1 <y <2 and Q € LYS™™) for some 1 < q < 2 and 0 = 277 Assume that ¢ is
given as in Lemma 2.1, and r is a real number with r > 1. Then, for 0 < s < N, there exists a constant C > 0, such that

0k+1 1/r

dt
y j 05 x g I < <C(q- 1ty -1
keZ t
Gk
1P R (2.6)

1/r
(Z |gk|'J
keZ

x hlla, & 1Qllga -1 , 'sp<oo

LP (R

and
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gk+1 1/r

> | |ohtxgk|* <Clg-1y -1

keZ k
LP (RY) 2.7)

1/r
5
keZ

hold for arbitrary functions {gi(), k € Z} on R". The constant C = Cy,,, 4 is independent of Q, h, y, q, and the
coefficients of {P;} for all1<j < n.

% ||hlla, gy 192101a g1y , l<p<r

LP (R")

Proof. First, we prove (2.6). For fixed p with r < p < oo, by duality, there is a nonnegative function
P e LP(R") with [Wllem gr < 1, such that

g+t yr| gk
> | |omgk|— [ 070 x g o1 & Ly . 2.8)
keZ k R" keZ k
LP (R")

A simple change of variable and Holder’s inequality lead to

107 X 8 OT < CIRIG/R 11T/ j f|gk<x @, (A, u)|f|9<u>|1(u)do(u)|h(p>| : (2.9)
t/2 Sn 1

Hence, by (2.8) and (2.9) and Hoélder’s inequality, we have that

r

gkt 1/r
dt , , .
> | lonexar s < a1l | (Z |gk(X)|rJMh|,9,s¢(—X)dX
keZ gk R" keZ

LP (R")

< CllRIY 0, I

> gl

keZ

Miny,0,s W)l o gmy»
L2 (RT)

where 1/3(—x) = 1 (x). Therefore, by Lemma 2.1 and the assumption on 1y, we obtain

gk+1 1/r 1r
dt
Z J- |07 ¢ % 8k |rT <C(- 1)7% (y - 1)7% x |Ihlla, &% 19212 g1y [z 18 |r] (2.10)
keZ ok keZ LP (RY)
LP (R")
for r < p < oo. Now if p = r, then by Holder’s inequality (2.9) and Lemma 2.1, we obtain
gk+1 1/r "
Y [ togox gl < CIRIG. 12177
ot X 8kl = Gl ey 152071 (gnry
keZ gk
LP (R")
k+1
o @.11)

<> [[]] |gk<x—<1>S<Apu>>|f|o(u)|J<u>|h<p>|do<u)d7p%dx

keZ R" 9k t/2 Snfl

p/r
< C(q - U7y - DRI RS IR j{z 18 (x ] dx

keZ

which shows that (2.6) is satisfied for the case p =r.
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Next, we prove (2.7). Let 1 < p < r. By the duality, there exist functions {@,(x,t)} defined on R" x R*

with H‘ o, "Lr’([ok,ekn]’g) ’ <1, such that
t Ir LPV(RH)
1/r g+
y j o1 x i S - [ 3 [ @iexsongxo
keZ R" keZ Bk
LP (R") (2.12)
1/r
<C(g - D)@y - D7VINH @) e @y [Z 18 |'J ,
keZ LP (RY)
where
ek
H) ) = Y j 0% % $ 06 OF SLand G, 6) = @, (-x, D).
keZ
Since p’ > r/, there is a nonnegative function b ¢ L?/(R"), such that
9k+1
s ~ r dt
I1H (@)l gy = ) 0 x @0 OF b () dx. (2.13)
keZ R" gk
Following the same above argument, we obtain
0k+1
H ” CllRIT' D, 1y < (B r dt
IH (@) gry < Cll "Ay(m 1217 sy X I0h,5 (D) | 017 oy [y (50
kEZ gk (2.14)
L(P'/T') (R
< C(g - DMy = DY RICDQI /DL 1Bl R

Ay (R") L9(s™Y

where b (x) = b(-x). Therefore, the inequality (2.7) follows from (2.12) and (2.14). This completes the proof
of Lemma 2.3. O

In the same manner, we establish the following:
Lemma 2.4. Let h € A,(R") for some2 <y <ocoand Q ¢ LYS™") for some 1< q <2 and 0 = 29. Suppose that ¢

is given as in Lemma 2.1, and r is a real number with r < y'. Then, for 0 <s < Nand 1 < p < r, a positive
constant C exists such that the inequality

0k+1 dt 1/r l/r
y j 0 % g - < C(q — V7 Illay @) 12050 s (Z |gk|'J
keZ ok keZ P (RY)
LP (R")

holds for arbitrary functions {gi(-), k € Z} on R". The constant C = C,,;, 4 is independent of Q, h, y, q, and the
coefficients of {P;} for all1 < j < n.
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Proof. Let 1 < p < r with r < y/, by the duality, there are functions {@.(x,t)} defined on R" x R* with

<1, such that

|

i

LP' (R
1/r gk
dt
jwh[xgu & - [ 3 [ @iex gt on oL
keZ R" keZ Bk t
LP (R") (2.15)
1/r
<C(q - DV IH @) Nl gy [Z 3 |’] ,
keZ 1P (R
where
9k
Hp)) = j 0% G0 OF S8 and G (6, 1) = g (x, ).
keZ
Since y > 2 and y < r/, we get that r <y’ < 2 < y. So by Hoélder’s inequality, we obtain
0k+1
0k x G0, OF < Ul w1212, [ [ 1001 x 19, (x - 0w, OF do ) P_ 2.16)
Qk snl

Notice that for any b € IP(R") with 1 < p < oo, we have

105, % 1bl(0) < j QW] j 1b(x - s (A,u))| pdo(u) c j 10 W) [ Mp b () do ),
st t/2

where

1
Mp@gb(x) = sup — |b(x — @5(Apu))|dp.

t>0

So, by using Lemma 2.2 from [35], we obtain

lots D)llp gry < € _[ 12 @) [IMp @) (D)l p grydo () < CpllQllp2 s IDlLr gy (2.17)
Snfl

Since p’ > r, there is a nonnegative function b € L?/”(R"), such that

0k+1

- » dt
IH (@)llom gy = Y, j I o5 ¢ X @ (x, )" —b (x)dx. (2.18)
keZ Rn Gk t

Hence, by simple change of variables, Holder’s inequality, and (2.16)—(2.18), we obtain

0k+1

! ! * ’dt
IH (@)l ey < Clllly ey 12112 107 (B) e gy % || 3 j o IS

keZ 0" (2.19)

L@ (RY
< ClIhll, &y 1215 (/Sr3+11 1Bl g -

Therefore, when we combine (2.19) by (2.15), we complete the proof of Lemma 2.4 (|
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Lemma 2.5. Let Q, h, ¢, and 0 be given as in Lemma 2.4, and let r be a real number with r > y’. Then, for
0<s<Nandy <p < oo, there exists a constant C > 0, such that

0k+1 1/r 1r
I o7 ¢ % gkl — < C(g = )7V |hlla, &y 1201s ) (z |gk|r]

keZ i keZ P (R"
0 1P RY (R")

for arbitrary functions {gi(-), k € Z} on R". The constant C = Cnp,p is independent of Q, h, y, q, and the
coefficients of {P;} for all1<j < n.

Proof. We follow the same aforementioned procedure as in (2.9); by a change of variable and Hoélder’s
inequality, we obtain

! th
14
! d
0F g <80 < ClEy o 10152 [ [ lstx - dsapp 06V @dow L. (220
okt s

Since y’ < p < oo with y’ < r, then by duality, there exists a nonnegative function i € L’ (R") with || L®/™

(R™ < 1, such that
0
) J ozl
t ar keZ

kez L0 (R

y/

n.oe < S hote > 8 )

%lp(x)dx.

Hence, by (2.20), simple change of variable, Holder’s inequality, and (2.17), we obtain

dt 1
= < CIlY o IQUZ, j ¥ 150V of (-

kez L0/) RY)

< Cllhly o 12UA QL | Y 18l
keZ

“O-l*,s W) ||Lm/y'>’(Rn)

L) RY

l/yl y
U 1 !
< Cllhly o 121520 (Z |gk|YJ :
keZ

LP (R")
where 1/3()() =1 (-x). Since 1 < g < 2, we deduce that
dt l/y, 17y’
> j OF i X 8| <C(q - D hlla, @) 19203 [Z I3 |VJ .21)
keZ t keZ

R L? ")

for any y’ < p < oo. Define the linear operator T on {gi(x)} by T (g, (x)) = 0y ok X 8k (x). On the one hand, by
(2.21), we have

%%
dt
|| H ”T (gk)“Ly/([l,g],%) ) < z J‘ h ok¢ gk D
'@ |l Ry keZ
LP(R") (2.22)
1y
< C(g - 1 1hlla, @) 19200 g (Z I3 |YJ
keZ

LP(R")
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for all y’ < p < oo with y > 2. On the other hand, by Hélder’s inequality and (2.17), one can check that

Sup sup |0y i, % 8k < Gﬁ,{sup I8k IJ < Gplihlla, @) 120za sy || sup g
keZ te[1,0) ’ LP RY) keZ L (R keZ LP (RY)
for all y’ < p < oo, which gives
H H IT (80 (e g) < Gplhlla, @) 12019 (sm1) % Mgl @) llp gy - (2.23)
@ e gy
Consequently, by interpolation (2.22) with (2.23), and using the fact
9k+1 1/r 0 1/)’
dt " dt
D I |0h,e % &I s <c||Y j Tpoie X 8k|
keZ ok keZ 1
L7 (RY) P (RY
This completes the proof of Lemma 2.5. O

3 Proof of the main results

Proof of Theorem 1.1. We prove Theorem 1.1 by applying similar techniques used in [20] and [29].
Assume that h € A,(R") for some y € (1,2] and Q € LYS"™) for some g € (1,2] satisfy (1.1) and (1.2). Thanks to
Minkowski’s inequality, we have that

r 1/r
0 3 A _ QWh(pX),, | dt
Mpaa D00 < 3 [ e | RO b
0 27 t<p () <27t / (31)
0 1/r
2T rd
= | [ raereor S
0

Let ¥ € C® be supported in {|t| < 1} and (t) = 1 for || < 1/2. For 1 < s < N, t > 0 and ¢ € R", define the
family of measures {w; s} by

w5 () = &;ﬂ(f) H ¢(¢(t)j|Rjﬂ.ZQj(<f)|)— U/ﬁ,_t\l(f) H 'I)(¢(t)i|Rjﬂ\ZQj(f)|)’ (3.2)

S<j<N s—1<j<N
where v; = rank(L;); R;: RY — RY and Q;: R" — R" are two nonsingular linear transformations satisfying
IRIQ ()] < ILj(©)] < CIRmQ(&)] (3.3)

and nv']f is a projection operator from R" to RY. It is easy to check that

N
Uilu\,]t = Z W, s, (3.4)
s=1

which leads to
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1/r

N [ N
dt
M oaH) <CY j lwy,s ><f(X)|'T = C ) M(f) ()
s=1 s=1
Let 6 = 277, and let {I}}xez be a smooth partition of unity in (0, o), such that

suppli < [pOF )=, p(OFYS], Y L(t) =1,

keZ

/T (t) Q
dt/ ti
Let A/kF) ¢) = [}((|Rsﬂ12 Qs (§)|)f (£). Then, for f € S(R"), one can deduce

0<Il<1, and ‘ < forje N, and t> 0.

Ms(Hx) < €Y G ()0,

jeZ

where
l/r

G0 () = j (F2i00 ) |, ,

Fej £) = Y Ay X Wes X (F) X)X gk gior (8).
keZ

By the definition of w;s, Lemma 2.3, and Littlewood-Paley theorem, we obtain that

g+ 1/r
16Dl g < j w15 % AT
Hk

LP (R")

<C(g - D" (y = )7V lhlla, & 1202 gy

1/r
(Z |Aj+kf|r]

keZ

L’ RY
<C(g - )V (y = DV |Rlla, @y 1202 1y WAl ey

for r < p < oo; and

1G5 Mo oy < €@ = D7y = 17 hlla, @y 19z 51y Wl o e
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(3.5)

(3.6)

(3.7)

(3.8)

for 1 < p < r. Howevere, the IP’-norm of Q(’) for the case p = r = 2 can be estimated as follows: Notice that for this

case, we have ||f|| Ry = Ifll;2®". So, by Lemma 2.2, the definition of w,, and Plancherel’s theorem, we obtain

9k+1

16D sy = 3 flAﬁk(IR 7 Q)1 PIF ©F j s OF Jag

keZ

9k+1

> | j|wts<s>|2 F @

keZ
B/+k 6

COy =17 q — DRI, e IOy o BRI g »

IA

IN

(3.9
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where

Bi.0 {& € R ¢ (6%1)S < [Rem) Qs (8)] < p (01}
B;

D57 Xy + DY Xy
and Dy > 1is a constant satisfies ¢(2f) > Dy¢p(¢) for all ¢ > 0. Therefore,
IG A2 gy < CBi (v = 1712(q = D72 lla, e 190z s I 2, oy (3.10)

Consequently, interpolation among (3.7), (3.8), and (3.10) and then using (3.5) and (3.6), we complete the proof
of Theorem 1.1. O

Proof of Theorem 1.2. To prove Theorem 1.2, we follow the same above arguments by invoking Lemmas
2.4-2.5 instead of Lemma 2.3 as well as 6 = 27 instead of 6 = 277, O

Acknowledgement: The author would like to thank Dr. Al-Qassem for his suggestions and comments on
this work.
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