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Abstract: In this article, we study the generalized parabolic parametric Marcinkiewicz integral operators
�

( )
Ω h Φ λ
r
, , , related to polynomial compound curves. Under some weak conditions on the kernels, we

establish appropriate estimates of these operators. By the virtue of the obtained estimates along with an
extrapolation argument, we give the boundedness of the aforementioned operators from Triebel-Lizorkin
spaces to Lp spaces under weaker conditions on Ω and h. Our results represent significant improvements
and natural extensions of what was known previously.
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1 Introduction

Throughout this article, let Rn (n ≥ 2) be the n-dimensional Euclidean space and Sn−1 be the unit sphere in
Rn equipped with the normalized Lebesgue surface measure dσ = dσ(·). Let α1, α2,…,αn be fixed real
numbers in the interval [1,∞). Define the function H: Rn × R+ → R by ( ) = ∑

=
H x ρ, i

n x
ρ1

i
αi

2

2 with x =
(x1, x2,…,xn) ∈ Rn. Then, for each fixed x ∈ Rn, the function H(x, ρ) is a strictly decreasing function in ρ > 0.
We denote the unique solution of the equation H(x, ρ) = 1 by ρ = ρ(x). Fabes and Riviére showed in ref. [1]
that (Rn, ρ) is a metric space, which is known by the mixed homogeneity space related to { } =αi i

n
1.

For ρ > 0, let Aρ be the diagonal n × n matrix:
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The change of variables related to the space (Rn, ρ) is given by the transformation
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Hence, dx = ρα−1J(x′)dρdσ(x′), where ρα−1J(x′) is the Jacobian of the above transforms,

∑ ∑′ ∈ = ( ′) = ( ′ )−

= =

x α α J x α xS , , and .n

i

n

i
i

n

i i
1

1 1

2

The authors of ref. [1] showed that J(x′) is a � ( )∞ −Sn 1 function, and there exists a constant L, such that
1 ≤ J(x′) ≤ L.

For a suitable mapping Φ: Rn → Rn, we define the generalized parabolic parametric Marcinkiewicz
integral operators �

( )
Ω h Φ λ
r
, , , , initially for ∞C0 functions on Rn, by

� ∫ ∫( )( ) = ( − ( ))
( ) ( ( ))

( )
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where r > 1; λ = τ + σi (τ, σ ∈ R with τ > 0); h: R+ → C is a measurable function; and Ω is a real valued
function on Rn, integrable on Sn−1 and satisfies the conditions.

( ) = ( ) ∀ >Ω A x Ω x ρ, 0,ρ (1.1)

∫ ( ′) ( ′) ( ′) =

−

Ω x J x σ xd 0.
Sn 1

(1.2)

We point out if α1 = ⋯ = αn = 1, then we have α = n, ρ(x) = |x| and (Rn,ρ) = (Rn,|·|). In this case, �
( )
Ω h Φ λ
r
, , , is

denoted by �
( )
Ω h Φ λ
r
, , , . Also, when Φ(u) = u, h = 1, and r = 2, then the operator �

( )
Ω h Φ λ
r c
, , ,
, , denote by � Ω λ, , reduces

to the classical parametric Marcinkiewicz integral operator. Historically, the operator � Ω λ, was introduced by
Stein [2] and proved the Lp (1 < p ≤ 2) boundedness of � Ω,1 provided that Ω ∈ Lipα(Sn−1) with 0 < α ≤ 1.
Subsequently, this result was investigated and improved by many researchers (see, for example, refs. [3–6]). The
study of the boundedness of the operator � Ω λ, was performed by Hörmander [7]. As a matter of fact, he showed
that if λ > 0 and Ω ∈ Lipα(Sn−1) with α > 0, then Lp(Rn) (1 < p <∞) boundedness of � Ω λ, is satisfied. Later on, the
study of the operator �

( )
Ω h Φ λ

c
, , ,

2, under very various conditions on the kernels has been considered by many
authors. For more information about the importance and the recent advances on the study of such operators, we
refer the readers to refs. [8–15], as well as ref. [16], and the references therein.

Conversely, there has been a considerable amount of mathematicians with respect to the study of the
boundedness of the generalized parametric Marcinkiewicz integrals �

( )
Ω h Φ λ
r c
, , ,
, . This operator was first

introduced by Chen et al. [17] and showed that whenever Φ(u) = u, h ≡ 1, and Ω ∈ Lq(Sn−1) for some q > 1,
then a positive constant C exists such that

� ≤ ∥ ∥( )

( ) ( )
f C fΩ h Φ λ

r c
L FR R, , ,

,
̇p n
p r

n
,

0 (1.3)

holds for all 1 < p, r < ∞, where f belongs to the homogeneous Triebel-Lizorkin space ( )F Ṙ p r
α n
, . Afterward,

Le [18] improved the aforementioned result. Precisely, he established the inequality (1.3) for all p, r ∈ (1,∞)
under the conditions that Φ(u) = u, Ω ∈ L(log L)(Sn−1) and ∈ ( ){ ′ }

+h Δ Rrmax ,2 . For the significance and recent
advances on the study of such operators, readers may refer to [16,19–22,23].

Although many problems concerning the boundedness of the operator �
( )
Ω h Φ λ
r c
, , ,
, remain open, the

investigation to verify the boundedness of the parametric Marcinkiewicz operators with mixed
homogeneity has been started.

Again when Φ(u) = u, λ = h = 1, and r = 2, then the operator �
( )
Ω h Φ λ
r
, , , recovers the classical parabolic

Marcinkiewicz integral operator, denoted by μΩ, which was introduced by Ding et al. [24]. In particular, Ding et al.
[24] proved that the parabolic Littlewood-Paley operator μΩ is of type (p,p) for all p ∈ (1,∞) provided that
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Ω ∈ Lq(Sn−1) for q > 1. Subsequently, the study of the Lp boundedness of �
( )
Ω h Φ λ, , ,
2 under various conditions on the

kernel functions has been carried out by many researchers (see, for example, refs. [25–30]).
Let us recall the definition of the Triebel-Lizorkin spaces. For 1 < p, r < ∞ and α ∈ R, the homogeneous

Triebel-Lizorkin space ( )F Ṙ p r
α n
, is defined by
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where �′ denotes the tempered distributions class on Rn,  ( ) = ( )−Λ ξ Γ ξ2k
k for k ∈ Z, and ∈ ( )∞Γ C Rn

0 is a
radial function satisfying the following conditions:
(i) 0 ≤ Γ ≤ 1;
(ii) { }⊂ ≤ | | ≤Γ ξ ξsupp : 21

2 ;
(iii) ( ) ≥ > ≤ | | ≤Γ ξ c ξ0 if 3

5
5
3 ;

(iv) ∑ ( ) = ( ≠ )
∈

−Γ ξ ξ2 1 0j
j

Z .

The following properties of the Triebel-Lizorkin space are well known (for more details, see ref. [31]).
(a) � ( )Rn is dense in ( )F Ṙ p r

α n
, ;

(b) ( ) = ( ) < < ∞F L pR Ṙ for 1p
n p n

,2
0

;
(c) ( ) ⊂ ( ) <F F r rR Ṙ ̇ ifp r

α n
p r
α n

, , 1 21 2 ;
(d) ( ( )) = ( )′ ′

−F FR Ṙ ̇p r
α n

p r
α n

,
⁎

, .

Let Δγ(R+) (for γ ≥ 1) denote the collection of all measurable functions h:[0,∞) → C, satisfying

∫∥ ∥ = | ( )| < ∞( )
>

/

+h
R

h ρ ρsup 1 d .Δ
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Also, let � ( )+Rγ denote the set of all measurable functions h: R+ → C that satisfy the condition

∑( ) = ( ) < ∞
=

∞

N h k d h2 ,γ
k

k γ
k

1

where ( ) = | ( )|
∈

−d h E j ksup 2 ,k
j

j

Z
with E(j,1) = {ρ ∈ (2j,2j+1]:|h(ρ)| ≤ 2} and E(j,k) = {ρ ∈ (2j,2j+1]:2k−1 < |h(ρ)| ≤ 2k}

for k ≥ 2.
It is clear that ( ) = ( ) ⊂ ( ) ⊂ ( ) < < < ∞+ ∞ + + +Δ L Δ Δ γ γR R R R for 1γ γ γ 2 11 2 and ( ) ⊂+Δ Rγ � ( )+R forβ

> < < ∞β γany 0 and 1 .
In this study, the class F denoted the set of all positive, increasing �1 functions ϕ:(0,∞) → R+

satisfying the following conditions:
(i) tϕ′(t) ≥ Cϕϕ(t) for all t > 0; and
(ii) ϕ(2t) ≤ cϕϕ(t) for all t > 0,where Cϕ, cϕ are independent of t. There are many model examples for the
class F such as td with d > 0, tι(ln(1 + t)κ) with ι, κ > 0, real-valued polynomials P on R with positive
coefficients and P(0) = 0, and so on.

Let us recall some useful spaces related to our work. For κ > 0, the space L(log L)κ(Sn−1) is denoted to
the set of all measurable functions Ω that satisfies

∫∥ ∥ = | ( )| ( + | ( )|) ( ) < ∞( ) ( )

( )

−

−

Ω Ω u Ω u σ ulog 2 d .L L S

S

log κ n

n

1

1

The block space that was introduced in ref. [32] is denoted by ( )( ) −B Sq
ν n0, 1 (for ν > −1 and q > 1).
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The main results of this paper are formulated as follows:

Theorem 1.1. Let ∈ϕ F, and let ( ) = ( ( ( ( ))) ( ( ( ))) ⋯ ( ( ( ))) )′ ′ ′Φ u P ϕ ρ u u P ϕ ρ u u P ϕ ρ u u, , , n n1 1 2 2 with Pj being real
valued polynomials on R satisfying Pj(0) = 0 for j = 1, 2,…, n. Suppose that Ω satisfies the conditions (1.1) and
(1.2), Ω ∈ Lq(Sn−1) for some 1 < q ≤ 2 and h ∈ Δγ(R+) for some 1 < γ ≤ 2. Then, for any ∈ ( )f F Ṙ p r

n
,

0
, there exists

a constant C > 0, such that

� ( ) ≤ ( − ) ( − ) ∥ ∥ ∥ ∥ ∥ ∥( )

( )

− −
( ) ( ) ( )

+ −f C q γ h Ω f1 1Ω h Φ λ
r

L Δ L FR R S R, , ,
1 1

̇p n γ
q n

p r
n1

,
0 (1.4)

for 1 < p < r; and

� ( ) ≤ ( − ) ( − ) ∥ ∥ ∥ ∥ ∥ ∥( )

( )

− / − /
( ) ( ) ( )

+ −f C q γ h Ω f1 1Ω h Φ λ
r

L
r r

Δ L FR R S R, , ,
1 1

̇p n γ
q n

p r
n1

,
0 (1.5)

for r ≤ p < ∞.

Theorem 1.2. Φ and Ω be given as in Theorem 1.1. Assume that h ∈ Δγ(R+) for some γ > 2. Then, there is a
positive constant C, such that

� ( ) ≤ ( − ) ∥ ∥ ∥ ∥ ∥ ∥( )

( )

− /
( ) ( ) ( )

+ −f C q h Ω f1Ω h Φ λ
r

L
r

Δ L FR R S R, , ,
1

̇p n γ
q n

p r
n1

,
0 (1.6)

for 1 < p < r if r ≤ γ′ and 2 < γ < ∞; and

� ( ) ≤ ( − ) ∥ ∥ ∥ ∥ ∥ ∥( )

( )

− /
( ) ( ) ( )

+ −f C q h Ω f1Ω h Φ λ
r

L
r

Δ L FR R S R, , ,
1

̇p n γ
q n

p r
n1

,
0 (1.7)

for γ′ < p < ∞ if 2 < γ ≤ ∞ and γ′ < r.

By the conclusions from Theorems 1.1 and 1.2 and following the same extrapolation arguments used in
refs. [9,20,29,33,34], we have the following:

Theorem 1.3. Suppose that Ω satisfies (1.1) and (1.2), Φ is given as in Theorem 1.1 and �∈ ( )/ +h Rr1 .

(i) If ( )
∈ ( ) >

−
−Ω B qS for some 1q n0, 1 1r

1

, then

� ( )( ) ≤ + ∥ ∥ ( + ( ))∥ ∥( )

( ) ( )
/ ( )−

−
f C Ω N h f1 1Ω h Φ λ

r
L B

r FR S R, , , 1 ̇p n
q

r n p r
n0, 1 1 1 ,

0










for r ≤ p < ∞; and
(ii) If Ω ∈ L(log L)1/r(Sn−1), then

� ( )( ) ≤ + ∥ ∥ ( + ( ))∥ ∥( )

( ) ( ) ( ) / ( )
/ −f C Ω N h f1 1Ω h Φ λ

r
L L L r FR S R, , , log 1 ̇p n r n

p r
n1 1

,
0

for r ≤ p < ∞.

Theorem 1.4. Let Ω, Φ be given as in Theorem 1.3, and let �∈ ( )+h R1 .

(i) If ∈ ( ) >( ) −Ω B qS for some 1q
n0,0 1 , then

� ( )( ) ≤ + ∥ ∥ ( + ( ))∥ ∥( )

( ) ( ) ( )
( ) −f C Ω N h f1 1Ω h Φ λ

r
L B FR S R, , , 1 ̇p n q

n
p r

n0,0 1
,

0

for 1 < p < r; and
(ii) If Ω ∈ L(log L)(Sn−1), then

� ( )( ) ≤ + ∥ ∥ ( + ( ))∥ ∥( )

( ) ( )( ) ( )
−f C Ω N h f1 1Ω h Φ λ

r
L L L FR S R, , , log 1 ̇p n n

p r
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,
0

for 1 < p < r.
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Theorem 1.5. Let Ω satisfies (1.1) and (1.2), h ∈ Δγ(R+) for some γ > 2 and Φ be given as in Theorem 1.1.

(i) If ( )
∈ ( ) >

−
−Ω B qS for some 1q n0, 1 1r

1

, then

� ( )( ) ≤ + ∥ ∥ ∥ ∥ ∥ ∥( )

( ) ( )
( ) ( )−

−
+f C Ω h f1Ω h Φ λ

r
L B

Δ FR S
R R, , , ̇p n

q
r n γ p r

n0, 1 1 1 ,
0











for 1 < p < r if r ≤ γ′ and 2 < γ < ∞; and for γ′ < p < ∞ if γ′ < r and 2 < γ ≤ ∞.
(ii) If Ω ∈ L(log L)1/r(Sn−1), then

� ( )( ) ≤ + ∥ ∥ ∥ ∥ ∥ ∥( )

( ) ( ) ( ) ( ) ( )
/ − +f C Ω h f1Ω h Φ λ

r
L L L Δ FR S R R, , , log ̇p n r n γ p r

n1 1
,

0

for 1 < p < r if r ≤ γ′ and 2 < γ < ∞; and for γ′ < p < ∞ if γ′ < r and 2 < γ ≤ ∞.
The constant = ( )

≤ ≤

C Cn λ p ϕ P, , , ,max deg
j n

j
1

in Theorems 1.1–1.5 is independent of Ω, h, γ, q, and the coefficients of
Pj for 1 ≤ j ≤ n.

It is worth mentioning to the following remark related to our results and their optimality.

Remark 1.6. (1) Al-Qassem and Al-Salman [6] found that � Ω,1 is bounded on Lp(Rn) for 1 < p < ∞ under
the condition ∈ ( )( − / ) −Ω B Sq

n0, 1 2 1 with q > 1. Moreover, they established the optimality of the condition
∈ ( )( − / ) −Ω B Sq

n0, 1 2 1 in the sense that the exponent −1/2 in ( )( − / ) −B Sq
n0, 1 2 1 cannot be replaced by any smaller

number −1 < ε < −1/2 for the L2 boundedness of � Ω,1 to hold.

(2) Walsh [4] proved that � Ω,1 is bounded on L2(Rn) whenever Ω ∈ L(log L)1/2(Sn−1). Furthermore, he
showed that the condition Ω ∈ L(log L)1/2(Sn−1) is optimal in the sense that the operator � Ω,1 may lose the
L2 boundedness if Ω is assumed to be in the space Ω ∈ L(log L)ε(Sn−1) for some 0 < ε < 1/2.

(3) If Φ(u) = u, then, Al-Qassem et al. [20] established the boundedness of the parametric Marcinkiewicz
integral operator �

( )
Ω h Φ λ
r c
, , ,
, under the same our conditions on Ω, h, and r.

(4) The Lp boundedness of the parametric Marcinkiewicz operators with mixed homogeneity �
( )
Ω h Φ λ, , ,
2 was

satisfied [29] only when �∈ ( )/ +h R1 2 , Ω ∈ L(log L)1/2(Sn−1), and Φ is given as in Theorem 1.1.

Here and henceforth, the letter C denotes a positive constant that may be different at different
occurrences and independent of the essential variables.

2 Some notations and lemmas

In this section, we give some lemmas, which we shall need in the proof of the main results. Let = ( )
≤ ≤

N Pmax deg
j n

j
1

.

For 1 ≤ s ≤ N and 1 ≤ l ≤ n, let ( ) = ∑( )
=

P t c tl
s

i
s

i l
i

1 , and ( ) = ( ( ) … ( ))( ) ( ) ( )P t P t P t, ,s s
n

s
1 . Set P(0)(t) = 0,

( ) = ∑
=

P t c tl i
N

i l
i

1 , with 1 ≤ l ≤ n and ( ) = ( ( ( ( ))) ′ ( ( ( ))) ′ … ( ( ( ))) ′)( ) ( ) ( )Φ u P ϕ ρ u u P ϕ ρ u u P ϕ ρ u u, , ,s
s s

n
s

n1 1 2 2 .
Let θ ≥ 2. For a suitable measurable function h: R+ → C, a suitable function ϕ: R+ → R, and Ω: Sn−1 → R,

we define the family of measures { = ∈ ≤ ≤ }+σ σ t s NR: : , 1Ω ϕ h t
s

h t
s

, , , , and the corresponding maximal
operators σh s,

⁎ and Mh,θ,s on Rn by

 ∫( ) =
( ) ( ( ))

( )
)−

/ ≤ ( )≤

− ⋅ ( )
−

σ ξ t Ω u h ρ u
ρ u

ue d ;h t
s λ

t ρ u t

iξ Φ u
α λ,

2

s

( )( ) = × ( )
∈ +

σ f x σ f xsup ;h s
t

h t
s

R
,

⁎
,

and
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∫( )( ) = || | × | ( )|
∈

+

M f x σ f x t
t

sup d ,h θ s
k

θ

θ

h t
s

Z
, , ,

k

k 1

where

∑ ∑⋅ ( ) = ′ ( ( ( ))) = ( ( )⋅ ′) ( ( ))
=

( )

=

ξ Φ u ξ u P ϕ ρ u L ξ u ϕ ρ u ,s
l

n

l l
s

i

s

i l
i

1 1

Li: R
n → Rn is given by Li(ξ) = (ci,1ξ1,…,ci,nξn), and σh t

s
, is defined in the same way as σh t

s
, , but with replacing

h by |h| and Ω by |Ω|. We write σh t
s
, for the total variation of σh t

s
, .

We shall need the following lemma from ref. [29].

Lemma 2.1. Let Ω ∈ Lq(Sn−1) for some 1 < q ≤ 2 satisfying (1.1) and (1.2), h ∈ Δγ(R+) for some 1 < γ ≤ 2, and
θ = 2q′γ′. Suppose that ∈ϕ F. Then, for 0 ≤ s ≤ N and any 1 < p < ∞, the following inequalities

∥ ( )∥ ≤ ( − ) ( − ) ∥ ∥ ∥ ∥ ∥ ∥( )
− −

( ) ( ) ( )+ −M f C q γ h Ω f1 1 ,h θ s L Δ L LR R S R, ,
1 1p n

γ
q n p n1 (2.1)

( ) ≤ ( − ) ( − ) ∥ ∥ ∥ ∥ ∥ ∥
( )

− −
( ) ( ) ( )+ −σ f C q γ h Ω f1 1 ,h s L Δ L LR R S R,

⁎ 1 1
p n γ

q n p n1 (2.2)

hold, where the positive constant C = Cn,p,ϕ is independent of h, Ω, γ, q, and the coefficients of Pj for 1 ≤ j ≤ n.

By using Lemma 2.2 from [29], we directly obtain the following lemma.

Lemma 2.2. Let Ω, ϕ be given as in Lemma 2.1, and let h ∈ Δγ(R+) for some γ > 1. Then, for any 1 ≤ s ≤ N,
t > 0 and ξ ∈ Rn, there exists a constant C > 0, such that

 { ( ) ( ) } ≤ ∥ ∥ ∥ ∥( ) ( )
+ −σ σ ξ σ ξ C h Ωmax , , ,h t

s
h t
s

h t
s

Δ LR S, , , γ
q n 1 (2.3)

  { ( ) − ( ) ( ) − ( ) } ≤ ∥ ∥ ∥ ∥ ( ( ) | ( )|)− −
( ) ( )− + ′ ( )σ ξ σ ξ σ ξ σ ξ C Ω h ϕ t L ξmax , ,h t

s
h t
s

h t
s

h t
s

L Δ
s

sS R, ,
1

, ,
1 q n

γ
sq A γ1

1
2 (2.4)

 { ( ) ( ) } ≤ ∥ ∥ ∥ ∥ ( ( ) | ( )|)( ) ( )− + ′ ( )σ ξ σ ξ C Ω h ϕ t L ξmax , ,h t
s

h t
s

L Δ
s

sS R, , q n
γ

sq A γ1
1

2 (2.5)

where ( ) =
′ < ≤

>
A γ

γ γ
γ

if 1 2,
1 if 2.




. The constant C is independent of Ω, h, γ, and q, but depends on ϕ.

To prove Theorem 1.1, we employ the next lemmas with arguments similar to those in refs. [20] and [29].

Lemma 2.3. Let h ∈ Δγ(R+) for some 1 < γ ≤ 2 and Ω ∈ Lq(Sn−1) for some 1 < q ≤ 2 and θ = 2q′γ′. Assume that ϕ is
given as in Lemma 2.1, and r is a real number with r > 1. Then, for 0 ≤ s ≤ N, there exists a constant C > 0, such that

∫∑

∑

× ≤ ( − ) ( − )

× ∥ ∥ ∥ ∥ ≤ < ∞

∈

/

( )

− −

( ) ( )

∈

/

( )

+

+ −

σ g t
t

C q γ

h Ω g r p
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(2.6)

and
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hold for arbitrary functions {gk(·), k ∈ Z} on Rn. The constant C = Cn,p,ϕ is independent of Ω, h, γ, q, and the
coefficients of {Pj} for all 1 ≤ j ≤ n.

Proof. First, we prove (2.6). For fixed p with r ≤ p < ∞, by duality, there is a nonnegative function
ψ ∈ L(p/r)′(Rn) with ≤( )( / ) ′ψ 1L Rp r n , such that
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A simple change of variable and Hölder’s inequality lead to
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Hence, by (2.8) and (2.9) and Hölder’s inequality, we have that
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where (− ) = ( )ψ x ψ x˜ . Therefore, by Lemma 2.1 and the assumption on ψ, we obtain
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for r < p < ∞. Now if p = r, then by Hölder’s inequality (2.9) and Lemma 2.1, we obtain
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(2.11)

which shows that (2.6) is satisfied for the case p = r.
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Next, we prove (2.7). Let 1 < p < r. By the duality, there exist functions {φk(x,t)} defined on Rn × R+

with ( )∥ ∥ ≤[ ]
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Since p′ > r′, there is a nonnegative function b ∈ L(p′/r′)(Rn), such that
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Following the same above argument, we obtain
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where ( ) = (− )b x b x˜ . Therefore, the inequality (2.7) follows from (2.12) and (2.14). This completes the proof
of Lemma 2.3. □

In the same manner, we establish the following:

Lemma 2.4. Let h ∈ Δγ(R+) for some 2 ≤ γ <∞ and Ω ∈ Lq(Sn−1) for some 1 < q ≤ 2 and θ = 2q′. Suppose that ϕ
is given as in Lemma 2.1, and r is a real number with r ≤ γ′. Then, for 0 ≤ s ≤ N and 1 < p < r, a positive
constant C exists such that the inequality
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holds for arbitrary functions {gk(·), k ∈ Z} on Rn. The constant C = Cn,p,ϕ is independent of Ω, h, γ, q, and the
coefficients of {Pj} for all 1 ≤ j ≤ n.
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Proof. Let 1 < p < r with r ≤ γ′, by the duality, there are functions {φk(x,t)} defined on Rn × R+ with
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where
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Since γ ≥ 2 and γ ≤ r′, we get that r ≤ γ′ ≤ 2 ≤ γ. So by Hölder’s inequality, we obtain
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Notice that for any b ∈ Lp(Rn) with 1 < p < ∞, we have
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Since p′ > r′, there is a nonnegative function b ∈ L(p′/r′)(Rn), such that
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Hence, by simple change of variables, Hölder’s inequality, and (2.16)–(2.18), we obtain
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Therefore, when we combine (2.19) by (2.15), we complete the proof of Lemma 2.4 □
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Lemma 2.5. Let Ω, h, ϕ, and θ be given as in Lemma 2.4, and let r be a real number with r > γ′. Then, for
0 ≤ s ≤ N and γ′ < p < ∞, there exists a constant C > 0, such that
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for arbitrary functions {gk(·), k ∈ Z} on Rn. The constant C = Cn,p,ϕ is independent of Ω, h, γ, q, and the
coefficients of {Pj} for all 1 ≤ j ≤ n.

Proof. We follow the same aforementioned procedure as in (2.9); by a change of variable and Hölder’s
inequality, we obtain
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Since γ′ < p < ∞ with γ′ < r, then by duality, there exists a nonnegative function ψ ∈ L(p/r′)(Rn) with ‖ψ‖L(p/r′)′
(Rn) ≤ 1, such that
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Hence, by (2.20), simple change of variable, Hölder’s inequality, and (2.17), we obtain
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where ( ) = (− )ψ x ψ x˜ . Since 1 < q ≤ 2, we deduce that
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for all γ′ < p < ∞ with γ ≥ 2. On the other hand, by Hölder’s inequality and (2.17), one can check that
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Consequently, by interpolation (2.22) with (2.23), and using the fact
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This completes the proof of Lemma 2.5. □

3 Proof of the main results

Proof of Theorem 1.1. We prove Theorem 1.1 by applying similar techniques used in [20] and [29].
Assume that h ∈ Δγ(R+) for some γ ∈ (1,2] and Ω ∈ Lq(Sn−1) for some q ∈ (1,2] satisfy (1.1) and (1.2). Thanks to
Minkowski’s inequality, we have that
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(3.1)

Let �∈ ∞ψ 0 be supported in {|t| ≤ 1} and ψ(t) ≡ 1 for |t| ≤ 1/2. For 1 ≤ s ≤ N, t > 0 and ξ ∈ Rn, define the
family of measures {ωt,s} by

 ∏ ( ) ∏ ( )( ) = ( ) ( ) ( ) − ( ) ( ) ( )
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where νj = rank(Lj); →R R R:j
ν νj j and Qj: R

n → Rn are two nonsingular linear transformations satisfying

( ) ≤ ( ) ≤ ( )R π Q ξ L ξ C R π Q ξj ν
n

j j j ν
n

jj j (3.3)

and πν
n
j is a projection operator from Rn to Rνj. It is easy to check that

∑=
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t s,
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, (3.4)

which leads to
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Let θ = 2q′γ′, and let {Γk}k∈Z be a smooth partition of unity in (0,∞), such that
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By the definition of ωt,s, Lemma 2.3, and Littlewood-Paley theorem, we obtain that
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for r ≤ p < ∞; and
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for 1 < p < r. Howevere, the Lp-norm of �
( )
j s
r
, for the case p = r = 2 can be estimated as follows: Notice that for this

case, we have ∥ ∥ = ∥ ∥
( ) ( )f fF LR Ṙ n n
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0 2 . So, by Lemma 2.2, the definition of ωt,s, and Plancherel’s theorem, we obtain
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(3.9)
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and Dϕ > 1 is a constant satisfies ϕ(2t) ≥ Dϕϕ(t) for all t > 0. Therefore,
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Consequently, interpolation among (3.7), (3.8), and (3.10) and then using (3.5) and (3.6), we complete the proof
of Theorem 1.1. □

Proof of Theorem 1.2. To prove Theorem 1.2, we follow the same above arguments by invoking Lemmas
2.4–2.5 instead of Lemma 2.3 as well as θ = 2q′ instead of θ = 2q′γ′. □
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