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Abstract: The goal of this work is to introduce and study two new types of ordered soft separation axioms,
namely soft T;-ordered and strong soft T;-ordered spaces (i = 0, 1, 2, 3, 4). These two types are formulated
with respect to the ordinary points and the distinction between them is attributed to the nature of the mono-
tone neighborhoods. We provide several examples to elucidate the relationships among these concepts and to
show the relationships associate them with their parametric topological ordered spaces and p-soft T;-ordered
spaces. Some open problems on the relationships between strong soft T;-ordered and soft T;-ordered spaces
(i = 2, 3, 4) are posed. Also, we prove some significant results which associate both types of the introduced
ordered axioms with some notions such as finite product soft spaces, soft topological and soft hereditary
properties. Furthermore, we describe the shape of increasing (decreasing) soft closed and open subsets of soft
regularly ordered spaces; and demonstrate that a condition of strong soft regularly ordered is sufficient for
the equivalence between p-soft T;-ordered and strong soft T;-ordered spaces. Finally, we establish a number
of findings that associate soft compactness with some ordered soft separation axioms initiated in this work.

Keywords: monotone soft open set, monotone soft neighborhood, soft T;-ordered and strong soft T;-ordered
spaces (i=0,1,2,3,4)
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1 Introduction

The study of the concept of topological ordered spaces was presented for the first time by Nachbin [1]. He has
constructed this concept by adding a partial order relation to the structure of a topological space. With regard
to Nachhin’s definition of topological ordered spaces, two points can be considered, the first one is that the
topology and the partial order relation operate independently of one another, and the second one is that the
topological ordered spaces are one of the generalizations of topological spaces. After Nachbin’s work, many
researchers carried out various studies on ordered spaces (see, for example, [2-5]).

Zadeh [6] introduced the notion of fuzzy sets in 1965 as mathematical instruments for dealing with un-
certainties. To put a topological structure to fuzzy set theory, Chang [7] has defined fuzzy topological spaces.
Then Katsaras [8] combined a partial order relation and a fuzzy topology to define a fuzzy topological ordered
space.

In 1999, the notion of soft sets was proposed by Molodtsov [9] to overcome problems associated with un-
certainties, vagueness, impreciseness and incomplete data. This notion includes enough parameters which
make it a suitable alternative for the previous mathematical approaches such as fuzzy and rough sets. The
useful applications of soft sets to several directions contribute to progress work on it rapidly (see, for exam-
ple, [10, 11]). The concept of soft topological spaces was introduced by Shabir and Naz in their pioneer work
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[12]. Then many studies on soft topological spaces have been done (see, for example, [13-18]). El-Shafei et
al. [19] introduced partial belong and total non-belong relations which are more functional and flexible for
theoretical and application studies via the soft set theory and soft topologies. Then they employed these two
new notions to present new soft separation axioms, namely p-soft T;-spaces (i = 0, 1, 2, 3, 4). The authors
of [20-25] have done some amendments for some alleged results on soft axioms. Al-shami and Koc¢inac [26]
explored the equivalence between the extended and enriched soft topologies and has obtained some inter-
esting results related to the parametric topologies. The authors of [27, 28] introduced different types of soft
axioms on supra soft topological spaces.

In [29], the authors formulated the concepts of monotone soft sets and soft topological ordered spaces as
a new soft structure. They also have utilized the natural belong and total non-belong relations to introduce
the notions of p-soft T;-ordered spaces (i = 0, 1, 2, 3, 4). In [30] we studied and investigated these notions on
supra soft topological ordered spaces.

The topic of soft separation axioms is one of the most significant and interesting in soft topology. In
general, soft separation axioms are utilized to obtain more restricted families of soft topological spaces. It
turns out, from the previous studies, that there are many points of view to study soft separation axioms. The
diversity of these perspectives is attributed to the relations of belong and non-belong that are used in the
definitions; and the objects of study, ordinary points or soft points (see, for example, [12, 19, 31-34]). The
variety of ordered soft separation axioms will be more extended, because the soft neighborhoods and soft
open sets is distinguished according to the partially ordered soft set.

As a contribution of study ordered soft separation axioms, the authors devote this work to defining and
investigating two types of ordered soft separation axioms, namely soft T;-ordered and strong soft T;-ordered
spaces (i = 0,1, 2, 3, 4). With the help of examples, we illustrate the relationships among them. Also, we
derive their fundamental features such as the finite product of soft T;-ordered (resp. strong soft T;-ordered)
spaces is soft T;-ordered (resp. strong soft T;-ordered) for i = 0, 1, 2; and the property of being a soft T;-
ordered (strong soft T;-ordered) space is a soft topological ordered property fori = 0, 1, 2, 3, 4. Moreover,
we investigate certain properties of them that associated with some notions of soft ordered topology such as
soft ordered topological invariant and soft compatibly ordered subspaces. In the end of both Section (3) and
Section (4), we discuss some results about the relationships between soft compact spaces and some of the
initiated ordered soft separation axioms.

2 Preliminaries

This section is allocated to recall some definitions and well known results which we shall utilize them in the
next parts of this work.

2.1 Soft set

Definition 2.1. [9] A pair (G, E) is said to be a soft set over X provided that G is a mapping of a parameters set
E into 2%,

For short, we use the notation Gg instead of (G, E) and we express a soft set G as follows: Gg = {(e, G(e)) :
e ¢ Eand G(e) ¢ 2% 1. Also, we use the notation S(Xg) to denote the collection of all soft sets defined over X
under a set of parameters E.

Definition 2.2. [12, 19] For a soft set Gg over X and x € X, we say that:

(i) x € Ggifx € G(e) foreach e ¢ E; and we say that x ¢ Gg if x ¢ G(e) for some e € E;
(ii) x € G ifx € G(e) for some e € E; and we say that x @ G if x ¢ G(e) foreach e € E.
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Definition 2.3. [11] Gg over X is called a null soft set (resp. an absolute soft set) if G(e) = 0 (resp. G(e) = X) for

each e € E; and it is denoted by ) (resp. X).

Definition 2.4. [35] Gy over X is called a soft point if there are e € E and x € X such that G(e) = {x} and
G(b) =0 foreach b € E\ {e}.
A soft point will be shortly denoted by P and we say that P} € Gg provided that x € G(e).

Definition 2.5. [19] G over X is said to be stable if there is S C X such that G(e) = S for each e € E.

Definition 2.6. [10] The relative complement of Gg, denoted by G, is a mapping G° : E — 2% defined by
G°(e) =X\ G(e) foreache € E.

Definition 2.7. [36] G4 is a soft subset of Gg if A C B and G(a) C F(a) forall a € A.

Definition 2.8. [11] The union of soft sets G4 and Fgp over X, denoted by GAOF B, IS the soft set Vp, where
D = A|JB and a mapping V : D — 2% is defined as follows:

G(d) : deA-B
v(a) = F(d) : deB-A
G(d)JFd) : deANB

Definition 2.9. [10] The intersection of soft sets G, and Fg over X, denoted by G, ﬁF B, IS the soft set V|, where
D =ANB #0,and a mapping V : D — 2% is defined by V(d) = G(d) N F(d) foralld € D.

Definition 2.10. [37] Let G, and Hg be two soft sets over X and Y, respectively. Then the cartesian product of
G4 and Hy is denoted by (G x H) 4.5 and is defined as (G x H)(a, b) = G(a) x H(b) foreacha € A and b € B.

Definition 2.11. [35] A soft mapping f of S(X,) into S(Y3) is a pair of mappingsf : X — Yand¢ : A — B
such that for soft subsets G and Hy of S(X,) and S(Yg), respectively, we have:

(i) f4(Gg) = (f$(G))p is a soft subset of S(Yp) such that

U fG@) : ¢ (b)NK#D
f(G)(b) = ¢ acpr)NK
0 dTHBNK=0

foreach b € B;
(i) f(;l(HL) = (f¢jl(H))A is a soft subset of S(X,) such that

fUH@P@) : ¢la)eL

—1 _
f3 (H)(a)—{ 0 e

foreach a € A.

Definition 2.12. [35] A soft mapping fy : S(X4) — S(Yp) is said to be injective (resp. surjective, bijective) if the
two mappings f and ¢ are injective (resp. surjective, bijective).

Proposition 2.13. [35] For a soft mapping fg : S(X4) — S(Yp), we have the following results:

(8] GAifJ;lf(p(GA)fOV each G, € S(X4); andfd)fq;l(HB)iHBfor each Hg € S(Yp);
(i) Iff, is injective (resp. surjective), then G, = f¢71 f(Ga) (resp. f¢f¢jl(H 5) = Hp).

Proposition 2.14. [29] Let f : S(X,) — S(Y3) be a soft mapping. Then

(i) The image of any soft point is a soft point;
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(ii) Iff is bijective, then the inverse image of any soft point is a soft point.

Definition 2.15. [38] A binary relation < on X # ( is said to be a partial order relation if it is reflexive, anti-
symmetric and transitive. An element x € X is said to be the smallest (resp. largest) element of X if x < y (resp.
y=x)forally € X.

Henceforth, a diagonal relation {(x, x) : x € X} on X is denoted by A.

Definition 2.16. [29] (X, E, <) is said to be a partially ordered soft set on X # 0 if (X, <) is a partially ordered
set. For two soft points PX and P, in (X, E, <), we say that PX < P} ifx < y.

Definition 2.17. [29] An increasing operator i and a decreasing operator d are two soft maps of (S(Xg), <) into
(S(Xg), =) defined as follows: for each soft subset Gg of S(Xg)

(i) i(Gg) = iGg, where iG is a mapping of E into P(X) given by iG(e) = i(G(e)) = {x € X : b < x for some
b € G(e)};

(ii) d(Gg) = dGg, where dG is a mapping of E into P(X) given by dG(e) = d(G(e)) = {x € X : x <X b for some
b € G(e)}.

Definition 2.18. [29] A soft subset Gg of (X, E, <) is said to be increasing (resp. decreasing) provided that
Gg = i(Gg) (resp. Gg = d(Gg)).

Theorem 2.19. [29] The finite product of increasing (resp. decreasing) soft sets is increasing (resp. decreasing).
Definition 2.20. [29] A soft map f : (S(X4), <1) — (S(Y3), =,) is said to be:

(i) increasing (resp. decreasing) provided that Py <1 P} implies fs(P) <, f5(P) (resp. f¢(PY) =2 f5(P}));
(iii) an ordered embedding provided that Py =<1 P} if and only if f4(P}) < f4(P).

Theorem 2.21. [29] Let f : (S(X4), =1) — (S(Yp), =<>) be a bijective ordered embedding soft mapping. Then
the image of each increasing (resp. decreasing) soft set is increasing (resp. decreasing).

2.2 Soft topology

Definition 2.22. [12] A family T of soft sets over X under a fixed parameters set E which contains X and @ and
is closed under finite soft intersection and arbitrary soft union is said to be a soft topology on X.

The triple (X, 7, E) is said to be a soft topological space (briefly, STS). Every member of T is called soft open and
its relative complement is called soft closed.

Proposition 2.23. [12] If (X, T, E) is an STS, then a family 7. = {G(e) : Gg € 1} forms a topology on X for each
ecE.

The notation 7., which is given in the proposition above, is said to be a parametric topology and (X, 7¢)
is said to be a parametric topological space.

Definition 2.24. [35] A soft subset W of (X, T, E) is called a soft neighborhood of x € X if there exists a soft
open set Gg such that x € GgCWg.

Definition 2.25. [35, 39] A soft mapping fy : (X, 7, A) — (Y, 6, B) is said to be:

(i) soft continuous if the inverse image of each soft open set is soft open;
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(ii) soft open (resp. soft closed) if the image of each soft open (resp. soft closed) set is soft open (resp. soft
closed);
(iii) a soft homeomorphism if it is bijective, soft continuous and soft open.

Definition 2.26. [13] A collection {G;, : i € I} of soft open sets is called a soft open cover of (X, 1, E) if
X= Ul c1Gip- And (X, 7, E) is called soft compact if every soft open cover of X has a finite subcover.

Proposition 2.27. [13] Every soft closed subset H, of a soft compact space is soft compact.

Theorem 2.28. [13] Let (X, 7, A) and (Y, 0, B) be two STSs. Let Q = {G4 x Fg : G4 € T and Fg € 0}. Then the
family of all arbitrary unions of elements of Q is a soft topologyon X x Y.

Definition 2.29. [1] A triple (X, 7, <) is said to be a topological ordered space, where < and T are respectively
a partial order relation and a topology on X # ().

Definition 2.30. [29] A quadrable system (X, 1, E, <) is said to be a soft topological ordered space, where
(X, 7, E) is a soft topological space and (X, <) is a partially ordered set.
We will write from now on STOS instead of a soft topological ordered space.

Definition 2.31. [29] A soft subset W of (X, T, E, <) is said to be an increasing (resp. a decreasing) soft neigh-
borhood of x € X if Wk is increasing (resp. decreasing) and a soft neighborhood of x € X.

Proposition 2.32. [29] In (X, 7, E, <) we find that for each e € E, the family e = {G(e) : Gg € T} witha
partial order relation < form an ordered topology on X.

Definition 2.33. [29] Let Y C X. Then (Y, Ty, =<y, E) is called a soft ordered subspace of (X, 7, =<, E) provided
that (Y, Ty, E) is soft subspace of (X, 7, E) and <y=< (Y x Y.

Lemma 2.34. [29] If Uy is an increasing (resp. a decreasing) soft subset of (X, 7, <, E), then UErNﬁ/ is an in-
creasing (resp. a decreasing) soft subset of a soft ordered subspace (Y, Ty, <y, E).

Definition 2.35. [29] The product of a finite family of soft topological ordered spaces {(X;, T;, =i, E;) : 1 €
{1,2,...,n}}isan STOS (X, 1, X, E), where X = H?:1 X, T is the product soft topology on X, E = H?;l E; and
=<={(x,y) : x,y € X} such that (x;, y;) €=; forevery i.

Lemma 2.36. [29] If Hg ., is a decreasing (resp. an ingeasing) soft closed subset of a soft ordered product
space (Xx Y, Ty x Ty, E1 x E, X), then Hg, ., = [G, x YIUIX x Fg, |, for some increasing (resp. decreasing) soft
opensets Gg, € 11 and Fg, € T».

Definition 2.37. [29] A soft ordered subspace (Y, Ty, <y, E) of (X, T, =, E) is called a soft compatibly ordered
provided that for each increasing (resp. decreasing) soft closed subset Hg of (Y, Ty, 2y, E), there exists an
increasing (resp. a decreasing) soft closed subset H, of (X, T, <, E) such that Hg = YﬁH B

Definition 2.38. [29] A soft topological ordered property or soft ordered topological invariant is a property of
a soft topological ordered space which is invariant under ordered embedding soft homeomorphism mappings.

Theorem 2.39. [29] (X, 7, E, <) is upper (resp. lower) p-soft T1-ordered if and only if (i(x))g (resp. (d(x))g) is
soft closed, for all x € X.
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3 Ordered soft separation axioms

In this section, we formulate the concepts of soft T;-ordered spaces (i = 0, 1, 2, 3, 4) by using monotone soft
neighborhoods and establish some of their properties. With the help of illustrative examples, we elucidate
the relationship between them; and the interrelations between them and their parametric topological ordered
spaces.

Definition 3.1. A soft subset Wg of (X, 7, E, <) is said to be:

(i) partially containing x provided that x € Wg;

(ii) partially soft neighborhood of x, provided that there exists a soft open set Gg such that x € FgC W;

(iii) an increasing (resp. a decreasing) partially soft neighborhood of x € X provided that W is an increasing
(resp. a decreasing) and partially soft neighborhood of x.

The following example illustrates the above definition.

Example3.2. Let E = {e1, e,} and <= A|J{(x,2)} be a partial order relation on X = {x,y, z}. Then T =
{®D, X, Gg} is a soft topology on X, where G = {(e1, 0), (e2, {x})}. Now, it can be noted that:

(i) A soft set Wg = {(e1, {y}), (e2, {x})} partially contains x because x € Wg. But Wg does not partially
contain z because z @ Wg;

(ii) Wy is a partially soft neighborhood of x because G, is a soft open set such that x € GgC Wg;

(iii) Wrg is a decreasing partially soft neighborhood of x because W, is decreasing and partially soft neighbor-
hood of x. On the other hand, i(Wg) = {(e1, {y}), (€2, {X, z})} # Wg. Then Wy is not increasing. Hence, Wg
is not increasing partially soft neighborhood of x.

Definition 3.3. (X, 7, E, <) is said to be:

(i) upper (resp. lower) soft T1-ordered if for every x £ y in X, there exists a decreasing (resp. an increasing) soft
neighborhood W, of y (resp. x) such that x ¢ Wg (resp.y ¢ Wg);

(iii) soft To-ordered ifit is upper soft T1-ordered or lower soft T1-ordered;

(iv) soft T1-ordered ifit is upper soft T1-ordered and lower soft T,-ordered;

(V) soft T»-ordered if for every x £ y in X, there exist disjoint an increasing soft neighborhood W of x and a
decreasing soft neighborhood Vi, of y.

Remark 3.4. The definition of a p-soft T,-ordered space in [29] reports that for every x £ y in X, there exist two
disjoint soft neighborhoods Wg and Vg containing x and y, respectively. This means thaty @ Wg and x & V.
Since Wg and Vg are disjoint theny & Wgifandonly ify ¢ Wg and x @ Vg if and only if x ¢ Vg. So the
definitions of soft T,-ordered and p-soft T,-ordered spaces are equivalent. Hence, all results concerning p-soft
T,-ordered spaces in [29] are still valid for soft T,-ordered spaces.

Proposition 3.5. Every soft T;-ordered space (X, 7, E, <) is soft T;_,-ordered fori = 1, 2.
Proof. The proof follows immediately from Definition (3.3). O
To show that the converse of the above proposition is not always true, we give the following two examples.

Example 3.6. Let E = {e1, e;} be a set of parameters and <= A J{(x, y), (x, 2)} be a partial order relation on
X = {x,y, z}. We define the soft sets {G;, : i = 1, 2, 3, 4} as follows:

Gi, = {(e1, {y}), (e2, {x, y D}
GZE = {(ela {Z})’ (62’ {X’ Z})};
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Gs; = {(e1,{y, z}), (e2, X})} and
G4E = {(61, 0), (eZa {X})}

Then T = {&3, X, Gy, : 1 =1,2,3,4} forms a soft topology on X. Now, fory 4 x andy £ z, we find that
Wg = {(e1, {y}), (e2, X)} is an increasing soft neighborhood of y such that x ¢ Wg and z ¢ Wg. Also, for z £ x
and z £y, we find that Wg = {(e1, {z}), (e2, X)} is an increasing soft neighborhood of z such that x ¢ W and
y & Wg. Therefore (X, 7, E, <) is a lower soft T1-ordered space. Hence, it is soft To-ordered. On the other hand,
there does not exist a soft neighborhood W, of x such thaty ¢ Wg or z ¢ Wg. This means that it is not an upper
soft T1-ordered space. Hence, (X, T, E, <) is not soft T,-ordered.

Example 3.7. Let E = {e1, e;} be a set of parameters and <= A|J{(1, 2), (2, 3), (1, 3)} be a partial order
relationon X = {1, 2, 3}. The soft sets {G;, : i = 1, 2, ..., 9} are defined as follows:

G, ={(e1,{1}), (e2, {2}1)};

Gy, = {(e1,{1}), (e2, {1,2})};
Gs, = {(e1,{1,2}),(e2, {21)};
Gy = {(e1,{1,2}),(e2,{1,2})};
Gs, = {(e1, {3}, (e2, X)};

Ge, = {(e1,0), (e2,{1,2})};

G7E = {(6’1, (Z)), (62, {2})},

GgE = {(61, (Z)), (6‘2, {1})} and
Go, = {(e1,{1,3}), (e2, X)}.

Thent = {5,)?, G, :1=1,2,...,9} forms a soft topology on X. Now, for 3 ﬁ 2and3 ﬁ 1, we find that Gs, is
an increasing soft neighborhood of 3 such that 2 ¢ Gs, and 1 ¢ Gs,; and Gy, is a decreasing soft neighborhood
of 2 and 1 such that 3 ¢ Gu,. Also, for 2 £ 1, we find that Wg = {(e1, X), (e2, {2, 3})} is an increasing soft
neighborhood of 2 and G, is a decreasing soft neighborhood of 1 such that 1 ¢ Wg and 2 ¢ G,,. Therefore,
(X, 7, E, x) is soft T1-ordered. In contrast, any soft open set containing 1 intersects any soft open set containing
2. Hence (X, 1, E, <) is not soft T,-ordered.

Proposition 3.8. If a is the smallest element of a finite upper soft T1-ordered space (X, 1, E, <), then there is
a decreasing soft neighborhood W of a such thaty ¢ Wy foreachy € X\ {a}.

Proof. Let a be the smallest element in (X, <). Then a < x for all x € X. Since < is anti-symmetric, then x % a
for all x € X. Therefore, there exists a decreasing soft neighborhood W of a such that x ¢ Wg. Since X is
finite, then (W is a decreasing soft neighborhood of a such thaty ¢ W for eachy € X\ {a}. O

Proposition 3.9. If a is the largest element of a finite lower soft T,-ordered space (X, 1, E, <), then there is an
increasing soft neighborhood W of a such thaty ¢ Gg foreachy € X\ {a}.

Proof. The proof is similar to that of Proposition (3.8). O

Proposition 3.10. If (X, 7, E, <) is a finite soft T,-ordered space, then for each x € X there is a soft open set
Gg containing x such thaty ¢ Gg foreachy € X \ {x}.

Proof. Let x € X. Since < is anti-symmetric, then x £ y ory £ x for all y € X. By hypothesis, there exists an
increasing soft neighborhood W of x or a decreasing soft neighborhood W, of x such that y ¢ Wg. Since X
is finite, then ﬁWE is a soft neighborhood of x such that y ¢ W for each y € X \ {a}. Hence, there is a soft
open set Gg such that x € GEQﬁWE. O

Theorem 3.11. (X, 7, E, <) is soft T,-ordered if and only if for all (x, y) ¢< there are soft open sets Ug and Vg
containing x and y, respectively, such that (a, b) ¢= forevery a € U(e) and b € V(e).
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Proof. From Remark (3.4) and Theorem 4.13 in [29], the proof follows. O

Proposition 3.12. If (X, 1, E, <) is soft T»-ordered, then all parametric topological ordered spaces (X, Te, <)
are T,-ordered.

Proof. The proof follows from Remark (3.4) and Proposition 4.15 in [29]. O

Corollary 3.13. The minimum number of soft open subsets of a finite soft T,-ordered space (X, T, E, <) is 2/X]
soft open sets.

The next example clarifies that the converse of Proposition (3.12) fails.

Example 3.14. Consider a partial order relation <= A J{(x,y)} on X = {x,y} and let E = {e1, e} be a
parameters set. The collection T = {®, X, G;, : i = 1, 2} is a soft topology on X, where

G1, = {(e1, {x}), (e2, {y})} and
GzE = {(ely {y})’ (82, {X})}

Obviously, (X, Te,, <) and (X, Te,, =) are T,-ordered spaces; notwithstanding, (X, 7, E, <) is not a soft To-
ordered space.

Also, the example below combined with the above example illustrate that the soft T;-ordered spaces
(i = 0, 1) and their parametric topological ordered spaces are independent of each other.

Example 3.15. Consider a a partial order relation <= A J{(x,y)} on X = {x,y,z} and let E = {e1, e, e3} be
a parameters set. The collectiont = {®, X, G;, : i1 =1, 2, ..., 7} is a soft topology on X, where

G, = {(e1, {x}), (€2, X), (e3, X)};

Gy, = {(e1, X), (e2, {¥}), (e3, X)};

G3, = {(e1,X), (e2, X), (e3, {zP};

Gu, = {(e1, {x}), (e2, {y}), (e3, X)};
Gs, = {(e1, {x}), (€2, X), (e3, {z})};
Ge, = {(e1, X), (e2, {y}), (e3, {z})} and
Gy, = {(e1, {x}), (e2, {¥}), (e3, {z})}.

Obviously, (X, Te,, <), (X, Te,, X) and (X, Te,, X) are not To-ordered spaces; notwithstanding, (X, 1, E, <) is
soft T1-ordered.

Proposition 3.16. The property of being a soft T;-ordered space is a soft hereditary property fori =0, 1, 2.

Proof. From Remark (3.4) and Theorem 4.19 in [29], we obtain the proof in the case of i = 2.

To prove the proposition in the case of i = 1, let (Y, Ty, E, <y) be a soft ordered subspace of a soft T;-
ordered space (X, 7, E, <). For every a #y b € Y, we have a % b. Therefore, there is an increasing soft
neighborhood Wy of a and a decreasing soft neighborhood Vg of b. By setting Ug = ?ﬁ Wg and Gg = ?ﬁ Vg,
we find from Lemma (2.34) that U is an increasing soft neighborhood of a and G is a decreasing soft neigh-
borhood of b such that b ¢ Ug and a ¢ Gg. Thus, (Y, Ty, <y, E) is soft T;-ordered.

The proof in the case of i = 0 can be done similarly. O

Proposition 3.17. Every p-soft T;-ordered space is soft T;-ordered fori = 0, 1.

Proof. The proof is complete by observing that x & Gg implies that x ¢ G for every Gg CX.
O

Corollary 3.18. (X, 1, E, <) is upper (resp. lower) soft T1-ordered if (i(x))g(resp. (d(x))g) is a soft closed set
foreach x € X.
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Proof. If (i(x))g is a soft closed set for each x € X, then it follows from Theorem (2.39) that (X, 7, E, <) is upper
p-soft T1-ordered. Hence, it is upper soft T1-ordered. O

Remark 3.19. It can be seen that the given STOS in Example (3.6) is soft To-ordered, but is not p-soft To-ordered,
since there does not exist a soft neighborhood Wg of y such that x & Wg. Also, it can be noted that the given STOS
in Example (3.7) is soft T1-ordered, but is not p-soft T1-ordered, since there does not exist a soft neighborhood
WE of 2 such that 1 & Wg. Hence, the converse of the above proposition fails.

Definition 3.20. (X, 7, E, <) is said to be:

(i) upper (resp. lower) soft regularly ordered if for each increasing (resp. decreasing) soft closed set Hr and
x € X such that x ¢ Hg, there exist disjoint soft neighbourhoods Wy of Hg and Vg of x such that Wg is
increasing (resp. decreasing) and V, is decreasing (resp. increasing);

(ii) soft regularly ordered if it is both upper soft regularly ordered and lower soft regularly ordered;

(iii) upper (resp. lower) soft Ts-ordered if it is both upper (resp. lower) soft T1-ordered and upper (resp. lower)
soft regularly ordered;

(iv) soft T3-ordered if it is both upper soft Ts-ordered and lower soft Tz-ordered;

(v) soft normal ordered if for every two disjoint an increasing soft closed set H1, and a decreasing soft closed
set H,, there exist a disjoint increasing soft neighbourhood Vg of H1, and a decreasing soft neighbourhood
WE of Hy,;

(vi) soft T,-ordered ifit is soft normally ordered and soft T1-ordered.

Example 3.21. Let (X, 7, E, <) be the soft indiscrete topological space, where E is an arbitrary set of parameters
E and < is any partial order relation on X. Then (X, 7, E, <) is lower (upper) soft regularly ordered. So it is soft
regularly ordered. Also it is soft normal. But it is not lower (upper) soft T3-ordered if |X| = 2. So it is not soft
Ts-ordered. Moreover, it is not soft T,-ordered. On the other hand, if (X, 7, E, <) is the soft discrete topological
space, then it is soft T;-ordered fori = 3, 4.

Theorem 3.22. (X, 7, E, <) is upper (resp. lower) soft regularly ordered if and only if for all x € X and every
decreasing (resp. increasing) soft open set Ug, partially containing x, there is a decreasing (resp. an increasing)
partially soft neighbourhood Vg of x satisfying VgC Ug.

Proof. We prove the theorem in the lower soft regularly ordered case. The other case follows similar manner.

Necessity: Suppose that Ug is an increasing soft open set such that x € Ug. Then Uf is a decreasing soft
closed set and x ¢ Ug. Therefore, there is an increasing soft neighbourhood Vg of x and a decreasing soft
neighbourhood W, of U§, such that VEﬁWE = @. Thus, there exists a soft open set Gg such that Ugé GpCWhg.
Since V;C W, then V;CWECGSC Uy and since G is soft closed, then V;C GSC Ug.

Sufficiency: Let Hg be a decreasing soft closed set and x ¢ Hg. Then Hf, is an increasing soft open set such
that x € Hg. Therefore, there exists an increasing soft neighbourhood Vy of x satisfying VEEHE. Obvi-
ously, HrC(Vg)¢ and (V)¢ is soft open. Now, d(Vg)€) is a decreasing soft neighbourhood of Hg. Suppose
that VEﬁd((TE)C) # @. Then there are x € X and e € E such that x € V(e) and x € d((V)°(e)). This implies
that there is y € (V)¢(e) such that x < y. This means that y € V(e). But this contradicts the disjointness of Vg
and (Vg)°. Hence, Vgﬁd((VT;)"’) = . O

Proposition 3.23. Everyincreasing (decreasing) soft closed or soft open subset of a soft regularly ordered space
(X, 1, E, <) is stable.

Proof. Without loss of generality, suppose that Hg is an increasing soft closed set in a soft regularly ordered
space (X, 7, E, <) which is not stable. Then there exists x € X and &, 8 € E such that x € H(a) and x ¢ H(f).
This means that x ¢ Hg. So for any soft neighborhood Wy, of x and any soft neighborhood Vi of Hg, we obtain
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that x € W(a)( V(). Thus, we cannot find disjoint soft neighborhoods of x and Hg. This is a contradiction
with soft regularly ordered of (X, 7, E, <). Hence, Hg must be stable.
The proof of the decreasing case can be done similarly. O

Corollary 3.24. If all increasing (decreasing) soft closed or soft open subsets in (X, T, E, <) are stable, then
(X, 1, E, =) is p-soft regularly ordered if and only if it is soft regularly ordered.

Proposition 3.25. Every soft regularly ordered space is p-soft regularly ordered.

Proof. Straightforward. O

The example below shows that the converse of Proposition (3.25) does not hold in general.

Example 3.26. We define the soft sets {G;, : i = 1, 2, 3, 4} over X = {x, y} with a parameters set E = {e1, e}
as follows:

G, = {(ex, {x}), (e2, (XD}

G, = {(e1, {y}), (e2, {¥y}};

Gs; = {(e1, {y}), (e2,0)} and

Ga, = {(e1,X), (e2, {x})}.

Then T = {55, )~(, Gi, : i =1,2,3,4} is a soft topology on X. Let <= A|J{(x,y)} be a partial order relation
on X = {x, y}. It can be verified that (X, 7, E, <) is a p-soft regularly ordered space. But it is not soft regularly
ordered because an increasing soft open set Gs, is not stable.

Remark 3.27. In the following we point out that the concepts of soft Ts-ordered and soft T,-ordered spaces are
independent of each other.

(i) The given STOS in Example(3.26) is soft T,-ordered and soft T,-ordered, but it is not soft T3-ordered;

(ii) If we consider (X, 7, E, <) is STOS such that E is a singleton set, then (X, 7, E, <) is a topological ordered
space. So Example 7 in [2] shows that a soft T,-ordered space is a proper extension of a soft Ts-ordered
space.

The following two problems are still open.
Problem 3.28. Is a soft Ts-ordered space a soft T,-ordered space?
Problem 3.29. Is a soft Ts-ordered space a p-soft T3-ordered space?
Proposition 3.30. Every p-soft T,-ordered space (X, 7, E, <) is soft T,-ordered.

Proof. Straightforward. O

The converse of Proposition 3.30 fails. We show this in the next example.

Example 3.31. LetE = {e1, e3, e3} and <= A J{(x, y)} be apartial order relationon X = {x, y}. The following
six soft sets defined as follows.

G, = {(e1, {x}X), (e2, X), (e3,X)};
G, = {(e1, {¥}X), (e2, X), (e3, X)};
Gs, = {(e1,0), (e2,X), (e3,X)};

Guy, = {(e1, {x}), (2, 0), (e3,0)};
Gs, = {(e1,{y}), (e2,0), (e3,0)} and
Ge, = {(e1,X), (e2,0), (e3,0)}.
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The collection T = {(5, X, Gy, :i=1,2,..., 6} is asoft topology on X. It can be easily verified that (X, 7, E, <)
is soft T,-ordered. In contrast, we cannot find a soft open set containing y such that x does not totally belong to
it. Therefore, (X, 1, E, <) fails to satisfy a condition of a p-soft T1-ordered space. Thus, (X, T, E, <) is not p-soft
T,-ordered.

Theorem 3.32. Every soft compatibly ordered subspace (Y, Ty, E, <y) of a soft regularly ordered space
(X, 1, E, =) is soft regularly ordered.

Proof. Suppose that Hy is an increasing soft closed subset of (Y, 7y, E, <y) such that y ¢ Hg. Because
(Y, 1y, E, <y) is soft compatibly ordered subspace of (X, 7, E, <), then there is an increasing soft closed set
Hyin (X, 7, E, <) such that H; = Y(\H}. By hypothesis, we have a decreasing soft neighborhood Vg ofy and
an increasing soft neighborhood W of Hy, 1 such that VEﬂ W = @. From Lemma (2.34) we obtain Yﬂ Vgisa
decreasing soft nelghborhood of yand Yﬂ Wg is an increasing soft neighborhood of Hg in (Y, Ty, E, <y). The
disjointness of Yﬂ Vg and Yﬂ Wg completes the proof that (Y, Ty, E, <y) is upper soft regularly ordered.

In a similar manner it can be proved that (Y, 7y, E, <y) is lower soft regularly ordered. Hence,
(Y, ty, E, <y) is soft regularly ordered. O

Corollary 3.33. Every soft compatibly ordered subspace (Y, Ty, E, <y) of a soft T3-ordered space (X, 7, E, <)
is soft Ts-ordered.

The proof of the next proposition is easy and thus it is omitted.
Proposition 3.34. Every soft closed compatibly ordered subspace of a soft T,-ordered space is soft T,-ordered.
Theorem 3.35. The finite product of soft T;-ordered spaces is soft T;-ordered fori=0,1, 2, 3.

Proof. We only prove the theorem in the case of i = 2, and the other cases can be proved similarly.

Assume that (X, 71, E1, <1) and (Y, 75, E>, <) are soft T,-ordered spaces and let (X x Y, 7, E, <) be the
soft ordered product space of them. Let (x1, y1) % (x2,y2) € X x Y. Then x; %1 x, ory; % y». Without loss
of generality, say x; %1 x;. Since (X, 71, E1, <1) is soft T,-ordered, then there is an increasing soft neighbor-
hood Wg, of x; and a decreasing soft neighborhood Vg, of x;, such that x, ¢ Wg, and x; ¢ Vg, which are
disjoint. Therefore, Wg, x Y is an increasing soft neighborhood of (x, y1) and Vg, x Yisa decreasing soft
nelghborhood of (x2,y2) such that (x2,y2) & [Wg, x Y] and (x4, v1) € [VE, x Y]. The disjointness of W, x Yy
and Vg, x Y finishes the proof that (X x Y, 7, E, <) is soft T,-ordered. O

Theorem 3.36. The property of being a soft T;-ordered space is a soft topological ordered property for i =
0,1,2,3,4.

Proof. We only prove the theorem in the cases of i = 2, 4, and the other cases can be proved similarly.

() Letfy : (X,7,A4,=1) — (Y, 0, B, <;) be an ordered embedding soft homeomorphism map such that
(X, 1, A, =<1)issoft T,-ordered. Suppose that x %, y € Y. Then Pg +2 P;; for each B € B. Since fy is bijective,
then there are P2 and P2 in X such that fe(Pg) = P" and fy (Pb) = Py and since fy is an ordered embedding,
then P2 %, P%.Soa #, b. By hypothe51s we have an increasing soft neighborhood Vg of a and a decreasing
soft neighborhood W of b such that VEﬂ W = @. Since fo is bijective soft open, then f4,(VE) and f, (W) are
disjoint soft neighborhoods of x and y, respectively. From Theorem (2.21), we obtain fy(Vg) and f(Wg) are
increasing and decreasing, respectively. Hence, the proof is complete.

(ii) Let fo + X,7,A,=1) — (Y, 6, B, <) be an ordered embedding soft homeomorphism map such that
(X, 1, A, <4) is soft normally ordered. Suppose that the two disjoint soft closed sets Hr and Fj are increasing
and decreasing, respectively. Since f is bijective soft continuous, then f¢71(H £) and fqgl(F r) are disjoint soft
closed sets and since f is ordered embedding, then f;(H r) is increasing and f(;l(F £) is decreasing. By hy-
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pothesis, there are disjoint soft neighborhoods Vg and Wg of f¢71(H £) and f;,l(F £), respectively, such that Vg
is increasing and Wy, is decreasing. So H E§f¢(VE) and FzC f4(WE). It follows by Theorem (2.21) that f (V) is
increasing and f¢(WE) is decreasing. The disjointness of the soft neighborhoods f¢(VE) and f¢(WE) finishes
the proof. O

We devote the rest of this section to investigate some findings that associate some given ordered soft
separation axioms with soft compactness.

Lemma 3.37. Let Fg be an increasing (resp. a decreasing) soft open set in a soft regularly ordered space. Then
for each P¥ ¢ Fp there exists an increasing (resp. a decreasing) soft neighborhood Gg of P} such that P} ¢
GpCFp.

Proof. Suppose that Fr is an increasing soft open set such that Pf € Fg. Then x ¢ Ff. Since
(X, 1, E, =) is soft regularly ordered, then there exist an increasing soft neighborhood Gg of x and a de-
creasing soft neighborhood W of Ff which are disjoint. This automatically means there are soft open sets
Hg and Lg such that x € H;CGg and FSCLgCWg. Thus, x € GeCWECLECFg. Hence, PX € GgCLSCFg.
The decreasing case can be proved in a similar manner. O

Theorem 3.38. Let Hr be an increasing (resp. a decreasing) soft compact set in a soft regularly ordered space
and Fg be a decreasing (resp. an increasing) soft open set containing Hg. Then there exists a decreasing (resp.
an increasing) soft neighborhood G of Hg such that GgCFr.

Proof. Suppose that the given conditions are satisfied. Then for each P € Hg, we have P} ¢ Fg. Therefore,
there is a decreasing soft neighborhood W;, of P such that WilEiF £. Thus, there is a soft open set V;, con-
taining P} such that Vi,Eiwi,EiF £. Now, the collection {V;, : P§ € Fg} of soft open sets containing P; forms
a soft open cover of Hg. Since Hp is soft compact, then HEEO; V,-Eiolil W;,. Let Gg = O?:l Wi,. This is a
decreasing soft neighborhood of Hg. Obviously, HrC GzC GgCFg.

A similar proof can be given for decreasing case. O

Corollary 3.39. Every soft compact and soft regularly ordered space (X, 7, E, <) is soft normally ordered.

Proof. Suppose that F;, and F;, are two disjoint soft closed sets such that F;, is decreasing and F», is in-
creasing. Then F,, CF 1+ Since (X, 7, E, <) is soft compact, then F,, is soft compact and since (X, 7, E, <) is
soft regularly ordered, then there is an increasing soft neighborhood G of F{, such that F,, CGFCGCFy, .
Obviously, F1,C(Gg)¢ and GEﬁ(?E)C = @. To prove that GEﬁd[(?E)C] = @, suppose that there exists an ele-
ment x € Gg and x € d[(Gg)°]. So there exists an element y € (Gg)¢ such that x < y. This means that y € Gg.
But this contradicts the disjointness of Gg and (Gg)°. Thus, (X, 7, E, <) is soft normally ordered. O

To show that the converse of the above theorem and corollary fail we give the following example.

Example 3.40. Consider a partial order relation <= A which is the equality relation on X = {x,y} and let
E = {ej, e;} be a parameters set. The collection T = {®, X, G;, : i = 1, 2} is a soft topology on X, where

Gy, = {(e1, {x}), (e2, X)} and
G, = {(e1, {y}), (e2, D)}

Obviously, (X, 1, E, =) is soft normally ordered and soft compact. Also, for every increasing (resp. decreas-
ing) soft compact subset of (X, 7, E, <) and every decreasing (resp. increasing) soft open set Fr containing Hg,
there exists a decreasing (resp. an increasing) soft neighborhood G of Hg such that GgCFg. On the other hand,
since the soft open sets G, and G, are not stable, then it follows from Proposition (3.23) that (X, 7, E, <) is not
soft regularly ordered.
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4 Strong ordered soft separation axioms

The first aim of this section is to define strong ordered soft separation axioms, namely strong soft T;-ordered
spaces (i = 0, 1, 2, 3, 4) by using monotone soft open sets in the place of monotone soft neighborhoods. The
second aim is to provide some examples to illustrate the relationships between these and the relationships
between them and soft T;-ordered spaces. The third aim is to discuss their main properties and provide some
results that associate soft compactness and some initiated strong ordered soft separation axioms.

The following example explains the difference between soft open sets and soft neighborhoods in terms
of increasing and decreasing.

Example 4.1. Let E = {e;, e;} and <= A|J{(x, 2), (y, W)} be a partial order relationon X = {a,x,y, w, z}.
The collection T = {513, X, Gg} is a soft topology on X, where Gg = {(e1, {a, x}), (e2, {a, w})}. Now, it can
be noted that Gg is a soft open set containing a such that i(Gg) = {(e1, {a, x, z}), (e2,{a, w})} # Gg and
d(Gg) = {(e1,{a,x}),(e2,{a,y,w})} # Gg. So that Gg is neither increasing, nor decreasing. On the other
hand, Wg = {(e1, {a, x, z}), (e2, {a, y, w})} is a monotone soft neighborhood of a because:

(i) ac GEEWE and
(ii) l(WE) = WE and d(GE) = WE-

Also, Ug = {(e1,{a, x, z}), (e2, {a, w})} is an increasing soft neighborhood of a, but it is not decreasing and
Vi ={(e1, {a, x}), (e2,{a, y, w})} is a decreasing soft neighborhood of a, but it is not increasing.

Proposition 4.2.

(i) Every monotone soft open set containing an element x is a monotone soft neighborhood of x.
(ii) Every monotone soft open set containing a soft set Hg is a monotone soft neighborhood of Hg.

Proof. Let Gg be a monotone soft open set containing an element x. Then x € Gg C Gg. Therefore, Gg is
a monotone soft neighborhood of x. Also, if Gg is a monotone soft open set containing a soft set Hg. Then
Hg C Gg C Gg. Therefore, Gg is a monotone soft neighborhood of H. O

Example (4.1) demonstrates that the converse of the above proposition fails.
Definition 4.3. (X, 7, E, <) is said to be:

(i) strong upper (resp. strong lower) soft T1-ordered if for every x £ y in X, there exists a decreasing (resp. an
increasing) soft open set Wy, containing y (resp.x) such that x ¢ Wg (resp.y ¢ Wg);

(ii) strong soft Ty-ordered if it is strong upper soft T1-ordered or strong lower soft T1-ordered;

(iii) strong soft T1-ordered if it is strong upper soft T1-ordered and strong lower soft T,-ordered;

(iv) strong soft T,-ordered if for every x £ y in X, there exist disjoint an increasing soft open set Wg containing
x and a decreasing soft open set Vi containing y;

(v) strong upper (resp. strong lower) soft regularly ordered if for each increasing (resp. decreasing) soft closed
set Hg and x € X such that x ¢ Hg, there exist disjoint soft open sets W containing Hg and Vg containing
x such that Wg, is increasing (resp. decreasing) and Vg, is decreasing (resp. increasing);

(vi) strong soft regularly ordered if it is both strong upper soft regularly ordered and strong lower soft regularly
ordered;

(vii) strong upper (resp. strong lower) soft Ts-ordered if it is both strong upper (resp. strong lower) soft T-
ordered and strong upper (resp. strong lower) soft regularly ordered;

(viii) strong soft Ts-ordered if it is both strong upper soft Ts-ordered and strong lower soft T3-ordered;
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(ix) strong soft normally ordered if for each disjoint soft closed sets Fr and Hg such that Fr is increasing and
Hg is decreasing, there exist disjoint soft open sets Gg containing Fr and Ug containing Hg such that Gg is
increasing and Uy, is decreasing;

(x) strong soft T,-ordered if it is strong soft normally ordered and strong soft T,-ordered.

Proposition 4.4. Every strong soft T;-ordered space is soft T;-ordered fori=0,1, 2,3, 4.

Proof. The proof follows from the fact that every monotone soft open set containing an element x is a mono-
tone soft neighborhood of x and every monotone soft open set containing a soft set Hg is a monotone soft
neighborhood of Hg. O

In what follows, we construct two examples to point out that the converse of the above proposition fails
in the cases of i = 0, 1. The other cases are still open problems.

Example 4.5. Let (X, 1, E, <) be the same as in Example (3.6). We point out that this STOS is soft To-ordered.
However, it is not strong soft To-ordered, because y + z and there does not exist an increasing soft open set Gg
containing x such that z ¢ Gg.

Example 4.6. Let (X, T, E, <) be the same as in Example (3.7). We point out that this STOS is soft T,-ordered.
However, it is not strong soft T1-ordered, because 2 + 1 and there does not exist an increasing soft open set Gg
containing 2 such that 1 ¢ Gg.

Problem 4.7. Is a soft T;-ordered space a strong soft T;-ordered space fori =2, 3, 47

Theorem 4.8. Let (X, 7, E, <) be strong soft regularly ordered. Then (X, 1, E, =) is p-soft T,-ordered if and
only if it is strong soft T, -ordered.

Proof. To prove the "if" part, let x # y. Then it follows from Proposition (2.39) that (i(x))g and (d(y))g are soft
closed sets. So [(d(y))g]¢ is an increasing soft open set containing x and [(i(x))g]¢ is a decreasing soft open set
containing y such that y ¢ [(d(y))g]¢ and x ¢ [(i(x))g]¢. Thus, (X, 7, E, =) is strong soft T-ordered.

To prove the "only if" part, suppose x % y in X. Then there exist an increasing soft open set W containing
x and a decreasing soft open set V containing y such thaty ¢ W and x ¢ Vg. By Proposition (3.23), Wg and
Vg are stable. This means that y  Wg and x @ Vg. Thus, (X, 7, E, <) is p-soft T;-ordered. O

Corollary 4.9. If (X, 7, E, <) is strong soft regularly ordered and upper (resp. lower) strong soft T1-ordered,
then (i(x))g(resp. (d(x))E) is soft closed.

To show that the converse of the above corollary fails, we give the following example.

Example 4.10. Consider <= A |J{(x, y)} which is a partial order relationon X = {x,y} and let E = {e1, €3}
be a parameters set. The collectiont = {®D, X, G;, : i = 1, 2, 3, 4} is a soft topology on X, where

G, = {(e1, {x}), (e2, {x})};
Ga, = {(e1, {y}), (e2, {yD};
Gs, = {(e1,X), (e2, {yD} and
Guy = {(e1, {x}), (e2, 0)}.

On the one hand, (i(x))g = (d(y))g = X, (d(x) £ = G1, and (i(y))g = G, are soft closed sets. On the other hand,
since the soft open sets Gs, and G, are not stable, then it follows from Proposition (3.23) that (X, 7, E, <) is not
soft regularly ordered. Hence, (X, T, E, <) is not strong soft regularly ordered.

Proposition 4.11. The following three concepts are equivalent if (X, T, E, <) is strong soft regularly ordered:
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(i) strong soft T»-ordered;
(ii) strong soft T1-ordered;
(iii) strong soft Ty-ordered.

Proof. The directions (i)— (iii) are obvious.

To prove that (iii)—(i), let x # y € X. Since (X, 1, E, <) is strong soft Ty-ordered, then it is strong lower
soft T -ordered or strong upper soft T; -ordered. Say, it is strong upper soft T -ordered. It follows, by the above
corollary, that (i(x))g is an increasing soft closed set. Since y ¢ (i(x))g and (X, 7, E, <) is strong soft regularly
ordered, then there exist disjoint soft open sets W and Vg containing (i(x))g and y, respectively, such that
Wk is increasing and V is decreasing. Hence, the proof is complete. O

Corollary 4.12. The following concepts are equivalent if (X, T, E <) is strong lower (resp. strong upper) soft
regularly ordered:

(i) strong soft T»-ordered;
(ii) strong soft T-ordered;
(iii) strong lower (resp. strong upper) soft T1-ordered.

Corollary 4.13. Every strong soft T;-ordered space (X, 1, E, <) is strong soft T;_,-ordered fori =1, 2, 3.

The converse of the above corollary need not be true in general as demonstrated in the next three exam-
ples.

Example 4.14. The given STOS in Example (3.7) is strong soft Tq-ordered, however, it is not strong soft T;-
ordered.

Example 4.15. Let E = {e1, e, } be a parameters set. Let <= A J{(2, 3)} be a partial order relation on the set
of natural numbers N. Then T = {®, GgCN : G is finite } is a soft topology on N. Now, we have the following
cases:

(i) since 3 £ 2, then Ug = {(e1, N'\ {2}), (e2, N'\ {2})} is an increasing soft open set containing 3 and Vg =
{(e1, N\ {3}), (e2, N\ {3})} is a decreasing soft open set containing 2 such that 2 ¢ Ug and 3 ¢ VE;

(ii) sincex £ 2 forall x # 3, then Ug = {(e1, N'\ {2}), (e2, N'\ {2})} is an increasing soft open set containing
xand Vg = {(e1, N\ {x, 3}), (e2, N\ {x, 3})} is a decreasing soft open set containing x such that 2 ¢ Ug
and x ¢ Vg;

(iii) since 2 £ x, then Ug = {(e1, N'\ {x}), (e2, N'\ {x})} is an increasing soft open set containing 2 and
Vi = {(e1, N\ {2,3}), (e2, N\ {2,3})} is a decreasing soft open set containing x such that x ¢ Ug and
2¢ Vg;

(iv) since 3 £ x forall x # 2, then Ug = {(e1, N'\ {2,x}), (e2, N'\ {2, x})} is an increasing soft open set
containing 3 and Vg = {(e1, N\ {3}), (e2, N\ {3})} is a decreasing soft open set containing x such that
x ¢ Ugand 3 ¢ Vg;

(v) since x ﬁ 3, then Ug = {(e1, N\ {2,3}), (e2, N'\ {2, 3})} is an increasing soft open set containing x and
Vg = {(e1, N\ {x}), (e2, N'\ {x})} is a decreasing soft open set containing 3 such that 3 ¢ Ug and x ¢ V.

Thus, (X, T, E, <) is strong soft T-ordered. In contrast, one can note that it is not strong soft T,-ordered.

Example 4.16. The given STOS in Example (3.26) is strong soft T,-ordered, however, it is not strong soft Ts-
ordered.

Remark 4.17. In the following, we point out that the concepts of strong soft Tz-ordered and strong soft T,-
ordered spaces are independent of each other.
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(i) The given STOS in Example(3.26) is strong soft T,-ordered, but it is not strong soft Ts-ordered;

(ii) Ifweconsider (X, 1, E, =) is anSTOS such that E is a singleton and < is an equality relation, then (X, 7, E, <)
is a topological space. So Niemytzki space in general topology shows that a strong soft T4-ordered space is
a proper extension of a strong soft Ts-ordered space.

The proofs of Theorem (4.18) and Theorem (4.19) below are similar to the proofs of Theorem (3.35) and
Theorem (3.36) respectively.

Theorem 4.18. A finite product of strong soft T;-ordered spaces is strong soft T;-ordered fori =0, 1, 2.

Theorem 4.19. The property of being a strong soft T;-ordered space is a soft topological ordered property for
i=0,1,2,3,4.

We devote the rest of this section to investigate some findings that associate some strong ordered soft
separation axioms with soft compactness.

Lemma 4.20. Let Fr be an increasing (resp. a decreasing) soft open subset in a strong soft regularly ordered
space. Then for each P < Fg, there exists an increasing (resp. a decreasing) soft open set Gg containing P}
such that PX € GgCFg.

Proof. The proof is similar to that of Lemma (3.37). O

Theorem 4.21. Let Hg be an increasing (resp. a decreasing) soft compact subset in a strong soft regularly
ordered space and Fg be a decreasing (resp. an increasing) soft open set containing Hg. Then there exists a
decreasing (resp. an increasing) soft open set Gg such that HyC GgCGgCFp.

Proof. The proof is similar to that of Theorem (3.38). O
Corollary 4.22. Every soft compact strong soft regularly ordered space is strong soft normally ordered.
Proof. The proof is similar to that of Corollary (3.39). O

Remark 4.23. (i) If a partial order relation is diagonal, then a soft topological ordered space can be viewed
as a soft topological space. In this case the concepts of soft T;-ordered spaces and strong soft T;-ordered
spaces fori= 0,1, 2, 3, 4, are equivalent;

(i) If a set of parameters is a singleton, then a soft topological ordered space can be viewed as a topological
ordered space. In this case the notations ¢ and & are equivalent. Hence, the concepts of p-soft T;-ordered
spaces, soft T;-ordered spaces and T;-ordered spaces fori =0, 1, 2, 3, 4, are equivalent.

Proposition 4.24. Every strong soft T;-ordered space (X, 1, E, <) is a soft T;-space, fori =0, 1, 2.
Proof. The proof follows directly from the definitions of strong soft T;-ordered and soft T;-spaces. O

Remark 4.25. To confirm that the converse of the above proposition fails, we consider E is a singleton and then
we suffice with the examples introduced in [2]. Also, by considering E is a singleton, Example 3 in [2] shows that
the concepts of strong soft T;-ordered and soft T;-spaces (i = 3, 4) are independent of each other.

In conclusion, we give Figure 1 to illustrate the relationships among some types of ordered soft separation
axioms.
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Figure 1: The relationships among some types of ordered soft separation spaces.

5 Conclusion and future work

By combining a partial order relation and a topology on a non-empty set, Nachbin [1] defined the topological
ordered space. Similarly, Al-shami et al. [29] defined the soft topological ordered space. Studying soft separa-
tion axioms via soft topological spaces is a significant topic because they help establish a wider family which
can be easily applied to classify the objects under study. We demonstrate in the last paragraph of introduction
the reasons for doing many studies via soft separation axioms and the variety of these studies will be more via
ordered soft separation axioms. Throughout this work, we use the notions of monotone soft neighborhoods
and monotone soft open sets to present soft T;-ordered and strong soft T;-ordered spaces, respectively, for
i=0,1,2,3,4. These two types are formulated with respect to the ordinary points. We establish several re-
sults such as strong soft T;-ordered spaces is strictly finer than soft T;-ordered spaces and support this result
with number of interesting examples. Also, we discuss the relationships which associate the soft T;-ordered
(strong soft T;-ordered) spaces with p-soft T;-ordered spaces and soft T;-spaces. In Theorem (4.8), we give a
condition that satisfies the equivalence between p-soft T-ordered and strong soft T;-ordered spaces. In the
end of Section (3) and Section (4), we present a number of results that associate soft compactness with some
of the initiated ordered soft separation axioms. Some open problems on the relationship between strong soft
T;-ordered and soft T;-ordered spaces (i = 2, 3, 4) are posed.

To extend this study, one can generalize the initiated concepts on supra soft topological spaces [40]. All
these results will provide a base to researchers who want to work in the soft ordered topology field and will
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help to establish a general framework for applications in practical fields.

Acknowledgments: The authors would like to thank the editors and the reviewers for their valuable com-
ments which helped us improve the manuscript.

References

[1] L. Nachbin, Topology and ordered, D. Van Nostrand Inc. Princeton, New Jersey, 1965.

[2] S.D. McCartan, Separation axioms for topological ordered spaces, Math. Proc. Camb. Philos. Soc. 64 (1968), 965-973.

[3] S.D.Aryaand K. Gupta, New separation axioms in topological ordered spaces, Indian ). Pure Appl. Math. 22 (1991), 461-468.

[4] P. Das, Separation axioms in ordered spaces, Soochow Journal of Mathematics 30 (2004), no. 4, 447-454.

[5] M.E.El-Shafei, M. Abo-Elhamayel, and T.M. Al-shami, Strong separation axioms in supra topological ordered spaces, Math.
Sci. Lett. 6 (2017), no. 3, 271-277.

[6] L.A.Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.

[71 C.L. Chang, Fuzzy topological spaces, ). Math. Anal. Appl. 24 (1968), 182-190.

[8] A.K.Katsaras, Ordered fuzzy topological spaces, ). Math. Anal. Appl. 84 (1981), 44-58.

[91 D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37 (1999), 19-31.

[10] M.L. Ali, F. Feng, X. Liu, W.K. Min, and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009),
1547-1553.

[11] P.K. Maji, R. Biswas, and R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), 555-562.

[12] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61(2011), 1786-1799.

[13] A.Aygiinoglu and H. Aygiin, Some notes on soft topological spaces, Neural Comput. & Applic. 21 (2012), 113-119.

[14] T.Hida, A comprasion of two formulations of soft compactness, Ann. Fuzzy Math. Inform. 8 (2014), no. 4, 511-524.

[15] T.M. Al-shami, M.E. El-Shafei, and M. Abo-Elhamayel, Almost soft compact and approximately soft Lindelof spaces, ). Taibah
Univ. Sci. 12 (2018), no. 5, 620-630.

[16] T.M. Al-shami and M.E. El-Shafei, On soft compact and soft Lindeldf spaces via soft pre-open sets, Ann. Fuzzy Math. Inform.
17 (2019), no. 1, 79-100.

[17] T.M. Al-shami, M.E. El-Shafei, and M. Abo-Elhamayel, Seven generalized types of soft semi-compact spaces, Korean ). Math.
27 (2019), no. 3, 661-690.

[18] T.M.Al-shami, M.A. Al-Shumrani, and B.A. Asaad, Some generalized forms of soft compactness and soft Lindeldfness via soft
a-open sets, Italian ). Pure Appl. Math. 43 (2020), 680-704.

[19] M.E. El-Shafei, M. Abo-Elhamayel, and T.M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat 32
(2018), no. 13, 4755-4771.

[20] W.K. Min, A note on soft topological spaces, Comput. Math. Appl. 62 (2011), 3524-3528.

[21] T.M. Al-shami, Corrigendum to "On soft topological space via semi-open and semi-closed soft sets, Kyungpook Math. J. 54
(2014), 221-236", Kyungpook Math. J. 58 (2018), no. 3, 583-588.

[22] T.M. Al-shami, Corrigendum to "Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform. 11 (2016), no. 4,
511-525", Ann. Fuzzy Math. Inform. 15 (2018), no. 3, 309-312.

[23] M.E. El-Shafei, M. Abo-Elhamayel, and T.M. Al-shami, Two notes on "On soft Hausdorff spaces", Ann. Fuzzy Math. Inform. 16
(2018), no. 3, 333-336.

[24] T.M.Al-shami, Investigation and corrigendum to some results related to g-soft equality and gf -soft equality relations, Filomat
33(2019), no. 11, 3375-3383.

[25] T.M. Al-shami, Comments on "Soft mappings spaces", The Scientific World Journal 2019 (2019), Article ID 6903809.

[26] T.M. Al-shamiand L.D.R. Kocinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math.
18 (2019), no. 2, 149-162.

[27] T.M. Al-shami and M.E. El-Shafei, Two types of separation axioms on supra soft topological spaces, Demonstr. Math. 52
(2019), no. 1, 147-165.

[28] S.Bayramov and C.G. Aras, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl.
Math. 9 (2018), 82-93.

[29] T.M. Al-shami, M.E. El-Shafei, and M. Abo-Elhamayel, On soft topological ordered spaces, ). King Saud Univ-Sci. 31 (2019),
no. 4, 556-566.

[30] T.M. Al-shami and M.E. El-Shafei, On supra soft topological ordered spaces, Arab Journal of Basic and Applied Sciences 26
(2019), no. 1, 433-445.

[31] O.Tantawy, S.A. El-Sheikh, and S. Hamde, Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform. 11 (2016),
511-525.

[32] A.Singhand N.S. Noorie, textitRemarks on soft axioms, Ann. Fuzzy Math. Inform. 14 (2017), 503-513.



26 = Tareq M. Al-shami and Mohammed E. El-Shafei DE GRUYTER

[33] C.G.ArasandS. Bayramov, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl.
Math. 9 (2018), no. 1, 82-93.

[34] T.M.Al-shamiand M.E. El-Shafei, Partial belong relation on soft separation axioms and decision making problem: two birds
with one stone, Soft Comput. 24 (2020), 5377-5387.

[35] S.Nazmul and S.K. Samanta, Neigbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform. 6 (2013), no. 1,
1-15.

[36] F.Feng,Y.M.Li, B. Davvaz, and M.l. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput.
14 (2010), 899-911.

[37] K.V.Babitha and J.). Sunil, Soft set relations and functions, Comput. Math. Appl. 60 (2010), no. 7, 1840-1849.

[38] J.L. Kelley, General topology, Springer Verlag, 1975.

[39] I. Zorlutuna, M. Akdag, W.K. Min, and S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform. 2 (2012),
171-185.

[40] S.A. El-Sheikh and A.M. Abd El-Latif, Decompositions of some types of supra soft sets and soft continuity, Int. ). of Math.
Trends Technol. 9 (2014), 37-56.



	1 Introduction
	2 Preliminaries
	2.1 Soft set
	2.2 Soft topology

	3 Ordered soft separation axioms
	4 Strong ordered soft separation axioms
	5 Conclusion and future work

