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Abstract: The goal of this work is to introduce and study two new types of ordered soft separation axioms,
namely soft Ti-ordered and strong soft Ti-ordered spaces (i = 0, 1, 2, 3, 4). These two types are formulated
with respect to the ordinary points and the distinction between them is attributed to the nature of the mono-
tone neighborhoods.Weprovide several examples to elucidate the relationships among these concepts and to
show the relationships associate themwith their parametric topological ordered spaces and p-soft Ti-ordered
spaces. Some open problems on the relationships between strong soft Ti-ordered and soft Ti-ordered spaces
(i = 2, 3, 4) are posed. Also, we prove some significant results which associate both types of the introduced
ordered axioms with some notions such as finite product soft spaces, soft topological and soft hereditary
properties. Furthermore,we describe the shape of increasing (decreasing) soft closed and open subsets of soft
regularly ordered spaces; and demonstrate that a condition of strong soft regularly ordered is sufficient for
the equivalence between p-soft T1-ordered and strong soft T1-ordered spaces. Finally, we establish a number
of findings that associate soft compactness with some ordered soft separation axioms initiated in this work.

Keywords:monotone soft open set, monotone soft neighborhood, soft Ti-ordered and strong soft Ti-ordered
spaces (i = 0, 1, 2, 3, 4)
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1 Introduction
The study of the concept of topological ordered spaces was presented for the first time by Nachbin [1]. He has
constructed this concept by adding a partial order relation to the structure of a topological space.With regard
to Nachbin’s definition of topological ordered spaces, two points can be considered, the first one is that the
topology and the partial order relation operate independently of one another, and the second one is that the
topological ordered spaces are one of the generalizations of topological spaces. After Nachbin’s work, many
researchers carried out various studies on ordered spaces (see, for example, [2–5]).

Zadeh [6] introduced the notion of fuzzy sets in 1965 as mathematical instruments for dealing with un-
certainties. To put a topological structure to fuzzy set theory, Chang [7] has defined fuzzy topological spaces.
Then Katsaras [8] combined a partial order relation and a fuzzy topology to define a fuzzy topological ordered
space.

In 1999, the notion of soft sets was proposed by Molodtsov [9] to overcome problems associated with un-
certainties, vagueness, impreciseness and incomplete data. This notion includes enough parameters which
make it a suitable alternative for the previous mathematical approaches such as fuzzy and rough sets. The
useful applications of soft sets to several directions contribute to progress work on it rapidly (see, for exam-
ple, [10, 11]). The concept of soft topological spaces was introduced by Shabir and Naz in their pioneer work
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[12]. Then many studies on soft topological spaces have been done (see, for example, [13–18]). El-Shafei et
al. [19] introduced partial belong and total non-belong relations which are more functional and flexible for
theoretical and application studies via the soft set theory and soft topologies. Then they employed these two
new notions to present new soft separation axioms, namely p-soft Ti-spaces (i = 0, 1, 2, 3, 4). The authors
of [20–25] have done some amendments for some alleged results on soft axioms. Al-shami and Kočinac [26]
explored the equivalence between the extended and enriched soft topologies and has obtained some inter-
esting results related to the parametric topologies. The authors of [27, 28] introduced different types of soft
axioms on supra soft topological spaces.

In [29], the authors formulated the concepts of monotone soft sets and soft topological ordered spaces as
a new soft structure. They also have utilized the natural belong and total non-belong relations to introduce
the notions of p-soft Ti-ordered spaces (i = 0, 1, 2, 3, 4). In [30] we studied and investigated these notions on
supra soft topological ordered spaces.

The topic of soft separation axioms is one of the most significant and interesting in soft topology. In
general, soft separation axioms are utilized to obtain more restricted families of soft topological spaces. It
turns out, from the previous studies, that there are many points of view to study soft separation axioms. The
diversity of these perspectives is attributed to the relations of belong and non-belong that are used in the
definitions; and the objects of study, ordinary points or soft points (see, for example, [12, 19, 31–34]). The
variety of ordered soft separation axioms will be more extended, because the soft neighborhoods and soft
open sets is distinguished according to the partially ordered soft set.

As a contribution of study ordered soft separation axioms, the authors devote this work to defining and
investigating two types of ordered soft separation axioms, namely soft Ti-ordered and strong soft Ti-ordered
spaces (i = 0, 1, 2, 3, 4). With the help of examples, we illustrate the relationships among them. Also, we
derive their fundamental features such as the finite product of soft Ti-ordered (resp. strong soft Ti-ordered)
spaces is soft Ti-ordered (resp. strong soft Ti-ordered) for i = 0, 1, 2; and the property of being a soft Ti-
ordered (strong soft Ti-ordered) space is a soft topological ordered property for i = 0, 1, 2, 3, 4. Moreover,
we investigate certain properties of them that associated with some notions of soft ordered topology such as
soft ordered topological invariant and soft compatibly ordered subspaces. In the end of both Section (3) and
Section (4), we discuss some results about the relationships between soft compact spaces and some of the
initiated ordered soft separation axioms.

2 Preliminaries
This section is allocated to recall some definitions and well known results which we shall utilize them in the
next parts of this work.

2.1 Soft set

Definition 2.1. [9] A pair (G, E) is said to be a soft set over X provided that G is a mapping of a parameters set
E into 2X .

For short, we use the notation GE instead of (G, E) and we express a soft set GE as follows: GE = {(e, G(e)) :
e ∈ E and G(e) ∈ 2X}. Also, we use the notation S(XE) to denote the collection of all soft sets defined over X
under a set of parameters E.

Definition 2.2. [12, 19] For a soft set GE over X and x ∈ X, we say that:

(i) x ∈ GE if x ∈ G(e) for each e ∈ E; and we say that x ∈ ̸ GE if x ∉ G(e) for some e ∈ E;
(ii) x b GE if x ∈ G(e) for some e ∈ E; and we say that x b̸ GE if x ∈ ̸ G(e) for each e ∈ E.
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Definition 2.3. [11] GE over X is called a null soft set (resp. an absolute soft set) if G(e) = ∅ (resp. G(e) = X) for
each e ∈ E; and it is denoted by ̃︀Φ (resp. ̃︀X).
Definition 2.4. [35] GE over X is called a soft point if there are e ∈ E and x ∈ X such that G(e) = {x} and
G(b) = ∅ for each b ∈ E \ {e}.
A soft point will be shortly denoted by Pxe and we say that Pxe ∈ GE provided that x ∈ G(e).

Definition 2.5. [19] GE over X is said to be stable if there is S ⊆ X such that G(e) = S for each e ∈ E.

Definition 2.6. [10] The relative complement of GE, denoted by GcE, is a mapping Gc : E → 2X defined by
Gc(e) = X \ G(e) for each e ∈ E.

Definition 2.7. [36] GA is a soft subset of GB if A ⊆ B and G(a) ⊆ F(a) for all a ∈ A.

Definition 2.8. [11] The union of soft sets GA and FB over X, denoted by GA ̃︀⋃︀FB, is the soft set VD, where
D = A

⋃︀
B and a mapping V : D → 2X is defined as follows:

V(d) =

⎧⎪⎨⎪⎩
G(d) : d ∈ A − B
F(d) : d ∈ B − A

G(d)
⋃︀
F(d) : d ∈ A

⋂︀
B

Definition 2.9. [10] The intersection of soft sets GA and FB over X, denoted by GA ̃︀⋂︀FB, is the soft set VD, where
D = A

⋂︀
B ≠ ∅, and a mapping V : D → 2X is defined by V(d) = G(d)

⋂︀
F(d) for all d ∈ D.

Definition 2.10. [37] Let GA and HB be two soft sets over X and Y, respectively. Then the cartesian product of
GA and HB is denoted by (G × H)A×B and is defined as (G × H)(a, b) = G(a) × H(b) for each a ∈ A and b ∈ B.

Definition 2.11. [35] A soft mapping fϕ of S(XA) into S(YB) is a pair of mappings f : X → Y and ϕ : A → B
such that for soft subsets GK and HL of S(XA) and S(YB), respectively, we have:

(i) fϕ(GK) = (fϕ(G))B is a soft subset of S(YB) such that

fϕ(G)(b) =

⎧⎨⎩
⋃︀

a∈ϕ−1(b)
⋂︀
K
f (G(a)) : ϕ−1(b)

⋂︀
K ≠ ∅

∅ : ϕ−1(b)
⋂︀
K = ∅

for each b ∈ B;
(ii) f −1ϕ (HL) = (f −1ϕ (H))A is a soft subset of S(XA) such that

f −1ϕ (H)(a) =
{︃
f −1(H(ϕ(a))) : ϕ(a) ∈ L

∅ : ϕ(a) ∈ ̸ L

for each a ∈ A.

Definition 2.12. [35] A soft mapping fϕ : S(XA) → S(YB) is said to be injective (resp. surjective, bijective) if the
two mappings f and ϕ are injective (resp. surjective, bijective).

Proposition 2.13. [35] For a soft mapping fϕ : S(XA) → S(YB), we have the following results:

(i) GA ̃︀⊆f −1ϕ fϕ(GA) for each GA ∈ S(XA); and fϕ f −1ϕ (HB)̃︀⊆HB for each HB ∈ S(YB);
(ii) If fϕ is injective (resp. surjective), then GA = f −1ϕ fϕ(GA) (resp. fϕ f −1ϕ (HB) = HB).

Proposition 2.14. [29] Let fϕ : S(XA) → S(YB) be a soft mapping. Then

(i) The image of any soft point is a soft point;
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(ii) If f is bijective, then the inverse image of any soft point is a soft point.

Definition 2.15. [38] A binary relation ⪯ on X ≠ ∅ is said to be a partial order relation if it is reflexive, anti-
symmetric and transitive. An element x ∈ X is said to be the smallest (resp. largest) element of X if x ⪯ y (resp.
y ⪯ x) for all y ∈ X.

Henceforth, a diagonal relation {(x, x) : x ∈ X} on X is denoted by△.

Definition 2.16. [29] (X, E,⪯) is said to be a partially ordered soft set on X ≠ ∅ if (X,⪯) is a partially ordered
set. For two soft points Pxα and Pyα in (X, E,⪯), we say that Pxα ⪯ Pyα if x ⪯ y.

Definition 2.17. [29] An increasing operator i and a decreasing operator d are two soft maps of (S(XE),⪯) into
(S(XE),⪯) defined as follows: for each soft subset GE of S(XE)

(i) i(GE) = iGE, where iG is a mapping of E into P(X) given by iG(e) = i(G(e)) = {x ∈ X : b ⪯ x for some
b ∈ G(e)};

(ii) d(GE) = dGE, where dG is a mapping of E into P(X) given by dG(e) = d(G(e)) = {x ∈ X : x ⪯ b for some
b ∈ G(e)}.

Definition 2.18. [29] A soft subset GE of (X, E,⪯) is said to be increasing (resp. decreasing) provided that
GE = i(GE) (resp. GE = d(GE)).

Theorem 2.19. [29] The finite product of increasing (resp. decreasing) soft sets is increasing (resp. decreasing).

Definition 2.20. [29] A soft map fϕ : (S(XA),⪯1) → (S(YB),⪯2) is said to be:

(i) increasing (resp. decreasing) provided that Pxα ⪯1 Pyα implies fϕ(Pxα) ⪯2 fϕ(P
y
α) (resp. fϕ(P

y
α) ⪯2 fϕ(Pxα));

(iii) an ordered embedding provided that Pxα ⪯1 Pyα if and only if fϕ(Pxα) ⪯2 fϕ(P
y
α).

Theorem 2.21. [29] Let fϕ : (S(XA),⪯1) → (S(YB),⪯2) be a bijective ordered embedding soft mapping. Then
the image of each increasing (resp. decreasing) soft set is increasing (resp. decreasing).

2.2 Soft topology

Definition 2.22. [12] A family τ of soft sets over X under a fixed parameters set E which contains ̃︀X and ̃︀Φ and
is closed under finite soft intersection and arbitrary soft union is said to be a soft topology on X.
The triple (X, τ, E) is said to be a soft topological space (briefly, STS). Every member of τ is called soft open and
its relative complement is called soft closed.

Proposition 2.23. [12] If (X, τ, E) is an STS, then a family τe = {G(e) : GE ∈ τ} forms a topology on X for each
e ∈ E.

The notation τe, which is given in the proposition above, is said to be a parametric topology and (X, τe)
is said to be a parametric topological space.

Definition 2.24. [35] A soft subset WE of (X, τ, E) is called a soft neighborhood of x ∈ X if there exists a soft
open set GE such that x ∈ GE ̃︀⊆WE.

Definition 2.25. [35, 39] A soft mapping fϕ : (X, τ, A) → (Y , θ, B) is said to be:

(i) soft continuous if the inverse image of each soft open set is soft open;
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(ii) soft open (resp. soft closed) if the image of each soft open (resp. soft closed) set is soft open (resp. soft
closed);

(iii) a soft homeomorphism if it is bijective, soft continuous and soft open.

Definition 2.26. [13] A collection {GiE : i ∈ I} of soft open sets is called a soft open cover of (X, τ, E) if̃︀X = ̃︀⋃︀
i∈IGiE . And (X, τ, E) is called soft compact if every soft open cover of ̃︀X has a finite subcover.

Proposition 2.27. [13] Every soft closed subset HE of a soft compact space is soft compact.

Theorem 2.28. [13] Let (X, τ, A) and (Y , θ, B) be two STSs. Let Ω = {GA × FB : GA ∈ τ and FB ∈ θ}. Then the
family of all arbitrary unions of elements of Ω is a soft topology on X × Y.

Definition 2.29. [1] A triple (X, τ,⪯) is said to be a topological ordered space, where⪯ and τ are respectively
a partial order relation and a topology on X ≠ ∅.

Definition 2.30. [29] A quadrable system (X, τ, E,⪯) is said to be a soft topological ordered space, where
(X, τ, E) is a soft topological space and (X,⪯) is a partially ordered set.
We will write from now on STOS instead of a soft topological ordered space.

Definition 2.31. [29] A soft subset WE of (X, τ, E,⪯) is said to be an increasing (resp. a decreasing) soft neigh-
borhood of x ∈ X if WE is increasing (resp. decreasing) and a soft neighborhood of x ∈ X.

Proposition 2.32. [29] In (X, τ, E,⪯) we find that for each e ∈ E, the family τe = {G(e) : GE ∈ τ} with a
partial order relation⪯ form an ordered topology on X.

Definition 2.33. [29] Let Y ⊆ X. Then (Y , τY ,⪯Y , E) is called a soft ordered subspace of (X, τ,⪯, E) provided
that (Y , τY , E) is soft subspace of (X, τ, E) and⪯Y=⪯

⋂︀
Y × Y.

Lemma 2.34. [29] If UE is an increasing (resp. a decreasing) soft subset of (X, τ,⪯, E), then UE ̃︀⋂︀̃︀Y is an in-
creasing (resp. a decreasing) soft subset of a soft ordered subspace (Y , τY ,⪯Y , E).

Definition 2.35. [29] The product of a finite family of soft topological ordered spaces {(Xi , τi ,⪯i , Ei) : i ∈
{1, 2, ..., n}} is an STOS (X, τ,⪯, E), where X =

∏︀n
i=1 Xi, τ is the product soft topology on X, E =

∏︀n
i=1 Ei and

⪯= {(x, y) : x, y ∈ X} such that (xi , yi) ∈⪯i for every i.

Lemma 2.36. [29] If HE1×E2 is a decreasing (resp. an increasing) soft closed subset of a soft ordered product
space (X × Y , τ1 × τ2, E1 × E2,⪯), then HE1×E2 = [GcE1 × ̃︀Y]̃︀⋃︀[̃︀X × FcE2 ], for some increasing (resp. decreasing) soft
open sets GE1 ∈ τ1 and FE2 ∈ τ2.

Definition 2.37. [29] A soft ordered subspace (Y , τY ,⪯Y , E) of (X, τ,⪯, E) is called a soft compatibly ordered
provided that for each increasing (resp. decreasing) soft closed subset HE of (Y , τY ,⪯Y , E), there exists an
increasing (resp. a decreasing) soft closed subset H*

E of (X, τ,⪯, E) such that HE = ̃︀Y ̃︀⋂︀H*
E.

Definition 2.38. [29] A soft topological ordered property or soft ordered topological invariant is a property of
a soft topological ordered space which is invariant under ordered embedding soft homeomorphism mappings.

Theorem 2.39. [29] (X, τ, E,⪯) is upper (resp. lower) p-soft T1-ordered if and only if (i(x))E (resp. (d(x))E) is
soft closed, for all x ∈ X.
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3 Ordered soft separation axioms
In this section, we formulate the concepts of soft Ti-ordered spaces (i = 0, 1, 2, 3, 4) by using monotone soft
neighborhoods and establish some of their properties. With the help of illustrative examples, we elucidate
the relationship between them; and the interrelations between themand their parametric topological ordered
spaces.

Definition 3.1. A soft subset WE of (X, τ, E,⪯) is said to be:

(i) partially containing x provided that x b WE;
(ii) partially soft neighborhood of x, provided that there exists a soft open set GE such that x b FE ̃︀⊆WE;
(iii) an increasing (resp. a decreasing) partially soft neighborhood of x ∈ X provided that WE is an increasing

(resp. a decreasing) and partially soft neighborhood of x.

The following example illustrates the above definition.

Example 3.2. Let E = {e1, e2} and ⪯= △
⋃︀
{(x, z)} be a partial order relation on X = {x, y, z}. Then τ =

{̃︀Φ, ̃︀X, GE} is a soft topology on X, where GE = {(e1, ∅), (e2, {x})}. Now, it can be noted that:

(i) A soft set WE = {(e1, {y}), (e2, {x})} partially contains x because x b WE. But WE does not partially
contain z because z b̸ WE;

(ii) WE is a partially soft neighborhood of x because GE is a soft open set such that x b GE ̃︀⊆WE;
(iii) WE is a decreasing partially soft neighborhood of x because WE is decreasing and partially soft neighbor-

hood of x. On the other hand, i(WE) = {(e1, {y}), (e2, {x, z})} ≠ WE. Then WE is not increasing. Hence, WE
is not increasing partially soft neighborhood of x.

Definition 3.3. (X, τ, E,⪯) is said to be:

(i) upper (resp. lower) soft T1-ordered if for every x � y in X, there exists a decreasing (resp. an increasing) soft
neighborhood WE of y (resp. x) such that x ∉ WE (resp. y ∈ ̸ WE);

(iii) soft T0-ordered if it is upper soft T1-ordered or lower soft T1-ordered;
(iv) soft T1-ordered if it is upper soft T1-ordered and lower soft T1-ordered;
(v) soft T2-ordered if for every x � y in X, there exist disjoint an increasing soft neighborhood WE of x and a

decreasing soft neighborhood VE of y.

Remark 3.4. The definition of a p-soft T2-ordered space in [29] reports that for every x � y in X, there exist two
disjoint soft neighborhoods WE and VE containing x and y, respectively. This means that y b̸ WE and x b̸ VE.
Since WE and VE are disjoint then y b̸ WE if and only if y ∈ ̸ WE and x b̸ VE if and only if x ∈ ̸ VE. So the
definitions of soft T2-ordered and p-soft T2-ordered spaces are equivalent. Hence, all results concerning p-soft
T2-ordered spaces in [29] are still valid for soft T2-ordered spaces.

Proposition 3.5. Every soft Ti-ordered space (X, τ, E,⪯) is soft Ti−1-ordered for i = 1, 2.

Proof. The proof follows immediately from Definition (3.3).

To show that the converse of the aboveproposition is not always true,we give the following two examples.

Example 3.6. Let E = {e1, e2} be a set of parameters and⪯= △
⋃︀
{(x, y), (x, z)} be a partial order relation on

X = {x, y, z}. We define the soft sets {GiE : i = 1, 2, 3, 4} as follows:

G1E = {(e1, {y}), (e2, {x, y})};
G2E = {(e1, {z}), (e2, {x, z})};
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G3E = {(e1, {y, z}), (e2, X})} and
G4E = {(e1, ∅), (e2, {x})}.

Then τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2, 3, 4} forms a soft topology on X. Now, for y � x and y � z, we find that
WE = {(e1, {y}), (e2, X)} is an increasing soft neighborhood of y such that x ∉ WE and z ∉ WE. Also, for z � x
and z � y, we find that WE = {(e1, {z}), (e2, X)} is an increasing soft neighborhood of z such that x ∈ ̸ WE and
y ∈ ̸ WE. Therefore (X, τ, E,⪯) is a lower soft T1-ordered space. Hence, it is soft T0-ordered. On the other hand,
there does not exist a soft neighborhood WE of x such that y ∈ ̸ WE or z ∉ WE. This means that it is not an upper
soft T1-ordered space. Hence, (X, τ, E,⪯) is not soft T1-ordered.

Example 3.7. Let E = {e1, e2} be a set of parameters and ⪯= △
⋃︀
{(1, 2), (2, 3), (1, 3)} be a partial order

relation on X = {1, 2, 3}. The soft sets {GiE : i = 1, 2, ..., 9} are defined as follows:

G1E = {(e1, {1}), (e2, {2})};
G2E = {(e1, {1}), (e2, {1, 2})};
G3E = {(e1, {1, 2}), (e2, {2})};
G4E = {(e1, {1, 2}), (e2, {1, 2})};
G5E = {(e1, {3}), (e2, X)};
G6E = {(e1, ∅), (e2, {1, 2})};
G7E = {(e1, ∅), (e2, {2})};
G8E = {(e1, ∅), (e2, {1})} and
G9E = {(e1, {1, 3}), (e2, X)}.

Then τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2, ..., 9} forms a soft topology on X. Now, for 3 � 2 and 3 � 1, we find that G5E is
an increasing soft neighborhood of 3 such that 2 ∈ ̸ G5E and 1 ∈ ̸ G5E ; and G4E is a decreasing soft neighborhood
of 2 and 1 such that 3 ∈ ̸ G4E . Also, for 2 � 1, we find that WE = {(e1, X), (e2, {2, 3})} is an increasing soft
neighborhood of 2 and G2E is a decreasing soft neighborhood of 1 such that 1 ∉ WE and 2 ∈ ̸ G2E . Therefore,
(X, τ, E,⪯) is soft T1-ordered. In contrast, any soft open set containing 1 intersects any soft open set containing
2. Hence (X, τ, E,⪯) is not soft T2-ordered.

Proposition 3.8. If a is the smallest element of a finite upper soft T1-ordered space (X, τ, E,⪯), then there is
a decreasing soft neighborhood WE of a such that y ∈ ̸ WE for each y ∈ X \ {a}.

Proof. Let a be the smallest element in (X,⪯). Then a ⪯ x for all x ∈ X. Since⪯ is anti-symmetric, then x ⪯̸ a
for all x ∈ X. Therefore, there exists a decreasing soft neighborhood WE of a such that x ∈ ̸ WE. Since X is
finite, then ̃︀⋂︀WE is a decreasing soft neighborhood of a such that y ∉ WE for each y ∈ X \ {a}.

Proposition 3.9. If a is the largest element of a finite lower soft T1-ordered space (X, τ, E,⪯), then there is an
increasing soft neighborhood WE of a such that y ∈ ̸ GE for each y ∈ X \ {a}.

Proof. The proof is similar to that of Proposition (3.8).

Proposition 3.10. If (X, τ, E,⪯) is a finite soft T1-ordered space, then for each x ∈ X there is a soft open set
GE containing x such that y ∈ ̸ GE for each y ∈ X \ {x}.

Proof. Let x ∈ X. Since ⪯ is anti-symmetric, then x ⪯ ̸ y or y ⪯̸ x for all y ∈ X. By hypothesis, there exists an
increasing soft neighborhood WE of x or a decreasing soft neighborhood WE of x such that y ∈ ̸ WE. Since X
is finite, then ̃︀⋂︀WE is a soft neighborhood of x such that y ∉ WE for each y ∈ X \ {a}. Hence, there is a soft
open set GE such that x ∈ GE ̃︀⊆̃︀⋂︀WE.

Theorem 3.11. (X, τ, E,⪯) is soft T2-ordered if and only if for all (x, y) ∈ ̸⪯ there are soft open sets UE and VE
containing x and y, respectively, such that (a, b) ∈ ̸⪯ for every a ∈ U(e) and b ∈ V(e).
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Proof. From Remark (3.4) and Theorem 4.13 in [29], the proof follows.

Proposition 3.12. If (X, τ, E,⪯) is soft T2-ordered, then all parametric topological ordered spaces (X, τe ,⪯)
are T2-ordered.

Proof. The proof follows from Remark (3.4) and Proposition 4.15 in [29].

Corollary 3.13. The minimum number of soft open subsets of a finite soft T2-ordered space (X, τ, E,⪯) is 2|X|

soft open sets.

The next example clarifies that the converse of Proposition (3.12) fails.

Example 3.14. Consider a partial order relation ⪯= △
⋃︀
{(x, y)} on X = {x, y} and let E = {e1, e2} be a

parameters set. The collection τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2} is a soft topology on X, where

G1E = {(e1, {x}), (e2, {y})} and
G2E = {(e1, {y}), (e2, {x})}.

Obviously, (X, τe1 ,⪯) and (X, τe2 ,⪯) are T2-ordered spaces; notwithstanding, (X, τ, E,⪯) is not a soft T0-
ordered space.

Also, the example below combined with the above example illustrate that the soft Ti-ordered spaces
(i = 0, 1) and their parametric topological ordered spaces are independent of each other.

Example 3.15. Consider a a partial order relation⪯= △
⋃︀
{(x, y)} on X = {x, y, z} and let E = {e1, e2, e3} be

a parameters set. The collection τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2, ..., 7} is a soft topology on X, where

G1E = {(e1, {x}), (e2, X), (e3, X)};
G2E = {(e1, X), (e2, {y}), (e3, X)};
G3E = {(e1, X), (e2, X), (e3, {z})};
G4E = {(e1, {x}), (e2, {y}), (e3, X)};
G5E = {(e1, {x}), (e2, X), (e3, {z})};
G6E = {(e1, X), (e2, {y}), (e3, {z})} and
G7E = {(e1, {x}), (e2, {y}), (e3, {z})}.

Obviously, (X, τe1 ,⪯), (X, τe2 ,⪯) and (X, τe3 ,⪯) are not T0-ordered spaces; notwithstanding, (X, τ, E,⪯) is
soft T1-ordered.

Proposition 3.16. The property of being a soft Ti-ordered space is a soft hereditary property for i = 0, 1, 2.

Proof. From Remark (3.4) and Theorem 4.19 in [29], we obtain the proof in the case of i = 2.
To prove the proposition in the case of i = 1, let (Y , τY , E,⪯Y ) be a soft ordered subspace of a soft T1-

ordered space (X, τ, E,⪯). For every a ⪯̸Y b ∈ Y, we have a ⪯ ̸ b. Therefore, there is an increasing soft
neighborhoodWE of a and a decreasing soft neighborhood VE of b. By setting UE = ̃︀Y ̃︀⋂︀WE and GE = ̃︀Y ̃︀⋂︀VE,
we find from Lemma (2.34) that UE is an increasing soft neighborhood of a and GE is a decreasing soft neigh-
borhood of b such that b ∈ ̸ UE and a ∉ GE. Thus, (Y , τY ,⪯Y , E) is soft T1-ordered.

The proof in the case of i = 0 can be done similarly.

Proposition 3.17. Every p-soft Ti-ordered space is soft Ti-ordered for i = 0, 1.

Proof. The proof is complete by observing that x b̸ GE implies that x ∉ GE for every GE ̃︀⊆̃︀X.
Corollary 3.18. (X, τ, E,⪯) is upper (resp. lower) soft T1-ordered if (i(x))E(resp. (d(x))E) is a soft closed set
for each x ∈ X.
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Proof. If (i(x))E is a soft closed set for each x ∈ X, then it follows fromTheorem (2.39) that (X, τ, E,⪯) is upper
p-soft T1-ordered. Hence, it is upper soft T1-ordered.

Remark 3.19. It can be seen that the given STOS in Example (3.6) is soft T0-ordered, but is not p-soft T0-ordered,
since there does not exist a soft neighborhoodWE of y such that x b̸ WE. Also, it can be noted that the given STOS
in Example (3.7) is soft T1-ordered, but is not p-soft T1-ordered, since there does not exist a soft neighborhood
WE of 2 such that 1 b̸ WE. Hence, the converse of the above proposition fails.

Definition 3.20. (X, τ, E,⪯) is said to be:

(i) upper (resp. lower) soft regularly ordered if for each increasing (resp. decreasing) soft closed set HE and
x ∈ X such that x ∈ ̸ HE, there exist disjoint soft neighbourhoods WE of HE and VE of x such that WE is
increasing (resp. decreasing) and VE is decreasing (resp. increasing);

(ii) soft regularly ordered if it is both upper soft regularly ordered and lower soft regularly ordered;
(iii) upper (resp. lower) soft T3-ordered if it is both upper (resp. lower) soft T1-ordered and upper (resp. lower)

soft regularly ordered;
(iv) soft T3-ordered if it is both upper soft T3-ordered and lower soft T3-ordered;
(v) soft normal ordered if for every two disjoint an increasing soft closed set H1E and a decreasing soft closed

set H2E there exist a disjoint increasing soft neighbourhood VE of H1E and a decreasing soft neighbourhood
WE of H2E ;

(vi) soft T4-ordered if it is soft normally ordered and soft T1-ordered.

Example 3.21. Let (X, τ, E,⪯)be the soft indiscrete topological space,where E is anarbitrary set of parameters
E and ⪯ is any partial order relation on X. Then (X, τ, E,⪯) is lower (upper) soft regularly ordered. So it is soft
regularly ordered. Also it is soft normal. But it is not lower (upper) soft T3-ordered if |X| ≥ 2. So it is not soft
T3-ordered. Moreover, it is not soft T4-ordered. On the other hand, if (X, τ, E,⪯) is the soft discrete topological
space, then it is soft Ti-ordered for i = 3, 4.

Theorem 3.22. (X, τ, E,⪯) is upper (resp. lower) soft regularly ordered if and only if for all x ∈ X and every
decreasing (resp. increasing) soft open set UE partially containing x, there is a decreasing (resp. an increasing)
partially soft neighbourhood VE of x satisfying VE ̃︀⊆UE.
Proof. We prove the theorem in the lower soft regularly ordered case. The other case follows similar manner.

Necessity: Suppose that UE is an increasing soft open set such that x b UE. Then UcE is a decreasing soft
closed set and x ∉ UcE. Therefore, there is an increasing soft neighbourhood VE of x and a decreasing soft
neighbourhoodWE of UcE such that VE ̃︀⋂︀WE = ̃︀Φ. Thus, there exists a soft open set GE such that UcE ̃︀⊆GE ̃︀⊆WE.
Since VE ̃︀⊆Wc

E, then VE ̃︀⊆Wc
E ̃︀⊆GcE ̃︀⊆UE and since GcE is soft closed, then VE ̃︀⊆GcE ̃︀⊆UE.

Sufficiency: Let HE be a decreasing soft closed set and x ∉ HE. Then HcE is an increasing soft open set such
that x b HcE. Therefore, there exists an increasing soft neighbourhood VE of x satisfying VE ̃︀⊆HcE. Obvi-
ously, HE ̃︀⊆(VE)c and (VE)c is soft open. Now, d(VE)c) is a decreasing soft neighbourhood of HE. Suppose
that VE ̃︀⋂︀d((VE)c) ≠ ̃︀Φ. Then there are x ∈ X and e ∈ E such that x ∈ V(e) and x ∈ d((V)c(e)). This implies
that there is y ∈ (V)c(e) such that x ⪯ y. This means that y ∈ V(e). But this contradicts the disjointness of VE
and (VE)c. Hence, VE ̃︀⋂︀d((VE)c) = ̃︀Φ.
Proposition 3.23. Every increasing (decreasing) soft closed or soft open subset of a soft regularly ordered space
(X, τ, E,⪯) is stable.

Proof. Without loss of generality, suppose that HE is an increasing soft closed set in a soft regularly ordered
space (X, τ, E,⪯) which is not stable. Then there exists x ∈ X and α, β ∈ E such that x ∈ H(α) and x ∈ ̸ H(β).
Thismeans that x ∈ ̸ HE. So for any soft neighborhoodWE of x and any soft neighborhood VE ofHE, we obtain
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that x ∈ W(α)
⋂︀
V(α). Thus, we cannot find disjoint soft neighborhoods of x and HE. This is a contradiction

with soft regularly ordered of (X, τ, E,⪯). Hence, HE must be stable.
The proof of the decreasing case can be done similarly.

Corollary 3.24. If all increasing (decreasing) soft closed or soft open subsets in (X, τ, E,⪯) are stable, then
(X, τ, E,⪯) is p-soft regularly ordered if and only if it is soft regularly ordered.

Proposition 3.25. Every soft regularly ordered space is p-soft regularly ordered.

Proof. Straightforward.

The example below shows that the converse of Proposition (3.25) does not hold in general.

Example 3.26. We define the soft sets {GiE : i = 1, 2, 3, 4} over X = {x, y} with a parameters set E = {e1, e2}
as follows:

G1E = {(e1, {x}), (e2, {x})};
G2E = {(e1, {y}), (e2, {y})};
G3E = {(e1, {y}), (e2, ∅)} and
G4E = {(e1, X), (e2, {x})}.

Then τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2, 3, 4} is a soft topology on X. Let ⪯= △
⋃︀
{(x, y)} be a partial order relation

on X = {x, y}. It can be verified that (X, τ, E,⪯) is a p-soft regularly ordered space. But it is not soft regularly
ordered because an increasing soft open set G3E is not stable.

Remark 3.27. In the following we point out that the concepts of soft T3-ordered and soft T4-ordered spaces are
independent of each other.

(i) The given STOS in Example(3.26) is soft T2-ordered and soft T4-ordered, but it is not soft T3-ordered;
(ii) If we consider (X, τ, E,⪯) is STOS such that E is a singleton set, then (X, τ, E,⪯) is a topological ordered

space. So Example 7 in [2] shows that a soft T4-ordered space is a proper extension of a soft T3-ordered
space.

The following two problems are still open.

Problem 3.28. Is a soft T3-ordered space a soft T2-ordered space?

Problem 3.29. Is a soft T3-ordered space a p-soft T3-ordered space?

Proposition 3.30. Every p-soft T4-ordered space (X, τ, E,⪯) is soft T4-ordered.

Proof. Straightforward.

The converse of Proposition 3.30 fails. We show this in the next example.

Example 3.31. Let E = {e1, e2, e3} and⪯= △
⋃︀
{(x, y)} be a partial order relation on X = {x, y}. The following

six soft sets defined as follows.

G1E = {(e1, {x}X), (e2, X), (e3, X)};
G2E = {(e1, {y}X), (e2, X), (e3, X)};
G3E = {(e1, ∅), (e2, X), (e3, X)};
G4E = {(e1, {x}), (e2, ∅), (e3, ∅)};
G5E = {(e1, {y}), (e2, ∅), (e3, ∅)} and
G6E = {(e1, X), (e2, ∅), (e3, ∅)}.
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The collection τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2, ..., 6} is a soft topology on X. It can be easily verified that (X, τ, E,⪯)
is soft T4-ordered. In contrast, we cannot find a soft open set containing y such that x does not totally belong to
it. Therefore, (X, τ, E,⪯) fails to satisfy a condition of a p-soft T1-ordered space. Thus, (X, τ, E,⪯) is not p-soft
T4-ordered.

Theorem 3.32. Every soft compatibly ordered subspace (Y , τY , E,⪯Y ) of a soft regularly ordered space
(X, τ, E,⪯) is soft regularly ordered.

Proof. Suppose that HE is an increasing soft closed subset of (Y , τY , E,⪯Y ) such that y ∈ ̸ HE. Because
(Y , τY , E,⪯Y ) is soft compatibly ordered subspace of (X, τ, E,⪯), then there is an increasing soft closed set
H*
E in (X, τ, E,⪯) such that HE = ̃︀Y ̃︀⋂︀H*

E. By hypothesis, we have a decreasing soft neighborhood VE of y and
an increasing soft neighborhood WE of H*

E such that VE ̃︀⋂︀WE = ̃︀Φ. From Lemma (2.34) we obtain ̃︀Y ̃︀⋂︀VE is a
decreasing soft neighborhood of y and ̃︀Y ̃︀⋂︀WE is an increasing soft neighborhood of HE in (Y , τY , E,⪯Y ). The
disjointness of ̃︀Y ̃︀⋂︀VE and ̃︀Y ̃︀⋂︀WE completes the proof that (Y , τY , E,⪯Y ) is upper soft regularly ordered.

In a similar manner it can be proved that (Y , τY , E,⪯Y ) is lower soft regularly ordered. Hence,
(Y , τY , E,⪯Y ) is soft regularly ordered.

Corollary 3.33. Every soft compatibly ordered subspace (Y , τY , E,⪯Y ) of a soft T3-ordered space (X, τ, E,⪯)
is soft T3-ordered.

The proof of the next proposition is easy and thus it is omitted.

Proposition 3.34. Every soft closed compatibly ordered subspace of a soft T4-ordered space is soft T4-ordered.

Theorem 3.35. The finite product of soft Ti-ordered spaces is soft Ti-ordered for i = 0, 1, 2, 3.

Proof. We only prove the theorem in the case of i = 2, and the other cases can be proved similarly.
Assume that (X, τ1, E1,⪯1) and (Y , τ2, E2,⪯2) are soft T2-ordered spaces and let (X × Y , τ, E,⪯) be the

soft ordered product space of them. Let (x1, y1) ⪯ ̸ (x2, y2) ∈ X × Y. Then x1 ⪯̸1 x2 or y1 ⪯ ̸2 y2. Without loss
of generality, say x1 ⪯̸1 x2. Since (X, τ1, E1,⪯1) is soft T2-ordered, then there is an increasing soft neighbor-
hood WE1 of x1 and a decreasing soft neighborhood VE1 of x2 such that x2 ∉ WE1 and x1 ∉ VE1 which are
disjoint. Therefore, WE1 × ̃︀Y is an increasing soft neighborhood of (x1, y1) and VE1 × ̃︀Y is a decreasing soft
neighborhood of (x2, y2) such that (x2, y2) ∈ ̸ [WE1 × ̃︀Y] and (x1, y1) ∉ [VE1 × ̃︀Y]. The disjointness ofWE1 × ̃︀Y
and VE1 × ̃︀Y finishes the proof that (X × Y , τ, E,⪯) is soft T2-ordered.

Theorem 3.36. The property of being a soft Ti-ordered space is a soft topological ordered property for i =
0, 1, 2, 3, 4.

Proof. We only prove the theorem in the cases of i = 2, 4, and the other cases can be proved similarly.

(i) Let fϕ : (X, τ, A,⪯1) → (Y , θ, B,⪯2) be an ordered embedding soft homeomorphism map such that
(X, τ, A,⪯1) is soft T2-ordered. Suppose that x ⪯̸2 y ∈ Y. Then Pxβ ⪯̸2 Pyβ for each β ∈ B. Since fϕ is bijective,
then there are Paα and Pbα in ̃︀X such that fϕ(Paα) = Pxβ and fϕ(P

b
α) = Pyβ and since fϕ is an ordered embedding,

then Paα ⪯̸1 Pbα . So a ⪯̸1 b. By hypothesis, we have an increasing soft neighborhood VE of a and a decreasing
soft neighborhoodWE of b such that VE ̃︀⋂︀WE = ̃︀Φ. Since fϕ is bijective soft open, then fϕ(VE) and fϕ(WE) are
disjoint soft neighborhoods of x and y, respectively. From Theorem (2.21), we obtain fϕ(VE) and fϕ(WE) are
increasing and decreasing, respectively. Hence, the proof is complete.

(ii) Let fϕ : (X, τ, A,⪯1) → (Y , θ, B,⪯2) be an ordered embedding soft homeomorphism map such that
(X, τ, A,⪯1) is soft normally ordered. Suppose that the two disjoint soft closed sets HE and FE are increasing
and decreasing, respectively. Since fϕ is bijective soft continuous, then f −1ϕ (HE) and f −1ϕ (FE) are disjoint soft
closed sets and since fϕ is ordered embedding, then f −1ϕ (HE) is increasing and f −1ϕ (FE) is decreasing. By hy-
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pothesis, there are disjoint soft neighborhoods VE andWE of f −1ϕ (HE) and f −1ϕ (FE), respectively, such that VE
is increasing andWE is decreasing. So HE ̃︀⊆fϕ(VE) and FE ̃︀⊆fϕ(WE). It follows by Theorem (2.21) that fϕ(VE) is
increasing and fϕ(WE) is decreasing. The disjointness of the soft neighborhoods fϕ(VE) and fϕ(WE) finishes
the proof.

We devote the rest of this section to investigate some findings that associate some given ordered soft
separation axioms with soft compactness.

Lemma 3.37. Let FE be an increasing (resp. a decreasing) soft open set in a soft regularly ordered space. Then
for each Pxe ∈ FE there exists an increasing (resp. a decreasing) soft neighborhood GE of Pxe such that Pxe ∈
GE ̃︀⊆FE.
Proof. Suppose that FE is an increasing soft open set such that Pxe ∈ FE. Then x ∈ ̸ FcE. Since
(X, τ, E,⪯) is soft regularly ordered, then there exist an increasing soft neighborhood GE of x and a de-
creasing soft neighborhood WE of FcE which are disjoint. This automatically means there are soft open sets
HE and LE such that x ∈ HE ̃︀⊆GE and FcE ̃︀⊆LE ̃︀⊆WE. Thus, x ∈ GE ̃︀⊆Wc

E ̃︀⊆LcE ̃︀⊆FE. Hence, Pxe ∈ GE ̃︀⊆LcE ̃︀⊆FE.
The decreasing case can be proved in a similar manner.

Theorem 3.38. Let HE be an increasing (resp. a decreasing) soft compact set in a soft regularly ordered space
and FE be a decreasing (resp. an increasing) soft open set containing HE. Then there exists a decreasing (resp.
an increasing) soft neighborhood GE of HE such that GE ̃︀⊆FE.
Proof. Suppose that the given conditions are satisfied. Then for each Pxe ∈ HE, we have Pxe ∈ FE. Therefore,
there is a decreasing soft neighborhood WiE of P

x
e such that WiE ̃︀⊆FE. Thus, there is a soft open set ViE con-

taining Pxe such that ViE ̃︀⊆WiE ̃︀⊆FE. Now, the collection {ViE : P
x
e ∈ FE} of soft open sets containing Pxe forms

a soft open cover of HE. Since HE is soft compact, then HE ̃︀⊆̃︀⋃︀n
i=1ViE ̃︀⊆̃︀⋃︀n

i=1WiE . Let GE = ̃︀⋃︀n
i=1WiE . This is a

decreasing soft neighborhood of HE. Obviously, HE ̃︀⊆GE ̃︀⊆GE ̃︀⊆FE.
A similar proof can be given for decreasing case.

Corollary 3.39. Every soft compact and soft regularly ordered space (X, τ, E,⪯) is soft normally ordered.

Proof. Suppose that F1E and F2E are two disjoint soft closed sets such that F1E is decreasing and F2E is in-
creasing. Then F2E ̃︀⊆Fc1E . Since (X, τ, E,⪯) is soft compact, then F2E is soft compact and since (X, τ, E,⪯) is
soft regularly ordered, then there is an increasing soft neighborhood GE of Fc1E such that F2E ̃︀⊆GE ̃︀⊆GE ̃︀⊆Fc1E .
Obviously, F1E ̃︀⊆(GE)c and GE ̃︀⋂︀(GE)c = ̃︀Φ. To prove that GE ̃︀⋂︀d[(GE)c] = ̃︀Φ, suppose that there exists an ele-
ment x ∈ GE and x ∈ d[(GE)c]. So there exists an element y ∈ (GE)c such that x ⪯ y. This means that y ∈ GE.
But this contradicts the disjointness of GE and (GE)c. Thus, (X, τ, E,⪯) is soft normally ordered.

To show that the converse of the above theorem and corollary fail we give the following example.

Example 3.40. Consider a partial order relation ⪯= △ which is the equality relation on X = {x, y} and let
E = {e1, e2} be a parameters set. The collection τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2} is a soft topology on X, where

G1E = {(e1, {x}), (e2, X)} and
G2E = {(e1, {y}), (e2, ∅)}.

Obviously, (X, τ, E,⪯) is soft normally ordered and soft compact. Also, for every increasing (resp. decreas-
ing) soft compact subset of (X, τ, E,⪯) and every decreasing (resp. increasing) soft open set FE containing HE,
there exists a decreasing (resp. an increasing) soft neighborhood GE of HE such that GE ̃︀⊆FE. On the other hand,
since the soft open sets G1E and G2E are not stable, then it follows from Proposition (3.23) that (X, τ, E,⪯) is not
soft regularly ordered.
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4 Strong ordered soft separation axioms
The first aim of this section is to define strong ordered soft separation axioms, namely strong soft Ti-ordered
spaces (i = 0, 1, 2, 3, 4) by using monotone soft open sets in the place of monotone soft neighborhoods. The
second aim is to provide some examples to illustrate the relationships between these and the relationships
between them and soft Ti-ordered spaces. The third aim is to discuss their main properties and provide some
results that associate soft compactness and some initiated strong ordered soft separation axioms.

The following example explains the difference between soft open sets and soft neighborhoods in terms
of increasing and decreasing.

Example 4.1. Let E = {e1, e2} and ⪯= △
⋃︀
{(x, z), (y, w)} be a partial order relation on X = {a, x, y, w, z}.

The collection τ = {̃︀Φ, ̃︀X, GE} is a soft topology on X, where GE = {(e1, {a, x}), (e2, {a, w})}. Now, it can
be noted that GE is a soft open set containing a such that i(GE) = {(e1, {a, x, z}), (e2, {a, w})} ≠ GE and
d(GE) = {(e1, {a, x}), (e2, {a, y, w})} ≠ GE. So that GE is neither increasing, nor decreasing. On the other
hand, WE = {(e1, {a, x, z}), (e2, {a, y, w})} is a monotone soft neighborhood of a because:

(i) a ∈ GE ̃︀⊆WE and
(ii) i(WE) = WE and d(GE) = WE.

Also, UE = {(e1, {a, x, z}), (e2, {a, w})} is an increasing soft neighborhood of a, but it is not decreasing and
VE = {(e1, {a, x}), (e2, {a, y, w})} is a decreasing soft neighborhood of a, but it is not increasing.

Proposition 4.2.
(i) Every monotone soft open set containing an element x is a monotone soft neighborhood of x.
(ii) Every monotone soft open set containing a soft set HE is a monotone soft neighborhood of HE.

Proof. Let GE be a monotone soft open set containing an element x. Then x ∈ GE ⊆ GE. Therefore, GE is
a monotone soft neighborhood of x. Also, if GE is a monotone soft open set containing a soft set HE. Then
HE ⊆ GE ⊆ GE. Therefore, GE is a monotone soft neighborhood of HE.

Example (4.1) demonstrates that the converse of the above proposition fails.

Definition 4.3. (X, τ, E,⪯) is said to be:

(i) strong upper (resp. strong lower) soft T1-ordered if for every x � y in X, there exists a decreasing (resp. an
increasing) soft open set WE containing y (resp.x) such that x ∉ WE (resp.y ∉ WE);

(ii) strong soft T0-ordered if it is strong upper soft T1-ordered or strong lower soft T1-ordered;
(iii) strong soft T1-ordered if it is strong upper soft T1-ordered and strong lower soft T1-ordered;
(iv) strong soft T2-ordered if for every x � y in X, there exist disjoint an increasing soft open set WE containing

x and a decreasing soft open set VE containing y;
(v) strong upper (resp. strong lower) soft regularly ordered if for each increasing (resp. decreasing) soft closed

set HE and x ∈ X such that x ∉ HE, there exist disjoint soft open sets WE containing HE and VE containing
x such that WE is increasing (resp. decreasing) and VE is decreasing (resp. increasing);

(vi) strong soft regularly ordered if it is both strong upper soft regularly ordered and strong lower soft regularly
ordered;

(vii) strong upper (resp. strong lower) soft T3-ordered if it is both strong upper (resp. strong lower) soft T1-
ordered and strong upper (resp. strong lower) soft regularly ordered;

(viii) strong soft T3-ordered if it is both strong upper soft T3-ordered and strong lower soft T3-ordered;
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(ix) strong soft normally ordered if for each disjoint soft closed sets FE and HE such that FE is increasing and
HE is decreasing, there exist disjoint soft open sets GE containing FE and UE containing HE such that GE is
increasing and UE is decreasing;

(x) strong soft T4-ordered if it is strong soft normally ordered and strong soft T1-ordered.

Proposition 4.4. Every strong soft Ti-ordered space is soft Ti-ordered for i = 0, 1, 2, 3, 4.

Proof. The proof follows from the fact that every monotone soft open set containing an element x is a mono-
tone soft neighborhood of x and every monotone soft open set containing a soft set HE is a monotone soft
neighborhood of HE.

In what follows, we construct two examples to point out that the converse of the above proposition fails
in the cases of i = 0, 1. The other cases are still open problems.

Example 4.5. Let (X, τ, E,⪯) be the same as in Example (3.6). We point out that this STOS is soft T0-ordered.
However, it is not strong soft T0-ordered, because y ⪯̸ z and there does not exist an increasing soft open set GE
containing x such that z ∉ GE.

Example 4.6. Let (X, τ, E,⪯) be the same as in Example (3.7). We point out that this STOS is soft T1-ordered.
However, it is not strong soft T1-ordered, because 2 ⪯̸ 1 and there does not exist an increasing soft open set GE
containing 2 such that 1 ∈ ̸ GE.

Problem 4.7. Is a soft Ti-ordered space a strong soft Ti-ordered space for i = 2, 3, 4?

Theorem 4.8. Let (X, τ, E,⪯) be strong soft regularly ordered. Then (X, τ, E,⪯) is p-soft T1-ordered if and
only if it is strong soft T1-ordered.

Proof. To prove the "if" part, let x ⪯̸ y. Then it follows from Proposition (2.39) that (i(x))E and (d(y))E are soft
closed sets. So [(d(y))E]c is an increasing soft open set containing x and [(i(x))E]c is a decreasing soft open set
containing y such that y ∈ ̸ [(d(y))E]c and x ∉ [(i(x))E]c. Thus, (X, τ, E,⪯) is strong soft T1-ordered.

To prove the "only if" part, suppose x ⪯̸ y in X. Then there exist an increasing soft open setWE containing
x and a decreasing soft open set VE containing y such that y ∈ ̸ WE and x ∈ ̸ VE. By Proposition (3.23),WE and
VE are stable. This means that y b̸ WE and x b̸ VE. Thus, (X, τ, E,⪯) is p-soft T1-ordered.

Corollary 4.9. If (X, τ, E,⪯) is strong soft regularly ordered and upper (resp. lower) strong soft T1-ordered,
then (i(x))E(resp. (d(x))E) is soft closed.

To show that the converse of the above corollary fails, we give the following example.

Example 4.10. Consider ⪯= △
⋃︀
{(x, y)} which is a partial order relation on X = {x, y} and let E = {e1, e2}

be a parameters set. The collection τ = {̃︀Φ, ̃︀X, GiE : i = 1, 2, 3, 4} is a soft topology on X, where

G1E = {(e1, {x}), (e2, {x})};
G2E = {(e1, {y}), (e2, {y})};
G3E = {(e1, X), (e2, {y})} and
G4E = {(e1, {x}), (e2, ∅)}.

On the one hand, (i(x))E = (d(y))E = ̃︀X, (d(x))E = G1E and (i(y))E = G2E are soft closed sets. On the other hand,
since the soft open sets G3E and G4E are not stable, then it follows from Proposition (3.23) that (X, τ, E,⪯) is not
soft regularly ordered. Hence, (X, τ, E,⪯) is not strong soft regularly ordered.

Proposition 4.11. The following three concepts are equivalent if (X, τ, E,⪯) is strong soft regularly ordered:
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(i) strong soft T2-ordered;
(ii) strong soft T1-ordered;
(iii) strong soft T0-ordered.

Proof. The directions (i)→(iii) are obvious.
To prove that (iii)→(i), let x ⪯̸ y ∈ X. Since (X, τ, E,⪯) is strong soft T0-ordered, then it is strong lower

soft T1-ordered or strongupper soft T1-ordered. Say, it is strong upper soft T1-ordered. It follows, by the above
corollary, that (i(x))E is an increasing soft closed set. Since y ∈ ̸ (i(x))E and (X, τ, E,⪯) is strong soft regularly
ordered, then there exist disjoint soft open sets WE and VE containing (i(x))E and y, respectively, such that
WE is increasing and VE is decreasing. Hence, the proof is complete.

Corollary 4.12. The following concepts are equivalent if (X, τ, E ⪯) is strong lower (resp. strong upper) soft
regularly ordered:

(i) strong soft T2-ordered;
(ii) strong soft T1-ordered;
(iii) strong lower (resp. strong upper) soft T1-ordered.

Corollary 4.13. Every strong soft Ti-ordered space (X, τ, E,⪯) is strong soft Ti−1-ordered for i = 1, 2, 3.

The converse of the above corollary need not be true in general as demonstrated in the next three exam-
ples.

Example 4.14. The given STOS in Example (3.7) is strong soft T0-ordered, however, it is not strong soft T1-
ordered.

Example 4.15. Let E = {e1, e2} be a parameters set. Let⪯= △
⋃︀
{(2, 3)} be a partial order relation on the set

of natural numbers N. Then τ = {̃︀Φ, GE ̃︀⊆̃︀N : GcE is finite } is a soft topology on N. Now, we have the following
cases:

(i) since 3 � 2, then UE = {(e1,N \ {2}), (e2,N \ {2})} is an increasing soft open set containing 3 and VE =
{(e1,N \ {3}), (e2,N \ {3})} is a decreasing soft open set containing 2 such that 2 ∉ UE and 3 ∉ VE;

(ii) since x � 2 for all x ≠ 3, then UE = {(e1,N \ {2}), (e2,N \ {2})} is an increasing soft open set containing
x and VE = {(e1,N \ {x, 3}), (e2,N \ {x, 3})} is a decreasing soft open set containing x such that 2 ∈ ̸ UE
and x ∉ VE;

(iii) since 2 � x, then UE = {(e1,N \ {x}), (e2,N \ {x})} is an increasing soft open set containing 2 and
VE = {(e1,N \ {2, 3}), (e2,N \ {2, 3})} is a decreasing soft open set containing x such that x ∈ ̸ UE and
2 ∈ ̸ VE;

(iv) since 3 � x for all x ≠ 2, then UE = {(e1,N \ {2, x}), (e2,N \ {2, x})} is an increasing soft open set
containing 3 and VE = {(e1,N \ {3}), (e2,N \ {3})} is a decreasing soft open set containing x such that
x ∉ UE and 3 ∈ ̸ VE;

(v) since x � 3, then UE = {(e1,N \ {2, 3}), (e2,N \ {2, 3})} is an increasing soft open set containing x and
VE = {(e1,N \ {x}), (e2,N \ {x})} is a decreasing soft open set containing 3 such that 3 ∉ UE and x ∉ VE.

Thus, (X, τ, E,⪯) is strong soft T1-ordered. In contrast, one can note that it is not strong soft T2-ordered.

Example 4.16. The given STOS in Example (3.26) is strong soft T2-ordered, however, it is not strong soft T3-
ordered.

Remark 4.17. In the following, we point out that the concepts of strong soft T3-ordered and strong soft T4-
ordered spaces are independent of each other.
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(i) The given STOS in Example(3.26) is strong soft T4-ordered, but it is not strong soft T3-ordered;
(ii) If we consider (X, τ, E,⪯) is an STOS such that E is a singletonand⪯ is an equality relation, then (X, τ, E,⪯)

is a topological space. So Niemytzki space in general topology shows that a strong soft T4-ordered space is
a proper extension of a strong soft T3-ordered space.

The proofs of Theorem (4.18) and Theorem (4.19) below are similar to the proofs of Theorem (3.35) and
Theorem (3.36) respectively.

Theorem 4.18. A finite product of strong soft Ti-ordered spaces is strong soft Ti-ordered for i = 0, 1, 2.

Theorem 4.19. The property of being a strong soft Ti-ordered space is a soft topological ordered property for
i = 0, 1, 2, 3, 4.

We devote the rest of this section to investigate some findings that associate some strong ordered soft
separation axioms with soft compactness.

Lemma 4.20. Let FE be an increasing (resp. a decreasing) soft open subset in a strong soft regularly ordered
space. Then for each Pxe ∈ FE, there exists an increasing (resp. a decreasing) soft open set GE containing Pxe
such that Pxe ∈ GE ̃︀⊆FE.
Proof. The proof is similar to that of Lemma (3.37).

Theorem 4.21. Let HE be an increasing (resp. a decreasing) soft compact subset in a strong soft regularly
ordered space and FE be a decreasing (resp. an increasing) soft open set containing HE. Then there exists a
decreasing (resp. an increasing) soft open set GE such that HE ̃︀⊆GE ̃︀⊆GE ̃︀⊆FE.
Proof. The proof is similar to that of Theorem (3.38).

Corollary 4.22. Every soft compact strong soft regularly ordered space is strong soft normally ordered.

Proof. The proof is similar to that of Corollary (3.39).

Remark 4.23. (i) If a partial order relation is diagonal, then a soft topological ordered space can be viewed
as a soft topological space. In this case the concepts of soft Ti-ordered spaces and strong soft Ti-ordered
spaces for i = 0, 1, 2, 3, 4, are equivalent;

(ii) If a set of parameters is a singleton, then a soft topological ordered space can be viewed as a topological
ordered space. In this case the notations ∉ and b̸ are equivalent. Hence, the concepts of p-soft Ti-ordered
spaces, soft Ti-ordered spaces and Ti-ordered spaces for i = 0, 1, 2, 3, 4, are equivalent.

Proposition 4.24. Every strong soft Ti-ordered space (X, τ, E,⪯) is a soft Ti-space, for i = 0, 1, 2.

Proof. The proof follows directly from the definitions of strong soft Ti-ordered and soft Ti-spaces.

Remark 4.25. To confirm that the converse of the above proposition fails, we consider E is a singleton and then
we suffice with the examples introduced in [2]. Also, by considering E is a singleton, Example 3 in [2] shows that
the concepts of strong soft Ti-ordered and soft Ti-spaces (i = 3, 4) are independent of each other.

In conclusion,we give Figure 1 to illustrate the relationships among some types of ordered soft separation
axioms.
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Figure 1: The relationships among some types of ordered soft separation spaces.

5 Conclusion and future work
By combining a partial order relation and a topology on a non-empty set, Nachbin [1] defined the topological
ordered space. Similarly, Al-shami et al. [29] defined the soft topological ordered space. Studying soft separa-
tion axioms via soft topological spaces is a significant topic because they help establish a wider family which
can be easily applied to classify the objects under study.We demonstrate in the last paragraph of introduction
the reasons for doingmany studies via soft separation axioms and the variety of these studieswill bemore via
ordered soft separation axioms. Throughout this work, we use the notions of monotone soft neighborhoods
and monotone soft open sets to present soft Ti-ordered and strong soft Ti-ordered spaces, respectively, for
i = 0, 1, 2, 3, 4. These two types are formulated with respect to the ordinary points. We establish several re-
sults such as strong soft Ti-ordered spaces is strictly finer than soft Ti-ordered spaces and support this result
with number of interesting examples. Also, we discuss the relationships which associate the soft Ti-ordered
(strong soft Ti-ordered) spaces with p-soft Ti-ordered spaces and soft Ti-spaces. In Theorem (4.8), we give a
condition that satisfies the equivalence between p-soft T1-ordered and strong soft T1-ordered spaces. In the
end of Section (3) and Section (4), we present a number of results that associate soft compactness with some
of the initiated ordered soft separation axioms. Some open problems on the relationship between strong soft
Ti-ordered and soft Ti-ordered spaces (i = 2, 3, 4) are posed.

To extend this study, one can generalize the initiated concepts on supra soft topological spaces [40]. All
these results will provide a base to researchers who want to work in the soft ordered topology field and will
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help to establish a general framework for applications in practical fields.

Acknowledgments: The authors would like to thank the editors and the reviewers for their valuable com-
ments which helped us improve the manuscript.
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